王 亮,郭仁松,吾買爾江?庫爾班,田立文,林 濤,鄭子漂,徐海江,孔繁陽,崔建平
·農業水土工程·
深松深度對南疆滴灌棉田水分利用效率與產量的影響
王 亮1,2,郭仁松2,吾買爾江?庫爾班1,田立文2,林 濤2,鄭子漂2,徐海江2,孔繁陽2,崔建平2※
(1. 新疆農業科學院庫車陸地棉試驗站,庫車 842099;2. 新疆農業科學院經濟作物研究所,烏魯木齊 830091)
為探明深松對南疆滴灌棉田耗水特性、水分利用效率及產量的影響。在新疆阿瓦提縣棉花科研示范基地開展田間深松試驗,設置3個深松深度(TD1,30 cm;TD2,40 cm;TD3,50 cm),以不深松為對照(CK),比對分析不同處理土壤容重、棉田耗水特征、干物質積累量、產量及水分利用效率的變化。結果表明,深松處理均能降低土壤容重,提高快速生長期深層水分的利用吸收,增加棉田土壤水分消耗量和蒸散量;與CK處理相比,TD1、TD2和TD3處理0~60 cm平均土壤容重降低1.0%、1.9%和3.3%,花鈴期0~80 cm土層平均土壤質量含水率減小5.3%、11.6%和11.3%,全生育期土壤水分消耗量顯著增加31.4、30.0和47.4 mm,總蒸散量則顯著增大6.7%、6.3%和10.0%。深松處理對棉花干物質積累量、產量及水分利用效率具有顯著促進效應,但并不隨深松深度的增加呈逐漸增大趨勢,當深松深度為TD2時更有利于獲得最大干物質積累量、最高產量和最大水分利用效率;吐絮期TD1、TD2和TD3處理干物質積累量分別較CK增加11.6%、22.5%和20.8%,產量顯著增加7.0%、15.5%和13.0%,TD2處理水分利用效率較CK和TD3提高8.9%和6.3%。可見,深松40 cm既能優化土壤耕層結構,又能協同棉花產量及水分生產力的最大化,是南疆綠洲滴灌棉田適宜的深松深度,在南疆旱作棉田合理耕層構建中具有一定的推廣應用價值。
棉花;土壤;深松;土壤水分;產量;水分利用效率
南疆位于天山以南,昆侖山脈以北,是新疆乃至中國植棉面積最大、品質最優的棉花生產基地[1],其棉花產量和面積分別占全疆的71.2%和 67.6%[2]。該區域氣候極端干旱少雨(年均降水量僅為46.7 mm),水分蒸發強烈,是典型的“綠洲生態,灌溉農業”,其灌溉需要指數在 85%以上[3],農田水資源嚴重匱乏。同時,由于南疆耕地自開墾以來一直進行棉花連作,輪作倒茬困難,小規模分散種植使得以鏵式犁為主的連年翻耕制度與高強度的機械作業長期沿用,加劇了耕作層淺化(南疆灌溉棉區平均耕層深度僅為20 cm),犁底層加厚,形成土壤壓實的不合理耕層結構,導致耕層“淺、實、少、干”問題突出,弱化了水肥氣熱傳導性能,致使水肥利用效率低下,土壤耕地質量及地力生產力持續下降,嚴重制約了作物生長發育與高產高效[4]。如何消減連作棉田土壤障礙,提高有限灌溉水的高效利用,實現棉田節水、高效用水與土壤庫容擴增協同,增產增效,已成為目前南疆棉花生產上亟待解決的關鍵科學問題。
深松作為構建合理耕層結構的一項有效改土技術手段[5],對減輕農田土壤連作障礙,優化土壤環境,提升土壤生產力具有較好的效果[6]。近年,國內外關于深松的研究取得了階段性進展,深松可打破犁底層致密結構,加深耕層厚度,形成虛實并存的土壤結構[7]。深松耕作顯著增加了土壤碳庫容及土壤孔隙的連通性[8],田慎重等[9]在旋耕加深松和秸稈還田的綜合耕作措施下研究表明,深松配合秸稈還田提高了0~20 cm土壤團聚體穩定性和活性有機碳含量及貢獻率,提高了深層土壤氣相比。土壤水分運動與深松之間存在很強的關聯性,Kaur等[10]和Kuang等[11]研究認為,深松(35~40 cm)可為土壤水分入滲創造有效的輸送通道,提高穩定入滲率,增加水滲透能力;Nidia等[12]研究了耕作方式對地中海氣候下土壤水分平衡的影響表明,深松可顯著增加土壤貯水量,對土體的有效供水能力有很好的提升作用[13]。深松減弱了土壤穿透阻力,利于優化根系形態,促進根系對水分及養分的吸收與轉運[14],Sun等[15]在華北平原區開展的耕作方式研究表明,深松促進了作物根系下扎,有利于根系對深層土壤中養分和水分的吸收利用,提高了養分利用效率,從而促進作物生長發育和產量提高[16]。這與溫美娟等[17]在引黃灌區灰鈣土上的研究結果一致。然而,上述關于深松耕作的研究主要集中在黃淮海平原及黃土高原生態區,且多為不同耕作方式對土壤質量、作物生長發育方面的對比分析,有關深松深度研究也主要在30~40 cm的深度。針對南疆依賴灌溉的粉砂質壤土環境條件下,深松深度對棉田土壤環境、耗水特性及作物生產的系統性研究不足,影響棉田水土環境及產量的機理尚不明晰,缺乏對應土壤區位和障礙因子的深松作業深度規范,限制了深松耕作技術因地制宜的推廣應用。因此,本文通過研究南疆滴灌棉田深松深度對土壤容重、土壤水分消耗變化過程、產量及水分利用效率的影響,揭示深松擴容增產機理,以期為構建南疆綠洲灌溉棉區適宜的耕層結構及深松技術的合理應用提供理論依據和實踐經驗。
試驗于2019年4—10月在阿瓦提縣新疆農業科學院棉花科研示范基地(40°27'N,80°21'E,海拔1 025 m)進行。試驗區位于塔克拉瑪干沙漠北緣,屬于暖溫帶大陸性干旱氣候,是典型的綠洲灌溉區。該區域降雨稀少,極干旱,年均降雨量僅46.7 mm,平均蒸發量達1 890.7 mm,光熱資源豐富,年平均氣溫10.4 ℃,>10 ℃年積溫3 988 ℃,無霜期211 d,年日照時數2 679 h。2019年棉花生長季日均氣溫19.9 ℃,降水量100.9 mm(圖1)。試驗地土質類型為粉砂質壤土,砂粒、粉粒、黏粒質量比例為61∶36∶3,地下水埋深大于5 m,無向上補給水量,灌溉水為地表天山融雪水。

圖1 試驗地2019年棉花生長季降水量和氣溫分布
試驗采用單因素隨機區組設計,以不深松為對照(CK),設置3個深松深度30 cm(TD1)、40 cm(TD2)和50 cm(TD3),共4個處理,秋收后,采用棉花秸稈粉碎機將棉秸稈全部粉碎還田,之后采用7M-2204型帶有深度定位儀的彎刀式深松機進行精確深松,深松后進行冬灌蓄墑。不同處理耕層土壤(0~60 cm)的基礎養分狀況見表1,整地播種前將氮肥施用總量的30%、鉀肥施用總量的50%和全部磷肥作為底肥,結合淺犁一次性施入,底肥共施入尿素(N質量分數≥46%)202.5 kg/hm2,農用硫酸鉀(K2O質量分數≥50%)75 kg/hm2,三料磷肥(P2O5質量分數≥46%)375 kg/hm2。最后采用2BMJ-4型氣吸式精量鋪膜播種機進行單粒精播。試驗采用1膜雙管6行種植模式,膜寬2.05 m,播幅2.3 m,2根滴灌帶間距76 cm,滴頭間距20 cm,滴頭設計流量2.1 L/h。株行配置為窄行10 cm,寬行66 cm,株距11 cm,種植密度為2.4×105株/hm2。每處理重復3次,共12個小區,每小區由3個播幅組成,小區寬6.9 m,長6.5 m,面積44.85 m2,小區之間留1播幅設為保護行。2019年供試棉花品種為“新陸中88號”,屬于中熟棉花品種,于2019年4月15日播種,2019年9月25日收獲,生育期長163 d。

表1 不同處理下試驗區耕層土壤(0~60 cm)的基本性質
注:CK 為不深松,TD1 為深松30 cm,TD2 為深松40 cm,TD3 為深松50 cm。下同。
Note: CK is not subsoiling, TD1 represents subsoiling of 30 cm, TD2 represents subsoiling of 40 cm, and TD3 represents subsoiling of 50 cm. Same as below.
試驗區單獨水表控水計量,采用滴灌方式,每個處理灌水量相同,整個生長季灌水總量控制在360 mm,6月20日灌頭水,之后每間隔7 d滴灌1次,全生育期共滴灌10次,單次灌水量為36 mm。棉花生育期肥料按照“一水一肥”的方式進行等量追施,追施尿素(N質量分數≥46%)472.5 kg/hm2,農用硫酸鉀(K2O質量分數≥50%)75 kg/hm2,試驗區周圍設置保護行,其他農事管理措施同周邊大田。
1.3.1 土壤容重測定
于棉花收獲期,采用環刀法測定0~60 cm土層深度的土壤容重,每10 cm為一層,每處理重復取樣3次,環刀體積為100 cm3,測定位置為棉花寬行每層中間位置。
1.3.2 土壤質量含水率的測定
土壤質量含水率采用土鉆取土烘干法測定,在棉花生育期內,各處理每7 d(灌水前一天)用土鉆于小區第2幅膜(減小邊際效應)膜間滴頭正下方采取0~20、>20~40、>40~60、>60~80 cm土層土樣,置于鋁盒稱鮮土質量,在80 ℃恒溫下烘干后稱干土質量。各處理進行3次平行測定,取平均值計算土壤質量含水率。
1.3.3 土壤水分消耗量、農田蒸散量及耗水系數
土壤貯水量(,mm)的計算公式如下[18]
=S(﹒﹒)×10 (1)
式中為土層厚度,cm;為該土層土壤容重,g/cm3;為該土層土壤質量含水率,以占干土質量的百分數計。
土壤水分消耗量(Soil Water Consumption,SWC,mm)的計算公式如下
SWC=1-2(2)
式中1和2分別為生育階段初和階段末的土壤貯水量,mm;
采用水量平衡法計算作物農田蒸散量(Evapotranspiration,ETc,mm),公式如下[18]
ETc=SWC+++--(3)
式中為時段內灌水量,mm;為時段內有效降雨量,mm;為地下水通過毛管作用上移補給作物水量,mm;為地表徑流量,mm;為補給地下水量,mm。試驗區地勢平坦,在有作物生長的農田,降水入滲深度不超過2 m,所以和可忽略不計;當地下水埋深大于2.5 m時,地下水上移補給作物水量可視為0(本試驗地下水埋深在5 m以下,故值為0)。因此,公式(2)可簡化為
ETc=SWC++(4)
耗水系數(Water Consumption Coefficient,WCC,%)的計算公式為[19]
WCC= ETa/ ETc×100 (5)
式中ETa為某一生育階段農田蒸散量,mm;ETc為生育期農田總蒸散量,mm。
1.3.4 棉花干物質積累量測定
于棉株苗期、蕾期、盛花期、盛鈴期和吐絮期,在每小區選取長勢均勻的5株棉樣,采集其地上部和地下部分,將獲得的鮮植株樣立即分根、莖、葉、蕾鈴花等器官,在105 ℃條件下殺青30 min后,于80 ℃烘干至恒質量,測定其干物質積累量。
1.3.5 產量及構成因素和水分利用效率的測定
吐絮期在每小區選定2.9 m×2.3 m地塊,調查有效株數和單株成鈴數,重復測定平行3組,取其平均值。并在每小區連續幾株分上、中、下3部位各取50個吐絮鈴,同樣各處理重復3次,室內考種,調查單鈴質量和衣分。
水分利用效率(WUE)的計算公式為[20]
WUE=/ ETc (6)
式中為籽棉產量,kg/hm2。
1.3.6 氣象要素測定
降水量、溫度和風速等氣象參數由常規田間氣象站(Watch Dog 2900ET Weather Station,Spectrum,Inc,USA)測定。
利用Microsoft Excel 2010對數據進行處理,采用SPSS 19.0統計分析軟件One way ANOVA分析不同深松深度處理之間的差異顯著性。SigmaPlot Version 12.5(Systat Software,Inc. USA)繪圖。
不同深松深度對棉花收獲期0~60 cm土壤剖面容重的影響如表2所示。0~10 cm土層不同處理土壤容重差異不顯著(>0.05);>10~20 cm土層TD2和TD3處理土壤容重較CK顯著降低,分別降低2.9%和3.6%(<0.05);>20~30 cm土層3個深松處理土壤容重均顯著低于CK,分別降低5.6%、4.9%和5.6%(<0.05),但深松處理間差異不顯著(>0.05);>30~40 cm土層TD3處理土壤容重較CK、TD1和TD2處理分別顯著降低2.8%、4.1%和1.4%(<0.05);>40~50 cm土層僅TD3處理土壤容重顯著低于其他處理,較CK顯著降低4.7%(<0.05),而CK、TD1和TD2處理間差異不顯著(>0.05);>50~60 cm土層處理間土壤容重差異均不顯著(>0.05),這主要是由于深松未對>50~60 cm深層土壤造成擾動。整體上,0~60 cm土層TD1、TD2和TD3處理平均土壤容重較CK分別降低1.0%、1.9%和3.3%,上述分析表明,深松處理均可降低不同土層的土壤容重,深松深度增加,容重降幅增大,且不同土層TD3處理土壤容重均最低。

表2 棉花收獲期各處理不同深度土層土壤容重變化
注:同一行中不同小寫字母表示處理間差異顯著(<0.05)。表中數據為平均值±標準差。
Note: Different lowercase letters in the same line indicate significant differences among treatments (<0.05). The data are mean ± standard deviation in the table.
耕層土壤結構差異影響了土壤水分分布特征,圖2顯示了棉花生長季不同深松深度下棉田0~80 cm土層剖面水分分布變化。棉花苗期,0~80 cm土層TD1、TD2和TD3處理平均土壤質量含水率較CK分別高出2.6%、6.5%和7.2%;蕾期,0~40 cm土層深松處理土壤質量含水率均較CK降低,各深松處理間差異較小,60~80 cm土層TD2和TD3處理土壤質量含水率明顯高于CK;花鈴期土壤蒸發及蒸騰作用進一步加強,各處理表層0~20 cm土壤質量含水率均較低,且處理間差異較小,該階段也是耗水高峰期,水分需求量明顯增大,20~40 cm土層各處理土壤質量含水率仍較低,且TD1、TD2和TD3處理較CK大幅降低,40~80 cm土層各處理土壤質量含水率明顯增加,但仍呈現深松處理土壤質量含水率低于CK的趨勢,整體來看,花鈴期0~80 cm土層TD1、TD2和TD3處理平均土壤質量含水率較CK處理分別降低5.3%、11.6%和11.3%。這主要是由于深松打破犁底層,利于根系深扎與水分移動吸收,故深松處理深層土壤水分消耗量較大。吐絮期棉花生長對水分需求量減弱,加之該生育階段內降雨量較大,0~40 cm土層各處理土壤質量含水率增大,CK土壤質量含水率顯著高于TD2和TD3處理,40~80 cm土層TD2和TD3處理土壤質量含水率較CK略有增加,主要是由于TD2和TD3處理破除土壤犁底層,有利于充足的水分向深層移動。

圖2 不同深松深度處理棉花各生育期剖面土壤質量含水率的變化
表3給出了不同深松深度下棉花各生育期土壤水分消耗量、蒸散量及耗水系數的變化特征。由表可知,棉花苗期TD2和TD3處理土壤水分消耗量、蒸散量及耗水系數均與CK有顯著性差異(<0.05),與CK相比,TD2和TD3處理土壤水分消耗量顯著降低24.5%和29.6%,蒸散量顯著降低14.8%和17.9%,耗水系數顯著減小20.2%和25.8%;進入蕾期后,土壤水分消耗轉為以植物蒸騰為主的過程,深松處理土壤水分消耗量、蒸散量及耗水系數較CK均顯著增加(<0.05),但深松處理間差異不顯著(>0.05),隨深松深度增加土壤水分消耗量、蒸散量逐漸增大,而耗水系數則呈先增后減的變化趨勢;至花鈴期,各處理棉田耗水量均達到最大值,TD2和TD3處理土壤水分消耗量及蒸散量較CK和TD1處理顯著增加(<0.05),而TD2與TD3處理間差異不顯著(>0.05),土壤水分消耗量TD2和TD3處理較CK分別增加108.9%和111.4%,蒸散量TD2處理較CK和TD1處理分別增加7.5%和2.6%,TD3處理則分別增加7.7%和2.7%,各處理對耗水系數的影響差異不顯著(>0.05);吐絮期TD3處理土壤水分消耗量較其他處理顯著增加(<0.05),蒸散量及耗水系數以TD2處理最低。從整個生育期來看,TD1、TD2和TD3處理土壤水分消耗量較CK顯著增加31.4、30.0和47.4 mm(<0.05),各深松處理間差異不顯著(>0.05),深松能顯著增加棉花生育期總蒸散量(<0.05),TD1、TD2和TD3處理生育期總蒸散量均較CK顯著增加6.7%、6.3%和10.0%。綜上,深松可提高耗水高峰期水分的吸收利用,降低生育初期棉田土壤水分消耗,從保水與供水角度分析,TD2處理效果最佳。

表3 不同深松處理下棉田土壤水分消耗量和蒸散量的變化
注:SWC為土壤水分消耗量;ETc為蒸散量;WCC為耗水系數;同一列中不同小寫字母表示處理間差異顯著(<0.05),下同。
Note: SWC is soil water consumption; ETc is evapotranspiration; WCC is water consumption coefficient; Different lowercase letters in the same column indicate significant differences among treatments (<0.05), same below.
干物質積累合成是形成作物產量的關鍵,如圖3所示,TD2和TD3處理均顯著增加了棉花干物質積累量(<0.05)。苗期TD3處理干物質積累量較CK、TD1和TD2顯著增加61.3%、32.7%和34.9%;蕾期各處理間干物質積累量差異均不顯著(>0.05);盛花至吐絮期不同處理干物質積累量呈TD2>TD3>TD1>CK處理的變化趨勢。盛花期TD2處理干物質積累量較CK顯著增加19.7%(<0.05);盛鈴期TD2和TD3處理干物質積累量較CK分別顯著增加17.7%、15.8%(<0.05);吐絮期TD1、TD2和TD3處理較CK增加11.6%、22.5%和20.8%,各深松處理間差異均不顯著(>0.05)。綜上所述,深松有利于促進干物質量的形成,且以TD2處理效果最好。
棉花生長季各處理干物質積累速率呈單峰變化曲線(圖4),TD1、TD2和TD3處理干物質積累速率均快于CK,生育后期差異更明顯。出苗后第105天前,各處理呈TD2>TD3>TD1>CK的變化;不同處理干物質最大積累速率及出現時間存在差異,CK處理在出苗后第100天積累速率最快,為1.20 g/(plant·d),TD1、TD2和TD3處理則均在出苗后第105天積累速率最快,分別為1.26、1.42和1.40 g/(plant·d),最大積累速率依次較CK增加5.0%、18.3%和16.7%;出苗第105天后,CK處理干物質積累速率明顯較深松處理減慢。結果表明,深松可加快干物質積累速率,延遲最大積累速率出現時間,有利于干物質量的形成,對促進棉花增產奠定基礎。

圖3 不同深松處理棉花干物質積累量變化特征

注:圖中箭頭指向為積累速率最快的天數。
深松深度對棉花產量、單株成鈴數、單鈴質量、衣分及水分利用效率的影響如表4所示。TD1、TD2和TD3處理棉花產量較CK顯著增加7.0%、15.5%和13.0%,TD2和TD3處理較TD1顯著增產7.9%和5.6%(<0.05),TD2和TD3處理間差異不顯著(>0.05);水分利用效率CK和TD1處理最低,TD2處理較CK和TD1處理顯著提高8.9%(<0.05),較TD3提高6.3%;產量構成因素方面,TD2處理單株成鈴數較CK顯著增加10.4%(<0.05),其他處理間差異不顯著(>0.05);單鈴質量以TD2和TD3處理最高,且較CK和TD1處理顯著增加7.5%和5.6%(<0.05);棉花衣分不同處理間差異均未達顯著水平(>0.05)。綜上,棉花產量、單株成鈴數及水分利用效率隨深松深度增加呈先增后減的變化趨勢,當深松深度為TD2時均可獲得最大值,結合耗水量分析,雖TD3處理更有利于調動深層水分利用,但其產量、單株成鈴數及水分利用效率有所下降,TD2處理能更好的協同耗水與產量的關系,獲得最大的產量及水分利用效率。

表4 不同深松處理棉花產量及水分利用效率的變化
合理構建耕層結構可優化土壤物理性狀,提升地力生產力。深松是解決土壤耕作層瘠薄化問題和構建合理耕層的關鍵技術之一。研究表明,合理深松能夠有效打破硬實的犁底層,實現既能增加土壤疏松程度,又不擾亂土壤層次分布的目的[21]。深松(35~40 cm)可顯著降低表層(0~30 cm)的土壤容重與緊實度達到適宜狀態[17],提高土壤孔隙度和空隙連續性,增強水分入滲能力[22]。本研究結果顯示,深松深度對土壤結構的改善提升具有積極作用,不同深松深度對0~10 cm及50~60 cm土層土壤容重影響不顯著,這主要是由于秋季深松后,播種前進行淺耙整地,使得表土層均處于疏松狀態,而分別對相應深松深度以上土層土壤容重有顯著的降低效果,且深松深度越深,容重降幅越大,深松50 cm對降低土壤容重具有最佳效果,這與前人的研究結果基本一致。但不同的是適宜的深松深度因地而異,這主要是受不同生態區域土壤類型、土壤質地條件等影響,導致深松對農田土壤結構改變所呈現的效果存在很大差異。研究表明,黃淮海平原是典型的潮土、褐土分布區,土壤質地較均勻,呈黏質壤土,該區域適宜的深松深度為35~40 cm[13,23]。黃土高原引黃灌區土壤以灰鈣土為主,質地為中壤,土壤性狀表現為薄、沙、黏且鹽分多,土壤漏水漏肥,通透性差[24],深松35 cm秸稈還田能改善土壤特性。而南疆灌溉棉區為灌耕棕漠土,土壤質地為粉砂質壤土,以粉砂為主,黏粒含量少,粉粒、砂粒、黏粒質量分數分別為36.4%、60.7%、2.9%[25],耕層土壤“淺、實、少”現象普遍,本研究中,僅改土效果以深松50 cm最好。因此,不同區域生態條件的差異化,導致深松改土效果及深松深度的一致性不同,應因地制宜地選擇適宜的深松深度。
深松耕作通過改變土壤容重,進而引起土壤水分特性發生相應變化[26-27]。前人研究表明,深松能促進水分入滲,提高土壤水分含量[28],特別是顯著增加了深層土壤含水量[29],降低表層土壤水分[30]。但本文研究結果有所不同,研究顯示深松處理可顯著降低蕾期至花鈴期中下層土壤水分含量,提高苗期0~80 cm土層的田間持水能力,這與翟振等[31]的研究結果大體一致。其主要原因是深松形成松軟的土壤質地,水分自由運動阻力減弱,隨著蒸騰作用加強,深層土壤水分的供應與消耗能力明顯增強,故關鍵需水時期深松處理的土壤水分含量顯著降低,而對于水分需求較小的生育階段,起到保水蓄墑的作用。深松對土壤水分消耗狀況有顯著影響,且與深松深度之間存在很強的相關性。本文研究顯示,深松40和50 cm使棉花苗期的土壤水分消耗量降低,顯著提高蕾期至花鈴期的土壤水分消耗量、蒸散量及耗水系數,且深松40 cm可顯著獲得最高的作物水分利用效率,能更好的平衡水分的儲蓄與消耗。這說明適宜的深松深度能保持較好的水分供需關系,深松強度過大反而不利于水分高效利用,這與Nidia等[12]的研究結果一致。但也有部分研究認為,深松深度與農田耗水量呈負相關,深松顯著降低作物耗水量[32-33]。造成不同耕作區域深松對土壤水分消耗特性的差異性來源可能與取樣時間、農田微氣候環境和土壤類型有關,有待進一步驗證研究。下一步還需開展深松對土壤蒸發和作物蒸騰的定量分離研究,揭示深松對農田耗水分配規律的影響。
深松耕作通過改善根區環境,提高了作物根系對水分和養分的吸收供應能力,對作物生產潛能具有積極作用[34]。前人研究表明,深松可促進深層根系生長發育,提高作物光合勢能[35],顯著促進作物花后干物質和養分的積累與轉運[15],進而提高農作物產量[36-37]。本研究結果表明,增加深松深度對棉花干物質積累量、最大積累與轉運速率和產量均具有顯著地促進效應,干物質量增幅11.6%~22.5%,增產幅度為7.0%~15.5%;同時,深松可延緩棉花衰老過程,這與以往的研究結果大致相同[21]。主要是由于深松改善了棉田耕層的疏松狀況,利于根系深扎和水肥的調動利用,提高了棉花生長所需水肥的持續供應能力,從而對棉花發育和增產產生良好效應。但Kuang等[11]和譚德沖[38]研究認為深松35或50 cm處理更有利于作物生長及產量提升。而本研究認為深松深度對棉花生產力的正調節效應并不呈線性關系,深松深度達到40 cm時,棉花生長各指標最優。這可能是由于不同耕作區域受土壤、氣候等環境因子和作物類型的影響,作物生產潛能對深松深度的響應存在差異所致。
綜合分析表明,在南疆灌溉棉區,深松40和50 cm均可創造寬厚疏松的耕層狀況,提高土壤水分供給能力,促進光合產物及產量形成,但深松50 cm時并不能夠獲得最高產量和最大水分利用率,且增加了生產油耗投入成本。從經濟環保角度考慮,深松40 cm是南疆旱作棉區實現高效節能和提質增產的最佳深松深度。
本研究在大田設置 3個深松深度處理,以不深松(CK)為對照,對南疆棉田耗水特性、生長動態、產量及水分利用效率進行了研究,主要結論如下:
1)在南疆滴灌棉區,深松40和50 cm可顯著降低>10~40 cm土壤容重(<0.05),深松50 cm處理對土壤耕層結構的優化效果最佳,0~60 cm平均土壤容重較CK降低3.3%。
2)與CK相比,深松40和50 cm處理增加了棉花苗期0~80 cm土層土壤質量含水率,大幅降低了花鈴期0~80 cm土層土壤水分含量,有利于深層土壤水分的吸收利用;深松40和50 cm均能顯著提高蕾期至花鈴期棉田土壤水分消耗量和蒸散量,顯著降低苗期土壤水分消耗量和蒸散量(<0.05),有利于耗水高峰期需求水分的供應及生育初期及末期充足水分的貯存。
3)深松40和50 cm處理均顯著增加了棉花干物質積累量(<0.05),加快干物質積累速率,延長快速積累時間,有利于提高水分利用效率,顯著提高棉花產量與單鈴質量(<0.05),但棉花干物質積累量、產量及水分利用效率并不隨深松深度的增加而增加,深松40 cm處理可獲得最高干物質積累量、產量及最大水分利用效率,能更好的平衡耗水與產量的關系,是南疆滴灌棉區粉砂質土壤條件下最適宜的深松深度。
[1] 何平如,張富倉,侯翔皓,等. 土壤水分調控對南疆滴灌棉花產量及土壤水鹽分布的影響[J]. 水土保持研究,2020,27(2):84-92. He Pingru, Zhang Fucang, Hou Xianghao, et al. Effects of soil water regulation on cotton yield and soil water salt distribution under drip irrigation in southern Xinjiang[J]. Research of Soil and Water Conservation, 2020, 27(2): 84-92. (in Chinese with English abstract)
[2] 辛明華,王占彪,李亞兵,等. 南疆棉區機采種植模式下棉花種植密度研究[J]. 山東農業科學,2020,52(1):46-52. Xin Minghua, Wang Zhanbiao, Li Yabing, et al. Study on suitable planting density of cotton under machine-picked planting mode in south Xinjiang[J]. Shandong Agricultural Sciences, 2020, 52(1): 46-52. (in Chinese with English abstract)
[3] 王紅梅,劉新華. 南疆高效節水灌溉面臨的問題及應對措施[J]. 水利規劃與設計,2018(10):72-74,107. Wang Hongmei, Liu Xinhua. Problems and countermeasures of efficient water saving irrigation in south Xinjiang[J]. Water Resources Planning and Design, 2018(10): 72-74, 107. (in Chinese with English abstract)
[4] Bai W, Sun Z X, Zheng J M, et al. The combination of subsoil and the incorporation of corn stover affect physicochemical properties of soil and corn yield in semi-arid China[J]. Toxicological & Environmental Chemistry, 2016, 98(5/6): 561-570.
[5] Shao Y H, Xie Y X, Wang C Y, et al. Effects of different soil conservation tillage approaches on soil nutrients, water use and wheat-maize yield in rain fed dry-land regions of North China[J]. European Journal of Agronomy, 2016, 81: 37-45.
[6] 崔建平,程強,徐海江,等. 深松條件下滴灌頻次對土壤理化指標及棉花產量的調節效應[J]. 水土保持學報,2019,33(1):263-269,276. Cui Jianping, Cheng Qiang, Xu Haijiang, et al. Effects of drip irrigation frequency on soil physical and chemical characteristics and cotton yield under subsoiling condition[J]. Journal of Soil and Water Conservation, 2019, 33(1): 263-269, 276. (in Chinese with English abstract)
[7] Wang S B, Guo L L, Han H. F, et al. Effect of subsoiling depth on soil physical properties and summer maize (L) yield[J]. Plant, Soil and Environment, 2019, 65(3): 131-137.
[8] Zhang Y J, Wang R, Wang S L, et al. Effects of different subsoiling frequencies incorporated into no-tillage systems on soil properties and crop yield in dryland wheat-maize rotation system[J]. Field Crops Research, 2017, 209: 151-158.
[9] 田慎重,張玉鳳,郭洪海,等. 深松和秸稈還田對旋耕農田土壤有機碳活性組分的影響[J]. 農業工程學報,2020,36(2):185-192. Tian Shenzhong, Zhang Yufeng, Guo Honghai, et al. Effects of subsoiling and straw return on soil labile organic carbon fractions in continue rotary tillage cropland[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(2): 185-192. (in Chinese with English abstract)
[10] Kaur R, Arora V K. Deep tillage and residue mulch effects on productivity and water and nitrogen economy of spring maize in north-west India[J]. Agricultural Water Management, 2019, 213: 724-731.
[11] Kuang N K, Tan C D, Han H F, et al. Effects of sub-soiling before winter wheat on water consumption characteristics and yield of summer maize on the North China Plain[J]. Agricultural Water Management, 2020, 227: 105786.
[12] Nidia B S, Oscar S, Ingrid M, et al. Tillage effects on the soil water balance and the use of water by oats and wheat in a Mediterranean climate[J]. Soil and Tillage Research, 2018, 184: 68-77.
[13] 尹寶重,張永升,甄文超. 海河低平原渠灌區麥田深松的節水增產效應研究[J]. 中國農業科學,2015,48(7):1311-1320. Yin Baozhong, Zhang Yongsheng, Zhen Wenchao. Effects of sub-soiling tillage on wheat field water-saving and yield-increasing in canal irrigation district of Haihe Lowland Plain[J]. Scientia Agricultura Sinica, 2015, 48(7): 1311-1320. (in Chinese with English abstract)
[14] 白偉,孫占祥,鄭家明,等. 耕層土壤虛實結構優化春玉米根系形態提高水分利用效率[J]. 農業工程學報,2019,35(21):88-97. Bai Wei, Sun Zhanxiang, Zheng Jiaming, et al. Furrow loose and ridge compaction plough layer structure optimizing root morphology of spring maize and improving its water use efficiency[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(21): 88-97. (in Chinese with English abstract)
[15] Sun X F, Ding Z S, Zhao M, et al. Sub-soiling practices change root distribution and increase post-anthesis dry matter accumulation and yield in summer maize[J]. Plos One, 2017, 12(4): e0174952.
[16] 張凱,劉戰東,孫景生,等. 耕作方式和灌水處理對冬小麥-夏玉米水分利用及產量的影響[J]. 農業工程學報,2019,35(17):102-109. Zhang Kai, Liu Zhandong, Sun Jingsheng, et al. Effects of tillage and irrigation on water use and yield of winter wheat and summer maize[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(17): 102-109. (in Chinese with English abstract)
[17] 溫美娟,王成寶,楊思存,等. 深松和秸稈還田對甘肅引黃灌區土壤物理性狀和玉米生產的影響[J]. 應用生態學報,2019,30(1):224-232. Wen Meijuan, Wang Chengbao, Yang Sicun, et al. Effects of sub-soiling and straw returning on soil physical properties and maize production in Yellow River irrigation area of Gansu, China[J]. Chinese Journal of Applied Ecology, 2019, 30(1): 224-232. (in Chinese with English abstract)
[18] Bai J, Wang J, Chen X, et al. Seasonal and inter-annual variations in carbon fluxes and evapotranspiration over cotton field under drip irrigation with plastic mulch in an arid region of Northwest China[J]. Journal of Arid Land, 2015, 7(2): 272-284.
[19] 黃玲,高陽,邱新強,等. 灌水量和時期對不同品種冬小麥產量和耗水特性的影響[J]. 農業工程學報,2013,29(14):99-108. Huang Ling, Gao Yang, Qiu Xinqiang, et al. Effects of irrigation amount and stage on yield and water consumption of different winter wheat cultivars[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(14): 99-108. (in Chinese with English abstract)
[20] Yan Z X, Gao C, Ren Y J, et al. Effects of pre-sowing irrigation and straw mulching on the grain yield and water use efficiency of summer maize in the North China Plain[J]. Agricultural Water Management, 2017, 186(5): 21-28.
[21] 羅俊,林兆里,陳建峰,等. 耕作深度對蔗地土壤物理性狀及甘蔗產量的影響[J]. 應用生態學報,2019,30(2):405-412. Luo Jun, Lin Zhaoli, Chen Jianfeng, et al. Effect of subsoiling depths on soil physical characters and sugarcane yield[J]. Chinese Journal of Applied Ecology, 2019, 30(2): 405-412. (in Chinese with English abstract)
[22] 楊永輝,武繼承,何方,等. 耕作方式對土壤水分入滲、有機碳含量及土壤結構的影響[J]. 中國生態農業學報,2017,25(2):258-266. Yang Yonghui, Wu Jicheng, He Fang, et al. Effect of tillage method on soil water infiltration, organic carbon content and structure[J]. Chinese Journal of Eco-Agriculture, 2017, 25(2): 258-266. (in Chinese with English abstract)
[23] 關劼兮,陳素英,邵立威,等. 華北典型區域土壤耕作方式對土壤特性和作物產量的影響[J]. 中國生態農業學報,2019,27(11):1663-1672. Guan Jiexi, Chen Suying, Shao Liwei, et al. Soil tillage practices affecting soil characteristics and yield of winter wheat and summer maize in typical areas in the North China[J]. Chinese Journal of Eco-Agriculture, 2019, 27(11): 1663-1672. (in Chinese with English abstract)
[24] 霍琳,楊思存,溫美娟,等. 耕作方式對甘肅引黃灌區灌耕灰鈣土團聚體分布及穩定性的影響[J]. 應用生態學報,2019,30(10):3463-3472. Huo Lin, Yang Sicun, Wen Meijuan, et al. Effects of tillage methods on soil aggregate distribution and stability inirrigated sierozem of Gansu Yellow River irrigation area, China[J]. Chinese Journal of Applied Ecology, 2019, 30(10): 3463-3472. (in Chinese with English abstract)
[25] 林濤,湯秋香,梅旭榮,等. 地膜殘留量對棉田土壤水分分布及棉花根系構型的影響[J]. 農業工程學報,2019,35(19):117-125. Lin Tao, Tang Qiuxiang, Mei Xurong, et al. Effects of plastic film residue rate on root zone water environment and root distribution of cotton under drip irrigation condition[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(19): 117-125. (in Chinese with English abstract)
[26] 張霞,劉丹,王旭東,等. 種植方式和耕作措施對土壤結構與水分利用效率的影響[J]. 農業機械學報,2019,50(3):250-261. Zhang Xia, Liu Dan, Wang Xudong, et al. Effects of planting methods and tillage systems on soil structure and water use efficiency[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(3): 250-261. (in Chinese with English abstract)
[27] Schneider F, Don A, Hennings I, et al. The effect of deep tillage on crop yield-What do we really know?[J]. Soil and Tillage Research, 2017, 174: 193-204.
[28] Hu H Y, Ning T Y, Han H F, et al. Coupling effects of urea types and sub-soiling on nitrogen-water use and yield of different varieties of maize in northern China[J]. Field Crops Research, 2013, 142: 85-94.
[29] Sun M, Gao Z Q, Zong Y Z, et al. Contribution of sub-soiling in fallow period and nitrogen fertilizer to the soil water balance and grain yield of dry-land wheat[J]. International Journal of Agriculture and Biology, 2015, 17(1): 175-180.
[30] Martinez G, Ingrid, Erick Z, et al. Influence of conservation tillage and soil water content on crop yield in dry land compacted Alfisol of Central Chile[J]. Chilean Journal of Agricultural Research, 2011, 71(4): 615- 622.
[31] 翟振,李玉義,逄煥成,等. 耕深對土壤物理性質及小麥-玉米產量的影響[J]. 農業工程學報,2017,33(11):115-123. Zhai Zhen, Li Yuyi, Pang Huancheng, et al. Effect of tillage depth on soil physical properties and yield of winter wheat-summer maize[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(11): 115-123. (in Chinese with English abstract)
[32] Tao Z Q, Li C F, Zhao M, et al. Tillage and straw mulching impacts on grain yield and water use efficiency of spring maize in Northern Huang-Huai-Hai Valley[J]. The Crop Journal, 2015, 3(5): 445-450.
[33] 張凱,劉戰東,孫景生,等. 深松處理對豫北農田土壤水分與作物耗水的影響[J]. 農業機械學報,2019,50(10):251-258. Zhang Kai, Liu Zhandong, Sun Jingsheng, et al. Effects of sub-soiling on soil moisture and crop water consumption in farmland of northern Henan Province[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(10): 251-258. (in Chinese with English abstract)
[34] Cai H G, Ma W, Ren J, et al. Effect of subsoil tillage depth on nutrient accumulation, root distribution, and grain yield in spring maize[J]. The Crop Journal, 2014, 2(5): 297-307.
[35] Xu J, He Z K, Han H F, et al. Effect of tillage method on photosynthetic characteristics and annual yield formation of winter wheat-summer maize cropping system[J]. Plant Nutrition Fertilizer Science, 2017, 23(1): 101-109.
[36] Zhang Z Z, Qin S J, Chen G Q, et al. Effects of sub-soiling and N fertilizer application on dry matter accumulation, nitrogen use efficiency and yield of summer maize[J]. Journal of Plant Nutrition and Fertilizer, 2013, 19(4): 790-798.
[37] Yin B Z, Zhen W C, Feng Y. Effects of sub-soiling seeding on root physiological indices, water-saving and yield increasing behaviors in summer maize (L) in Haihe lowland plain of China[J]. Acta Agronomica Sinica, 2015, 41(4): 623-632.
[38] 譚德沖. 深松對夏玉米產量及水分利用效率的影響[D]. 泰安:山東農業大學,2019. Tan Dechong. Effect of Sub-Soiling on Yield and Water Use Efficiency of Summer Maize[D]. Taian: Shandong Agricultural University, 2019. (in Chinese with English abstract)
Effects of subsoiling depth on water use efficiency and yield of cotton field under drip irrigation in south Xinjiang, China
Wang Liang1,2, Guo Rensong2, Wumaierjiang Kuerban1, Tian Liwen2, Lin Tao2, Zheng Zipiao2, Xu Haijiang2, Kong Fanyang2, Cui Jianping2※
(1.,,842099,;2.,,830091,)
Northwest China Plain has become the largest cotton production region in the world. Cotton production occupies a key position, as an important pillar industry for agricultural development in Xinjiang, China. However, continuous cropping in cotton field has caused increasingly serious shortage on the farmland water, particularly great negative effects on the soil ecological environment in the root area.Subsoiling has been an effective tillage measure to optimize the soil environment, and further to drive the process of water movement and dissipation, thereby to promote the absorption and utilization of nutrients and water in the deep soil by roots, finally to increase soil productivity and crop yields. However, the research on the response of water consumption characteristics and water use efficiency to subsoiling is lacking, particularly on the irrigated cotton area in southern Xinjiang.In this study, a positioning subsoiling experiment in a cotton cultivation field was carried out under drip irrigation with plastic film mulching from April to October of 2019 in Awati County experimental base of the arid inland Tarim Basin, Northwest China (40°06′N, 80°44′E, altitude 1 025 m). Using the non-subsoil (CK) as a control, a machete subsoiler with a depth locator was used for precise subsoiling at depths of 30 cm (TD1), 40 cm (TD2), and 50 cm (TD3). The test was performed to explore the effect of different subsoiling depths on soil bulk density, soil water consumption, evapotranspiration (ETc), water use efficiency (WUE) and the growth characteristics and crop productivity in cotton growing seasons.The results showed that the subsoiling reduced the bulk density of soil, while increased soil water consumption and evapotranspiration, thereby to improve the utilization and absorption of deep soil moisture in the rapid growth period. Compared with CK, TD1, TD2 and TD3, on average, the bulk density of 0-60 cm soil reduced by 1.0%, 1.9% and 3.3%, respectively, and the soil moisture content of 0-80 cm soil layer by 5.3%, 11.6% and 11.3% at flowering and boll stage, respectively. The subsoiling significantly increased soil water consumption and ETc in the whole growing season (<0.05). Compared with CK, TD1, TD2 and TD3, the subsoiling significantly increased soil water consumption by 31.4, 30.0 and 47.4 mm, respectively, ETc by 6.7%, 6.3% and 10.0%. In terms of the potential of subsoiling on cotton production, the subsoiling had a significant promotion effect on cotton dry matter accumulation, yield, and water use efficiency (WUE), but it did not increase linearly with the depth of subsoiling. Especially, TD2 was more conducive to the maximum of dry matter accumulation, yield, and WUE. Compared with CK, TD1, TD2 and TD3, the dry matter accumulation increased by 11.6%, 22.5% and 20.8%, respectively, as well as the yield by 7.0%, 15.5% and 13.0%(<0.05), respectively. TD2 increased water use efficiency (WUE) by 8.9% and 6.3%, compared with CK and TD3. The subsoiling of 40 cm can be an optimal subsoiling on the irrigated ecological cotton in the southern Xinjiang, where the rational construction of soil tillage layer, both the maximum of cotton yield and water productivity. The finding can provide a very high popularization and application for the dry farming cotton in the southern Xinjiang, China.
cotton; soils; subsoiling; soil moisture; yield; water use efficiency
王亮,郭仁松,吾買爾江?庫爾班,等. 深松深度對南疆滴灌棉田水分利用效率與產量的影響[J]. 農業工程學報,2020,36(20):144-152.doi:10.11975/j.issn.1002-6819.2020.20.017 http://www.tcsae.org
Wang Liang, Guo Rensong, Wumaierjiang Kuerban, et al. Effects of subsoiling depth on water use efficiency and yield of cotton field under drip irrigation in south Xinjiang, China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(20): 144-152. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.20.017 http://www.tcsae.org
2020-07-01
2020-09-01
自治區自然科學基金項目(2020D01B36);國家自然科學基金項目(31860358);新疆農業科學院青年骨干創新能力培養基金項目(xjnkq-2019012);農業部公益性行業(農業)科研專項(201503117);國家棉花產業技術體系(CARS-15-50)
王亮,助理研究員,主要從事棉花旱作節水生理方面的研究。Email:980201749@qq.com
崔建平,研究員,主要從事棉花高產栽培與品質保優方面的研究。Email:3022825258@qq.com
10.11975/j.issn.1002-6819.2020.20.017
S222.2,S562
A
1002-6819(2020)-20-0144-09