999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

Several congruences involving harmonic numbers

2020-12-29 11:59:16WANGYunpengYANGJizhen

WANG Yunpeng,YANG Jizhen

(1.Department of Mathematics and Physics,Luoyang Institute of Science and Technology,Luoyang,Henan 471022,China;2.Department of Mathematics,Shanghai Normal University,Shanghai 200234,China;3.Department of Mathematics,Luoyang Normal College,Luoyang,Henan 471934,China)

Abstract: Harmonic numbers play important roles in mathematics. Let p>5be a prime. We establish the following congruences:

Key words: Bernoulli numbers; congruences; harmonic numbers

1 Introduction

Forα∈,the generalized harmonic numbers are defined byforn∈.Whenα=1,they reduce to the well-known harmonic numbersH0= 0andn∈.In 1862,Wolstenholme[1]proved that ifp>3 is a prime,then

(1)

Using these congruences,Sun obtained a series of modulopcongruences involving harmonic numbers. Wang[7,9-10]generalized some results of Sun[8]and established congruences for

In this paper,we use the method of Wang[10]and establish congruences involving harmonic numbers and Bernoulli numbers.

2 Lemmas

In this section,we first state some basic facts which will be used very often.

(2)

which implies that

(3)

(4)

Then we have

(5)

Lemma1Letp>3be a prime. Then

S(0,n)≡0 (modp),

(6)

S(1,n)≡-S(2,n) (modp),

(7)

(8)

Lemma 2([9],Theorem 3.1) Letp>3be a prime and0

H(m,1)≡

(9)

Remark1By Lemma 2,we can get

(10)

Lemma 3([9],Theorem 4.1) Letp>3 be a prime andm=1,2,…,(p-3)/2. Then

H(2m+1,4)≡

(modp2).

(11)

Lemma 4Letp>3be a prime and0

(12)

(13)

(14)

ProofThe first congruence appeared as the corollary 3.3 of literature [9],and the second congruence is (3.3)of literature [10] and the third is the corollary 3.7 of Wang[10].

Lemma5Letp>3 be a prime.Then

(15)

(16)

ProofThe first congruence appeared as (4.5) of literature [9] and the second congruence is the corollary 4.2 of literature [9].

Lemma6Letp>5 be a prime.Then

H(0,4)≡2Bp-3-24 (modp),

(17)

H(1,4)≡12-Bp-3(modp),

(18)

(19)

(20)

Proof(18),(19) and (20) appeared as (2.19),(2.9) and (2.12) of Wang[10]respectively.

Observe that

(21)

Combining (18) and (21),we obtain (17).

Lemma7([10],Lemma 2.4) Letp>3 be a prime,l=1,2,…,p-2 andt=l-1,…,p-3+l. Then

(22)

Lemma8([10],Theorem 3.1) Letp>3be a prime. Then

(23)

(24)

(25)

(26)

Remark2Combining (7),(23) and (24),we can get

(27)

(28)

Lemma9Letp>3be a prime. Then

(29)

(30)

(31)

(32)

(33)

ProofThe first two congruences are (3.26) and (3.29) of Wang[13],respectively.Combining (7) and (30),we obtain (31).

By (8),we have

(34)

Writing (23) and (29) in (34),we obtain (32).

Note that

(35)

Writing (32) in(35),we obtain (33).

3 Main results

Theorem1Letp>5be a prime. Then

(36)

Observe thatH0=0 andHp-1≡0 (modp). Therefore

which implies that

H(4,4)≡-2H(3,4)-2H(2,4)-

(37)

Note thatH(1,0)≡0 (modp).

Writing (10),(13),(16),(17),(18),(19) and (20) in (37),we finally obtain (36).

Theorem2Letp>5be a prime. Then

(38)

(39)

(40)

ProofLetm,nbe nonnegative integers. With the help of (4) and by the binomial theorem,we have

S(2m,n)≡

S(2m-r,n-r)) (modp).

(41)

Observe thatH(-1,0)≡0 (modp). Therefore

H(2-r,3-r)) (modp).

(42)

By Lemma 7,we have

(43)

Using(12),(15),(23),(25) and(43),we can get

The proof of (38) is completed.

Observe that

which implies that

Then we have

(44)

Takingm=6,n=1 in (44),we have

(45)

Note that

(46)

Takingm=4in Lemma 2 andt=5,l=2 in Lemma 7,we can obtain

(47)

Writing(23),(27),(29),(32),(46) and(47) in(45),we obtain

(48)

Again takingm=6,n=2 in (44),we have

(49)

Recall that

(50)

and by Lemma 2 and Lemma 7,we have

H(3,1)≡0 (modp) andS(4,0)≡0 (modp).

(51)

Similarly,takingm=6,n=3 in (44),we can get

(52)

Note thatH(1,0)≡0 (modp). By (7) and Lemma 7,we can get

(53)

Writing (13),(16),(26),(29),(30),(31),(38),(39)and (53) in (52),we finally obtain (40).

Theorem3Letp>5be a prime. Then

(54)

ProofTakingm=2,n=4 in Lemma 3,we have

Writing(10),(13),(16),(36) and (40),we finally arrive at (54).

主站蜘蛛池模板: 国产日韩精品一区在线不卡| 日韩天堂网| 亚洲成网777777国产精品| 免费毛片视频| 欧美无专区| 91蜜芽尤物福利在线观看| 直接黄91麻豆网站| 中国一级特黄视频| 亚洲精品男人天堂| 日本影院一区| 国产毛片网站| 女人18毛片久久| 无码在线激情片| 久久久久免费精品国产| 嫩草国产在线| 国产精品一区二区无码免费看片| 波多野结衣久久高清免费| 亚洲侵犯无码网址在线观看| 久久久受www免费人成| 午夜在线不卡| 思思热在线视频精品| 8090成人午夜精品| 欧美在线中文字幕| 欧美成人免费午夜全| 亚洲人成色77777在线观看| 久久无码av三级| 日韩精品少妇无码受不了| 色视频国产| 日韩欧美中文亚洲高清在线| 性欧美在线| 88av在线| 国产无码在线调教| 老司机久久99久久精品播放| 欧美日韩精品在线播放| 亚洲婷婷丁香| 理论片一区| 国产色婷婷| 国产综合日韩另类一区二区| 97亚洲色综久久精品| 国产十八禁在线观看免费| 亚洲水蜜桃久久综合网站| 国产黑丝视频在线观看| 五月天丁香婷婷综合久久| 久青草国产高清在线视频| 欧美区一区| 性色一区| 日本亚洲成高清一区二区三区| 第一区免费在线观看| 国产欧美在线视频免费| 国产成人免费观看在线视频| 国产精品一区二区无码免费看片| 国产麻豆精品手机在线观看| 欧美成人综合视频| 国产激情无码一区二区APP| 免费人成网站在线观看欧美| 国产区91| 欧美特黄一级大黄录像| 欧美日韩第三页| 波多野结衣一区二区三区四区视频 | 日韩精品视频久久| 国产欧美综合在线观看第七页| 免费看av在线网站网址| 国产成人综合在线观看| 色噜噜久久| 国产制服丝袜无码视频| 亚洲日本一本dvd高清| 欧美中文一区| 国产乱子伦无码精品小说| 最新日本中文字幕| 欧美国产日韩在线播放| 亚洲成人一区二区| 无码免费试看| 国产成人h在线观看网站站| 中国毛片网| 亚洲人成人伊人成综合网无码| 精品福利视频导航| 久久免费视频6| 一级做a爰片久久毛片毛片| 国产91精品调教在线播放| 中文字幕欧美日韩| 精品成人一区二区三区电影| 国产成人凹凸视频在线|