張萬鋒,楊樹青,劉 鵬,婁 帥,孫多強
·農業水土工程·
秸稈覆蓋方式和施氮量對河套灌區夏玉米氮利用及產量影響
張萬鋒,楊樹青※,劉 鵬,婁 帥,孫多強
(內蒙古農業大學水利與土木建筑工程學院,呼和浩特 010018)
為探究夏玉米氮素轉運利用規律、產量及土壤NO3--N含量分布對秸稈覆蓋方式和施氮量的響應,在河套灌區開展2 a不同秸稈覆蓋方式(秸稈表覆B處理、秸稈深埋S處理)和不同施氮水平(不施氮N0、低氮N1、中氮N2、高氮N3)的田間試驗,以傳統耕作模式為對照(CK處理)。結果表明:在0~100 cm土層,各處理NO3--N含量隨施氮量增加而增大,成熟期B和CK處理隨土層加深呈先減后增趨勢,而S處理呈先增后減趨勢;B處理提高0~20 cm土層NO3--N含量,而S處理提高20~40 cm土層NO3--N含量(<0.05);秸稈覆蓋可減少0~100 cm土層NO3--N累積損失量,且顯著提高氮肥利用率及夏玉米氮素轉運量對籽粒產量的貢獻率,SN2處理效果較佳。相比CK處理,成熟期的SN2處理2 a平均NO3--N累積損失量降低39.6%,氮肥利用率較提高28.5%,夏玉米氮素轉運量對籽粒產量的貢獻率提高32.1%,增產9.3%。綜合分析,秸稈深埋配施中氮效果較佳,可實現河套灌區夏玉米提效增產的目標,并減少深層土壤NO3--N累積損失量,為優化河套灌區夏玉米耕作施氮模式和緩解農業面源污染提供參考。
秸稈;覆蓋;氮;轉運;夏玉米;面源污染
河套灌區是中國重要糧食生產基地之一,灌區作物秸稈量逐年增加,利用率低,且因焚燒引起環境污染等問題日益嚴重。推進作物秸稈資源化利用,對灌區農業可持續發展具有重要現實意義,且秸稈還田已被證實是一項有效的耕作措施[1]。有關研究表明,秸稈還田有效緩解過量施肥造成的土壤退化[2],配施適量氮肥可改善土壤養分,提高土壤保水性,顯著降低土壤無機氮含量[3-4];同時,有效緩解土壤氮素淋溶,降低地下水氮素污染風險,特別是有機肥與無機肥配施緩解地下水污染效果更顯著[5],但其他相關研究表明,長期施用有機肥會導致大量NO3--N淋溶損失[6];長期秸稈還田帶入的氮素,使得土壤氮素盈余顯著增加[7],從而增加了土壤氮素淋失風險。
氮素是作物生長發育的重要營養元素之一。農業生產中為提高作物產量盲目大量施氮,不僅對作物增產無益,降低氮肥利用效率,且會導致氮素在土壤中累積[8-9],盈余氮素易淋失到地下水[10],成為地下水潛在的污染源[11]。另外,過量施氮不利于氮素向籽粒轉移,還會對農田環境造成污染[12]。趙允格等[13]通過成壟壓實施肥法壓實形成阻水層減少了施肥區的入滲水流,防止了生育后期NO3--N向深層土壤淋溶;春玉米覆地膜種植,并適當降低施氮量可促進春玉米對氮素吸收利用,實現產量和氮肥利用率協同提高[14]。在河套灌區,當施氮量小于180 kg/hm2時,土壤深層氮素淋失量可有效減少[15];分次施肥且在灌漿期適量施氮可顯著增產和提高氮素利用率[16];當施氮量減少20%時,小麥可實現穩產,且能夠顯著降低土壤NO3--N淋溶風險[17]。
前人關于秸稈還田和施氮的研究多集中在單一的秸稈覆蓋或不同施氮水平對土壤氮素分布、氮素轉運利用及氮肥利用效率等方面的影響,而關于不同秸稈覆蓋方式與施氮量互作時,土壤剖面NO3--N含量分布及作物對氮素轉運利用缺少系統的研究。本研究以不同秸稈覆蓋方式與不同施氮水平互作的田間試驗為基礎,分析了夏玉米產量性狀、氮肥轉運利用率和土壤剖面NO3--N含量分布的規律,旨在為河套灌區秸稈覆蓋與施氮互作下秸稈資源化利用、緩解農田環境氮污染和優化耕作模式提供技術參考,并豐富秸稈還田的理論。
試驗區位于內蒙河套灌區九莊農業試驗示范區(40°42′N、107°24′E,海拔1 040 m),試驗區屬于半干旱大陸性氣候,降雨少蒸發大,年均降水量僅為138 mm,多集中在夏秋兩季,年均蒸發量高達2 332 mm,導致春冬地表返鹽較為嚴重。試驗于2017年5月—2018年9月在示范區開展,采用黃河水灌溉。按照土壤質地三角圖劃分,試驗區供試土壤類型為粉砂壤土(砂粒、粉粒和黏粒質量比為8:15:2),平均容重1.51 g/cm3,平均田間水量22.57%,有機質12.69 g/kg、全氮0.71 g/kg、全磷0.34 g/kg、速效磷9.99 mg/kg和速效鉀214.92 mg/kg。2 a夏玉米生育期內試驗區日降雨量和氣溫變化如圖1所示。
圖1 夏玉米生育期氣溫和降雨量變化
試驗設計考慮2個影響因子(表1):1)秸稈覆蓋方式(秸稈表覆B處理和秸稈深埋S處理);2)施氮量,共設4個施氮水平,分別為不施氮(N0)、低施氮量135 kg/hm2(N1)、中施氮量180 kg/hm2(N2)、高施氮量225 kg/hm2(N3),各處理施氮量均按純N計算,均施尿素,氮質量分數為46%,施用時需換算成尿素的質量;以當地耕作模式(即:上一年秋收后機械翻耕約35 cm、秋澆,第2年機械淺耙,輥磨壓實,機械覆膜播種,不再進行其他田間操作,無秸稈,施氮量225 kg/hm2)為對照(CK處理),共9個處理,各3次重復,隨機區組排列。供試夏玉米品種為鈞凱918,機械覆膜種植(即:各處理覆膜均采用白膜,膜厚0.01 mm,寬幅80 cm),株距0.35 m,行距0.45 m,種植密度約6萬株/hm2,5月初播種,9月末收獲。試驗用秸稈來源于當地夏玉米收獲后粉碎的秸稈,表覆或深埋秸稈量為1.5 kg/m2,厚5 cm,每個試驗小區面積為72 m2,小區間有寬3 m的土堰埂保護帶,四周用埋深1.2 m聚乙烯塑料膜隔開,頂部留30 cm,防止水肥互竄,整個小區外圍設置保護行,試驗小區田間管理按照當地生產措施進行,具體試驗處理如表1所示。夏玉米生育期采用黃河水灌溉,畦灌方式,灌溉水礦化度為0.608 g/L;全生育期灌水3次,單次灌水定額采用示范區優化的灌水定額90 mm,用汽油泵從水渠中定量抽取。磷肥為磷酸二銨,施磷量按當地水平150 kg/hm2(以P2O5計);鉀肥為氯化鉀,施鉀量按當地水平45 kg/hm2(以K2O計),磷肥、鉀肥與50%氮肥作為基肥一次性施入,剩余氮肥在拔節期施入。
表1 試驗處理
1)作物指標 夏玉米收獲期隨機選取5株代表性植株,進行考種;稈、莖葉、籽粒分開采集,在烘箱中105 ℃殺青30 min后,調至80 ℃烘干至恒質量,稱量地上部干物質質量,把樣品粉碎過篩,通過H2SO4-H2O2消煮,用凱氏定氮法測定全氮含量。
2)土壤NO3--N采樣與測定 在夏玉米拔節期、開花期、灌漿期和成熟期采用土鉆在小區分層采集0~100 cm土層土樣,每20 cm為一層,土壤NO3--N含量采用紫外分光光度法測定,測量儀器是麥科儀(北京)科技有限公司生產的TU1810PC型紫外可見光分光光度計。
3)氮利用效率的計算[18]
氮肥偏生產力(Partial Factor Productivity from Applied Nitrogen,PFPN,kg/kg)是指單位投入氮肥所能得到的作物籽粒質量:
PFPN=
Y
/
F
(1)
式中為施氮肥處理的作物產量,kg/hm2;為氮肥的投入量,kg/hm2。
氮肥農學效率(Agronomic Efficiency of Applied Nitrogen,AEN,kg/kg)是單位施氮量增加的作物籽粒質量。
式中0為不施氮肥處理的作物產量,kg/hm2。
氮肥利用率(Apparent Recovery Efficiency of Applied Nitrogen,REN,%)也稱氮肥回收率,指作物吸收的氮素來自肥料的部分占施氮量的比例:
式中為施氮作物收獲時地上部植株總吸氮量,kg/hm2;0為未施氮作物收獲時地上部植株總吸氮量,kg/hm2。
氮肥收獲指數[19](Harvest Index of Applied Nitrogen,HIN)反映作物地上部植株中氮素的分配情況。
HIN=1/(4)
式中1為作物收獲后籽粒氮累積量,kg/hm2。
4)氮素吸收轉移指標
[20]建立式(5)~式(7)計算氮轉運量(Nitrogen Translocation,NT)、素氮素轉運效率(Nitrogen Translocation Efficiency,NTE)和各器官氮素轉運量對籽粒的貢獻率(Nitrogen Translocation to Proportion for Grain,NTP):
=(5)
NT=FN?MN(6)
NTE=(FN?MN)/FN×100% (7)
NTP=(FN?MN)/FNG×100% (8)
式中為植株器官氮素累積量,g/株;為器官干物質質量,g/株;為器官氮素質量分數,g/kg;NTE為灌漿期氮素轉運變化的指標,%;FN為開花期某器官全氮積累量,g/株;MN為成熟期各器官全氮累積量,g/株;NTP為各器官氮素轉運量對提高籽粒產量貢獻的指標,%;FNG為成熟期籽粒的全氮累積量,g/株。
土壤NO3--N累積量的計算采用等質量法[21]計算如下:
式中TN為等質量土壤硝態氮累積量,kg/hm2;ρ為第層土壤容重,g/cm3;h為第層土層厚度,cm;m為第層土壤硝態氮含量,mg/kg。
夏玉米生育期內土壤NO3--N累積變化量計算如式(10)所示:
式中TNM和TNJ分別為夏玉米成熟期和拔節期時相應試驗土層NO3--N累積量,kg/hm2。
試驗數據采用Excel 2010處理,應用SPSS 20.0進行方差分析,采用最小顯著差異法(Least Significant Difference,LSD)進行顯著性檢驗(0.05)。
2.1.1 土壤NO3--N含量的分布
夏玉米生育期內各處理2 a土壤NO3--N含量分布如圖2所示,2 a相應處理對土壤NO3--N含量分布影響的趨勢一致,各處理均按照2 a的土壤NO3--N平均含量進行分析。拔節期,2 a的秸稈表覆處理顯著了提高0~20 cm土層NO3--N含量,秸稈深埋處理顯著提高20~40 cm土層NO3--N含量。各土層NO3--N含量均隨施氮量增加而增加。各處理土壤NO3--N主要集中分布在0~60 cm土層,占試驗土體0~100 cm土層NO3--N含量的60.7%~75.4%,且隨施氮量的增加而增大。CK處理土壤NO3--N含量隨土層深度加深而逐漸減小,但大于80 cm土層有增加的趨勢;秸稈表覆處理隨土層深度加深而逐漸降低,但在大于80 cm土層除了BN0處理,其他3個處理有增大的趨勢;秸稈表覆各處理在0~20 cm土層的NO3--N含量最大,以BN3處理最大,較SN3和CK處理土壤NO3--N含量平均提高45.3%和13.8%;秸稈深埋處理隨土層加深呈現先增后減趨勢,但在大于80 cm土層有小幅增大的趨勢;秸稈深埋處理在20~40 cm土層NO3--N含量最大,以SN3處理最大,較BN3和CK處理土壤NO3--N含量平均提高44.9%和26.1%。
2 a各處理在開花期土壤NO3--N含量達到峰值,0~20 cm土層最高,隨土層深度加深而逐漸減少,尤其80~100 cm土層減幅最大。各處理不同土層NO3--N含量隨施氮量增加,均不同程度升高。秸稈深埋下,除SN0外,其他處理在40~60 cm土層NO3--N含量較20~40 cm土層降低幅度達50%以上,而秸稈表覆的4個處理和CK在40~60 cm土層NO3--N含量僅減少5.2%~12.5%,且隨施氮量增加該土層NO3--N含量降幅增大。2 a的SN2和SN3處理在40~60 cm土層NO3--N含量較CK平均降低25.1%和15.0%,而BN2和BN3處理較CK僅降低4.6%和1.6%。說明低氮水平下NO3--N遷移慢,高氮水平促進NO3--N在土壤剖面累積,導致NO3--N遷移較快,而秸稈深埋形成的隔層可減緩NO3--N下移,在隔層附近積累,減少了往深層土壤遷移的NO3--N。
2 a各處理在夏玉米灌漿期NO3--N含量較開花期顯著降低。秸稈表覆處理土壤NO3--N含量隨土層深度加深呈先減后增趨勢,秸稈深埋和CK處理隨土層深度加深呈先增后減的趨勢;各處理土壤NO3--N含量均隨施氮量增加而增加。同一施氮水平下,在0~20 cm土層,秸稈表覆處理土壤NO3--N含量較S處理平均提高49.3%~95.8%,且施氮量越小,增幅越大,BN3較CK處理提高54.2%;同一施氮水平下,在20~40 cm土層,秸稈深埋處理土壤NO3--N含量較B處理平均提高32.4%~83.8%,且提高幅度隨施氮量增加而先增后減。在大于40 cm土層,S處理土壤NO3--N含量較B和CK處理顯著降低。
成熟期各處理0~20 cm土層NO3--N含量顯著下降。BN0表層土壤NO3--N含量較CK降低3.5%,BN1、BN2和BN3處理較CK分別提高5.5%、11.4%和19.7%,秸稈深埋各處理NO3--N含量在0~20 cm土層較CK降低5.3%~21.8%,而在20~40 cm土層較CK提高6.5%~29.7%,而秸稈表覆各處理的NO3--N含量在20~40 cm土層較CK降低2.2%~29.1%。在大于40 cm土層NO3--N含量隨土層加深,秸稈表覆和CK處理有增加趨勢,而S各處理逐漸降低。說明秸稈表覆和CK盈余的氮素在成熟期逐漸遷移到深層土壤,而秸稈深埋將部分NO3--N阻隔在秸稈隔層附近,減少NO3--N往深層土壤遷移。
圖2 2017年和2018年不同處理夏玉米生育期內土壤剖面NO3--N含量
2.1.2 夏玉米成熟期土壤NO3--N累積變化量
2 a各處理夏玉米成熟期較拔節期土壤NO3--N累積變化量如表2所示,各處理2 a的土壤NO3--N累積變化趨勢一致,均為累積損失,故以下基于2 a平均值展開分析。在0~100 cm土層NO3--N累積損失量隨施氮量增加而增大,隨土層深度加深而降低。各處理土壤NO3--N含量損失主要集中在0~40 cm土層,約占損失總量的52.9%~71.3%;隨施氮量增加,秸稈深埋下土壤NO3--N累積損失量較秸稈表覆降幅逐漸減小,SN0~SN3降幅依次為23.7%、18.6%、14.8%和12.7%;BN3和SN3在0~40 cm土層NO3--N累積損失量2 a平均較CK降低8.1%和19.7%,說明秸稈覆蓋可減少0~40 cm土層NO3--N損失,秸稈深埋效果佳;且秸稈深埋處理在40~80 cm土層NO3--N累積損失量較0~40 cm顯著下降,降幅在50.9%~65.2%間,說明秸稈深埋形成的隔層可有效降低大于40 cm土層的NO3--N損失,減少NO3--N向深層土壤遷移。在0~100 cm試驗土體中,秸稈深埋2 a平均較秸稈表覆顯著降低NO3--N累積損失,SN0~SN3依次降低20.7%、19.5%、16.8%和16.7%;BN3、SN2和SN3在0~100 cm土層NO3--N累積損失量2 a平均較CK降低7.1%、39.6%和22.6%。
表2 2a夏玉米成熟期各處理土壤NO3--N累積變化量
注:表中累計變化量為負值,表示夏玉米成熟期土壤NO3--N累積量較拔節期減少;同行數值后不同小寫字母表示處理間差異顯著(<0.05)。
Note: In the table, negative values of cumulative variation of soil NO3--N represent the decreases of NO3--N accumulation of soil layer at the mature of summer maize compared with that at jointing stage. The different lowercase letters at the same line represent significant difference (<0.05) among treatments.
各處理夏玉米氮肥利用率指標如表3所示。2 a各處理氮肥偏生產力(PFPN)、農學效率(AEN)、利用率(REN)及收獲指數(HIN)變化趨勢一致,秸稈深埋處理較秸稈表覆處理提升各指標的效果顯著(<0.05),2 a各處理氮肥利用指標均以SN2處理最大,PFPN、AEN和REN分別較CK平均提高37.0%、52.9%和28.5%。HIN反映夏玉米地上部植株中氮素分配情況[19],對夏玉米產量影響較大。不同處理HIN在0.44~0.66間變化(表3),且秸稈深埋處理的HIN較秸稈表覆處理大。說明夏玉米HIN受施氮水平和秸稈覆蓋方式的影響較大。秸稈表覆處理以BN3的HIN最大,但BN3處理2 a的HIN與CK差異不顯著(>0.05);秸稈深埋以SN2處理的HIN最大,2 a較CK平均提高13.4%。
表3 不同處理對夏玉米氮肥利用指標的影響
注:表中CK(B)、CK(S)為在B處理、S處理條件下分別計算CK氮肥利用指標;“—”為此處無數據;同列數據后不同小寫字母表示處理間差異顯著(<0.05),下同; *表示顯著(< 0.05),**表示極顯著(< 0.01),下同。
Note: The CK(B) and CK(S) represent nitrogen utilization index calculated by CK under B treatments and S treatments, respectively. —represents no data here. The different lower case letters after the same column data represent significant difference (< 0.05) among treatments, same as below. The * represents significance (< 0.05), and ** represents extremely significance (<0.01), same as below.
分析不同秸稈覆蓋方式及施氮水平對氮肥利用指標的方差(表3)表明,二者對氮肥利用指標具有顯著的影響(< 0.05),且氮肥利用指標在秸稈覆蓋方式和施氮水平之間存在顯著或極顯著的交互效應,以秸稈深埋配施中氮(SN2)處理效果最佳。
夏玉米的葉、莖稈和穗(苞葉和穗軸)隨生育進程,逐漸將氮素向穗轉移并在籽粒中累積,其轉移情況直接影響其產量高低(表4)。不同秸稈覆蓋配施氮在夏玉米葉、莖和穗氮轉運量NT、轉運率NTE、對籽粒貢獻率NTP和產量等方面的影響均表現出顯著水平(< 0.05)或極顯著水平(<0.01)。
從秸稈覆蓋方式分析,秸稈表覆各處理夏玉米葉、莖桿和穗的NT、NTE、NTP和產量隨施氮量增加而不同程度的提高,以BN3最大。BN3處理夏玉米葉和莖的NT、NTE和NTP較CK有不同程度提高,增幅為6.1%~17.8%;但穗的NT、NTE和NTP在2017年無顯著差異(>0.05),而在2018年較CK顯著降低;另外,BN3處理夏玉米產量與CK無顯著差異(>0.05)。秸稈深埋各處理夏玉米葉、莖桿和穗的NT、NTE、NTP和產量隨施氮量增加而先增后減,以SN2最大,其NT、NTE和NTP較CK平均提高19.2%、30.8%和22.3%,2a平均增產9.3%,說明秸稈深埋配施中氮水平(SN2)顯著促進夏玉米氮素轉運利用及提高產量。從施氮量分析,同一施氮水平下,秸稈深埋處理較秸稈表覆處理夏玉米各器官的NT、NTE、NTP和產量大部分顯著提高(< 0.05)。秸稈覆蓋下,無氮(N0)和低氮(N1)處理2 a平均的夏玉米各器官氮轉運總量NT較CK下降6.9%~32.6%,中氮(N2)處理提高5.9%~28.9%,高氮(N3)處理提高2.4%~12.1%。說明秸稈覆蓋下適當增施氮可促進夏玉米各器官氮素的轉運利用,過量施氮對夏玉米各器官氮素轉運量提高幅度反而下降。
夏玉米的葉轉移氮素對籽粒產量的貢獻率NTP最大,其次是莖和穗(苞葉和穗軸)。秸稈表覆各處理的夏玉米器官氮素同化產物的NTP總和為38.1%~53.3%,除了BN3與CK處理無顯著差異,其他3個處理2 a平均較CK降低5.2%~13.0%;秸稈深埋各處理夏玉米各器官氮素同化產物對籽粒產量貢獻率NTP總和為44.6%~67.5%,較CK平均提高8.4%,以SN2最大,較CK提高32.1%。分析不同秸稈覆蓋方式及施氮水平對夏玉米各器官氮素轉運指標的方差(表4)表明,二者對夏玉米各器官氮素轉運的3個指標具有顯著的影響(<0.05),且3個指標在秸稈覆蓋方式間的差異大于施氮水平間的差異,在秸稈覆蓋方式和施氮水平間存在顯著(<0.05)或極顯著(<0.01)的交互效應,以秸稈深埋配施中氮(SN2)處理效果最佳。
表4 不同處理對夏玉米器官氮素轉移效率的影響
注:NT為某器官氮素轉移量;NTE為某器官氮素轉移率;NTP為某器官氮素轉移量對籽粒產量的貢獻率;穗包括穗軸和苞葉。
Note: NT represents N Translocation of an organ; NTE represents N Translocation Efficiency of an organ; NTP represents N translocation To Proportion for grain of organ. The spike includes the bract and axis.
硝態氮污染是農業面源污染主要表現形式,土壤NO3--N含量與夏玉米的吸收消耗、土壤吸附及NO3--N隨水向下運移等有關[22]。本試驗結果表明,土壤NO3--N含量隨施氮量的增加而增大,隨著夏玉米生育期推移逐漸降低,成熟期各處理土壤NO3--N含量最低;而在土壤深度方向各處理土壤NO3--N含量差異顯著(<0.05)。秸稈還田提高土壤通透性[23],其高C/N抑制土壤氮素礦化[24-25],且增加亞硝酸菌等微生物數量[26],導致了秸稈表覆處理在0~20 cm土層的NO3--N聚集,而秸稈深埋處理在20~40 cm土層的NO3--N聚集,且聚集量隨施氮量增大而增大。本試驗發現,在夏玉米生長后期土壤NO3--N逐漸往深層遷移,隨著施氮量增大而增大。相比CK,秸稈覆蓋可顯著改善NO3--N在各土層的分布并減少NO3--N在整個土層的累積損失量,緩解土壤NO3--N下移趨勢,減少深層土壤NO3--N含量,秸稈深埋效果較佳。在0~100 cm土層,SN2和SN3較CK處理的NO3--N累積損失量平均降低39.6%和22.6%,而BN3較CK處理僅降低7.1%。這由于土壤水是NO3--N垂直運移的載體[27],玉米秸稈質地粗糙,秸稈深埋改變了土壤結構及質地均勻性,顯著降低土壤水連續入滲能力,減緩以土壤水為遷移載體的NO3--N向下遷移,降低土壤中NO3--N的淋失;另外秸稈還田營造營養充裕的夏玉米根系生長微環境,促進夏玉米深層根系生長[28-29],使夏玉米根系充分吸收氮素,能夠降低土壤NO3--N累積損失量,同時土壤無機氮被微生物固持,也降低了NO3--N損失的風險[23]。然而,秸稈表覆B處理雖能減少表層土壤NO3--N累積損失,但秸稈表覆的耕作層及以下土層與CK類似,土壤質地均勻,導水率無差異,土壤水在短時間內滲入到深層,帶走大量盈余氮素;同時CK因過量施氮導致土壤NO3--N殘留較多,易隨壤中流運移到深層,難再被夏玉米吸收利用,這些均增大了深層土壤環境氮素污染的風險。
氮肥偏生產力、氮肥農學效率、氮肥利用率及氮肥收獲指數是表征氮肥利用效率的重要指標,影響著植株氮素吸收轉運,進而影響產量的形成[19]。結果表明,秸稈表覆中BN3處理HIN最高,除了BN3的HIN與CK無顯著差異,其他3個處理較CK顯著降低;秸稈深埋的SN2處理的HIN較CK提高13.4%。秸稈覆蓋下各處理的氮肥利用效率以SN2效果較佳,2 a較CK平均提高28.5%。夏玉米各器官對養分的吸收、轉運與分配是產量形成的基礎,氮素的分配隨著作物生長中心的轉移而變化[30]。研究表明,施氮量顯著影響植株各器官的氮素轉運及對籽粒的貢獻率,且成熟期植株氮素轉運量與產量呈正相關[31],這與本試驗結果一致。試驗表明,秸稈覆蓋方式、施氮量及二者互作效應對夏玉米各器官氮素吸收利用、轉運分配及產量影響存在顯著(<0.05)或極顯著性(<0.01)。夏玉米不同器官間氮素轉運量差異顯著(<0.05),夏玉米在生長后期葉和莖等器官氮素向籽粒轉運為主,對產量的貢獻率最大。秸稈表覆處理下隨施氮量增大夏玉米各器官氮素轉運量和轉運率均增大,并提高氮素向籽粒轉移的貢獻率,以BN3效果較佳,BN3處理的夏玉米產量與CK無顯著差異(>0.05)。秸稈深埋下隨施氮量增大夏玉米氮素轉運指標呈先增后減的趨勢,以SN2較佳,2 a較CK平均增產9.3%。因此,秸稈覆蓋配施適量氮,能夠有效促進夏玉米氮素轉運與利用,提高氮素轉運量對夏玉米籽粒產量貢獻率,充分發揮植株供氮和庫容的潛力,形成良好的庫-源平衡[32]而達到高產。
通過研究不同秸稈覆蓋方式與施氮量互作效應對夏玉米氮利用率及土壤NO3--N含量分布的影響,揭示了施氮量、秸稈覆蓋方式等多因素的夏玉米氮轉運利用、土壤NO3--N分布及累積變化規律。秸稈覆蓋配施氮顯著影響土壤NO3--N分布,對夏玉米氮素轉運利用及產量的影響存在顯著(<0.05)或極顯著(<0.01)交互效應,適當增加施氮量(中氮水平及以下)可促進氮素利用率,提高對產量的貢獻率。與當地耕作相比,秸稈深埋形成的隔層有效減緩土壤NO3--N遷移及減少累積損失,SN2處理減少土壤NO3--N累積損失量39.6%,對深層土壤環境形成有效保護屏障,且SN2處理氮肥利用率提高28.5%,氮素轉運同化產物對籽粒產量貢獻率提高32.1%,2 a平均增產9.3%,可考慮將秸稈深埋配施中氮處理作為河套灌區夏玉米適宜的耕作施氮模式。
[參 考 文 獻]
[1] 叢宏斌,姚宗路,趙立欣,等. 中國農作物秸稈資源分布及其產業體系與利用路徑[J]. 農業工程學報,2019,35(22):132-140.
Cong Hongbin, Yao Zonglu, Zhao Lixin, et al. Distribution of crop straw resources and its industrial system and utilization path in China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(22): 132-140. (in Chinese with English abstract)
[2] Singh B, Shan Yuhua, Johnson Beebout S E, et al. Crop residue management for lowland rice-based cropping systems in Asia[J]. Advances in Agronomy, 2008, 98: 117-199.
[3] 王秋菊,劉峰,遲鳳琴,等. 秸稈還田及氮肥調控對不同肥力白漿土氮素及水稻產量影響[J]. 農業工程學報,2019,35(14):105-111.
Wang Qiuju, Liu Feng, Chi Fengqin, et al. Effect of straw returning and nitrogen fertilizer regulation on nitrogen and rice yield in albic soil with different fertilities[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(14): 105-111. (in Chinese with English abstract)
[4] Cheng Yi, Cai Zuchong, Chang Scott X, et al. Wheat straw and its biochar have contrasting effects on inorganic N retention and N2O production in a cultivated black chernozem[J]. Biology and Fertility of Soils, 2012, 48: 941-946.
[5] 陳維梁,高揚,林勇明,等. 紫色土坡耕地氮淋溶過程及其環境健康效應[J]. 環境科學,2014,35(6):2129-2138.
Chen Weiliang, Gao Yang, Lin Yongming, et al. Nitrogen leaching and associated environmental health effect in sloping cropland of purple soil[J]. Environmental Science, 2014, 35(6): 2129-2138. (in Chinese with English abstract)
[6] Maeda M, Zhao Bingzi, Ozaki Y, et al. Nitrate leaching in an andisol treated with different types of fertilizers[J]. Environmental Pollution, 2003, 121(3): 477-487.
[7] 蓋霞普,劉宏斌,翟麗梅,等. 長期增施有機肥/秸稈還田對土壤氮素淋失風險的影響[J].中國農業科學,2018,51(12):2336-2347.
Gai Xiapu, Liu Hongbin, Zhai Limei, et al. Effects of long-term additional application of organic manure or straw incorporation on soil nitrogen leaching risk[J]. Scientia Agricultura Sinica, 2018, 51(12): 2336-2347. (in Chinese with English abstract)
[8] 朱兆良. 中國土壤氮素研究[J]. 土壤學報,2008,45(5):778-783.
Zhu Zhaoliang. Research on soil nitrogen in China[J]. Acta Pedologica Sinica, 2008, 45(5): 778-783. (in Chinese with English abstract)
[9] Vitousek P M, Naylor R, Crews T, et al. Nutrient imbalances in agricultural development[J]. Science, 2009, 324(5934): 1519-1520.
[10] Perez J M, Antiguedad I, Arrate I, et al. The influence of nitrate leaching through unsaturated soil on groundwater pollution in an agricultural area of the Basque country: A case study[J]. The Science of the Total Environment, 2003, 317(1/3): 173-187.
[11] 魏國孝,孫繼成,朱鋒. 內蒙古河套灌區農業面源污染及防治對策[J]. 中國水土保持,2009(8):27-29.
Wei Guoxiao, Sun Jicheng, Zhu Feng. Agricultural non-point source pollution and control countermeasures in Hetao irrigation district of Inner Mongolia[J]. Soil and Water Conservation in China, 2009(8): 27-29. (in Chinese with English abstract)
[12] 張學林,王群,趙亞麗,等. 施氮水平和收獲時期對夏玉米產量和籽粒品質的影響[J]. 應用生態學報,2010,21(10):2565-2572.
Zhang Xuelin, Wang Qun, Zhao Yali, et al. Effects of nitrogen fertilization rate and harvest time on summer maize grain yield and its quality[J]. Chin J Appl Ecol, 2010, 21(10): 2565-2572. (in Chinese with English abstract)
[13] 趙允格,邵明安. 不同施肥條件下農田硝態氮遷移的試驗研究[J]. 農業工程學報,2002,18(4):37-40.
Zhao Yunge, Shao Mingan. Experimental study on nitrate transport for different fertilization methods[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2002, 18(4): 37-40. (in Chinese with English abstract).
[14] 葛均筑,李淑婭,鐘新月,等. 施氮量與地膜覆蓋對長江中游春玉米產量性能及氮肥利用效率的影響[J]. 作物學報,2014,40(6):1081-1092.
Ge Junzhu, Li Shuya, Zhong Xinyue, et al. Effects of nitrogen application and film mulching on yield performance parameters and nitrogen use efficiency of spring maize in the middle reaches of Yangtze River[J]. Acta Agronnmica Sinica, 2014, 40(6): 1081-1092. (in Chinese with English abstract)
[15] 郭富強,史海濱,楊樹青,等. 河套灌區氮素流失分析及最佳施氮量的確定[J]. 土壤通報,2013,44(6):1477-1482.
Guo Fuqiang, Shi Haibin, Yang Shuqing, et al. Analysis of nitrogen loss and determination of optimum rates of nitrogen application in Hetao irrigation area[J]. Chinese Journal of Soil Science, 2013, 44(6): 1477-1482. (in Chinese with English abstract)
[16] 呂鵬,張吉旺,劉偉,等. 施氮時期對超高產夏玉米產量及氮素吸收利用的影響[J]. 植物營養與肥料學報,2011,17(5):1099-1107.
Lü Peng, Zhang Jiwang, Liu Wei, et al. Effects of nitrogen application dates on yield and nitrogen use efficiency of summer maize in super-high yield conditions[J]. Journal of Plant Nutrition and Fertilizers, 2011, 17(5): 1099-1107. (in Chinese with English abstract)
[17] 朱曉霞,譚德水,江麗華,等. 減量施用控釋氮肥對小麥產量效率及土壤硝態氮的影響[J]. 土壤通報,2013,44(1):179-183.
Zhu Xiaoxia, Tan Deshui, Jiang Lihua, et al. Effect of reducing amount of controlled release N fertilizer on yield of winter wheat, N efficiency and soil NO3--N[J]. Chinese Journal of Soil Science, 2013, 44(1): 179-183. (in Chinese with English abstract)
[18] 張福鎖,王激清,張衛峰,等. 中國主要糧食作物肥料利用率現狀與提高途徑[J]. 土壤學報,2008,45(5):915-924.
Zhang Fusuo, Wang Jiqing, Zhang Weifeng, et al. Nitrogen use efficiencies of major cereal crops in China and measures for improvement[J]. Acta Pedologica Sinica, 2008, 45(5): 915-924. (in Chinese with English abstract)
[19] 張國平,張光恒. 小麥氮素利用效率的基因型差異研究[J]. 植物營養與肥料學報,1996,4(2):331-336.
Zhang Guoping, Zhang Guangheng. Studies on variation among wheat genotypes in N utilization[J]. Plant Nutrition and Fertilizer Science, 1996, 4(2): 331-336. (in Chinese with English abstract)
[20] Papakosta D K, Gagianas A A. Nitrogen and dry matter accumulation, remobilization, and losses for Mediterranean wheat during grain filling[J]. Agronomy Jouranal, 1991, 83(5): 864-870.
[21] Ellert B H, Bettany J R. Calculation of organic matter and nutrients stored in soils under contrasting management regimes[J]. Canadian Journal of Soil Science, 1995, 75(4): 529-538.
[22] 劉小剛,張富倉,楊啟良,等. 調虧灌溉與氮營養對玉米根區土壤水氮有效性的影響[J]. 農業工程學報,2010,26(2):135-141.
Liu Xiaogang, Zhang Fucang, Yang Qiliang, et al. Effects of regulated deficit irrigation and nitrogen nutrition on soil water and nitrogen availability in maize root zone[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(2): 135-141. (in Chinese with English abstract)
[23] 張丹,付斌,胡萬里,等. 秸稈還田提高水稻-油菜輪作土壤固氮能力及作物產量[J]. 農業工程學報,2017,33(9):133-140.
Zhang Dan, Fu Bin, Hu Wanli, et al. Increasing soil nitrogen fixation capacity and crop yield of rice-rape rotation by straw returning[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(9): 133-140. (in Chinese with English abstract)
[24] Huang Yao, Zou Jianwen, Zheng Xunhua, et al. Nitrous oxide emissions as influenced by amendment of plant residues with different C/N ratios[J]. Soil Biology and Biochemistry, 2004, 36(6): 973-981.
[25] Heal O, Anderson J, Swift M. Plant Litter Quality and Decomposition: An Historical Overview[M]. Oxford-shire: CAB International, 1997.
[26] 范富,張慶國,邰繼承,等. 玉米秸稈夾層改善鹽堿地土壤生物性狀[J]. 農業工程學報,2015,31(8):133-139.
Fan Fu, Zhang Qingguo, Tai Jicheng, et al. Biological traits on corn straw inter-layer in improving saline-alkali soil[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(8): 133-139. (in Chinese with English abstract)
[27] Sharma S K, Manchanda H R. Influence of leaching with different amounts of water on desalinization and permeability behaviour of chloride and sulphate dominated saline soils[J]. Agricultural Water Management, 1996, 31(3): 225-235.
[28] Zhang Peng, Wei Ting, Jia Zhikuan, et al. Soil aggregate and crop yield changes with different rates of straw incorporation in semiarid areas of northwest China[J]. Geoderma, 2014, 230/231(6): 41-49.
[29] 張萬鋒,楊樹青,婁帥,等. 耕作方式與秸稈覆蓋對夏玉米根系分布及產量的影響[J]. 農業工程學報,2020,36(7):117-124.
Zhang Wanfeng, Yang Shuqing, Lou Shuai, et al. Effects of tillage methods and straw mulching on the root distribution and yield of summer maize[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(7): 117-124. (in Chinese with English abstract)
[30] 劉景輝,劉克禮. 春玉米需氮規律的研究[J]. 內蒙古農牧學院學報,1994,15(3):12-18.
Liu Jinghui, Liu Keli. The research of spring maize in the regulation of the need of nitrogen[J]. Journal of Inner Mongolia Institute of Agriculture and Animal Husbandry, 1994, 15(3): 12-18. (in Chinese with English abstract)
[31] 張歡,譚賀,姜佰文,等. 施氮模式對玉米氮吸收分配及產量的影響[J]. 玉米科學,2014,22(5):127-131.
Zhang Huan, Tan He, Jiang Baiwen, et al. Effect of different N application patterns on nitrogen absorption, distribution and yield of maize[J]. Journal of Maize Sciences, 2014, 22(5): 127-131. (in Chinese with English abstract)
[32] 楊國航,崔彥宏,劉樹欣,等. 供氮時期對玉米干物質積累、分配和轉移的影響[J] . 玉米科學,2004,12(專刊):105-106.
Yang Guohang, Cui Yanhong, Liu Shuxin, et al. Effect of the providing nitrogen period on maize dry matter accumulation, distribution and transformation[J]. Journal of Maize Sciences, 2004, 12(Special): 105-106. (in Chinese with English abstract)
Effects of stover mulching combined with N application on N use efficiency and yield of summer maize in Hetao Irrigated District
Zhang Wanfeng, Yang Shuqing※, Liu Peng, Lou Shuai, Sun Duoqiang
(010018,)
To explore the dynamic response of nitrogen transport of summer maize and distribution of soil nitrate nitrogen to different straw mulching methods and nitrogen application, the orthogonal field experiments were carried out in Hetao Irrigation District in 2017 and 2018. Two different straw mulching methods were set up including the straw surface covering treatment B and the straw deep burial treatment S. Four different nitrogen application rates were designed including no nitrogen application rate(N0), low nitrogen application rate treatment (N1), medium nitrogen application rate treatment (N2) and high nitrogen application rate treatment (N3). The traditional farming mode was used as contrast (CK) treatment. The results showed that in the soil layer between 0 and 100 cm, the accumulation of soil nitrate nitrogen increased with the increase of N application rate in each treatment. The B treatments significantly increased nitrate nitrogen content in 0-20 cm soil layer, and the straw deep burial treatments significantly increased nitrate nitrogen content in 20-40 cm soil layer (<0.05). With the increase of the soil depth, the accumulation of soil nitrate nitrogen increased first and then decreased by treatments S, while the accumulation of soil nitrate nitrogen decreased first and then increased by the straw surface covering treatments. No significant difference in soil nitrate nitrogen accumulation and loss was found between the straw surface covering treatments and CK treatment, but the straw deep burial treatments significantly reduced nitrate nitrogen accumulation and loss. In the soil layer of 0-100 cm, compared with summer maize jointing stage, the cumulative loss of nitrate nitrogen of SN2 treatment at the mature stage of summer maize was 39.6% lower on average than that in CK, which reduced the NO3--N migration to deep soil and reduced the risk of groundwater pollution. Significant difference in nitrogen accumulation was found among different organs of summer maize. The interaction effects of straw mulching and N application rate on nitrogen absorption and utilization, transport and distribution and summer maize yield were significant (<0.05) or extremely significant (<0.01), respectively. The straw mulching increased the nitrogen utilization efficiency, and the contribution rate of nitrogen transfer of summer maize to grain yield. And straw deep burial effect was better than the other treatments. Compared with the straw surface covering treatment and CK, the straw deep burial treatment significantly improved the N absorption and utilization and summer maize yield. The SN2 treatment showed the best effect. No significant difference in N absorption and utilization and summer maize yield was found between the straw surface covering treatments and CK. Compared with CK, the SN2 treatment improved the N utilization efficiency by 28.5%, the contribution rate of nitrogen transfer in summer maize to grain yield increased by 32.1%, and increased the yield by 9.3% on average during the two years. Based on the comprehensive analysis, the effect of straw deep burial treatments combined with medium nitrogen application rate was best, which can achieve the goal of increasing summer maize yield and reduce the risk of NO3--N leaching in Hetao Irrigated District. The research provides a technical support for straw resource utilization, alleviating agricultural non-point source pollution, optimizing tillage and fertilization patterns in Hetao Irrigated District.
straw; mulching; nitrogen; translocation; summer maize; non-point source pollution
張萬鋒,楊樹青,劉鵬,等. 秸稈覆蓋方式和施氮量對河套灌區夏玉米氮利用及產量影響[J]. 農業工程學報,2020,36(21):71-79. doi:10.11975/j.issn.1002-6819.2020.21.009 http://www.tcsae.org
Zhang Wanfeng, Yang Shuqing, Liu Peng, et al. Effects of stover mulching combined with N application on N use efficiency and yield of summer maize in Hetao Irrigated District[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(21): 71-79. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.21.009 http://www.tcsae.org
2020-05-23
2020-07-10
國家自然科學重點基金項目(51539005);國家自然科學基金項目(51669019)
張萬鋒,博士生,高級工程師,研究方向農業水土資源利用與水土環境調控。Email:z.wf123@163.com
楊樹青,教授,研究方向農業水土資源利用與水土環境調控。Email:nmndysq@126.com
10.11975/j.issn.1002-6819.2020.21.009
S278
A
1002-6819(2020)-21-0071-09