陳 慧,高麗萍,廖慶喜,張青松,肖文立,魏國粱,廖宜濤
肥料減量深施對土壤N2O排放和冬油菜產量的影響
陳慧,高麗萍,廖慶喜,張青松,肖文立,魏國粱,廖宜濤※
(1.華中農業大學工學院,武漢 430070;2.農業農村部長江中下游農業裝備重點實驗室,武漢 430070)
為揭示肥料深施條件下減量施肥對土壤N2O排放及作物產量的影響,提出有效的減氮減排及增產增效措施,該研究以冬油菜為對象,設置肥料深施條件下當地推薦緩釋肥量(750 kg/hm2,N-P2O5-K2O:25-7-8)的100%(DF100)、80%(DF80)和60%(DF60)3個施肥水平,以地表撒施當地推薦緩釋肥量(BF100)和不施肥(F0)為對照,共5個處理;采用靜態箱-氣相色譜法對N2O排放進行原位監測,分析不同施肥處理對土壤N2O排放、土壤充水孔隙率(Water-Filled Pore Space, WFPS)、土壤溫度及冬油菜產量的影響。結果表明:較地表撒施相比,肥料深施土壤N2O排放量增加了13.3%,但不顯著(>0.05);冬油菜產量顯著增加了20.1%,肥料偏生產力(Partial Factor Productivity,PFP)和農學利用率(Agronomic Efficiency,AE)分別顯著提高了20.1%和31.9%(<0.05)。減量施肥顯著減小了土壤N2O排放、冬油菜產量及肥料利用率(<0.05),DF100處理較DF80、DF60和F0處理土壤N2O排放量分別增加了22.7%、42.5%和153.7%;DF100處理冬油菜產量分別是DF80、DF60和F0處理的1.30、2.24和3.24倍;DF100處理較DF80和DF60處理PFP分別增加了3.8%和34.5%且AE分別增加了19.7%和201.3%。綜合考慮產量和溫室效應,在深施當地推薦緩釋肥施用量的基礎上能夠適當減量施肥,但需高于600 kg/hm2。該研究為冬油菜區N2O減排及油菜機械化直播種植合理施肥提供參考。
土壤;肥料;N2O排放;深施肥;減量施肥;冬油菜
溫室氣體引起的全球氣候變暖是重要的環境問題,氧化亞氮(N2O)是重要的溫室氣體之一,其在100年時間尺度上的全球增溫潛勢是二氧化碳(CO2)的265倍[1],是平流層臭氧的最主要破壞者。農田土壤是N2O的重要排放源,2007-2016年,農田土壤N2O排放量(以N2O-N計)高達(3.3±1.1)×106t/a,占全球土壤N2O排放總量的33%[2]。施肥在農田土壤N2O排放中起著至關重要的作用,農田施肥引發的N2O排放占土壤總N2O排放增量的70%[3],是全球土壤N2O排放量增加的主要人為因素。前人研究表明,隨著施肥量增加,農田土壤N2O排放量在不斷增加[4]。因此,合理施肥是減少人為因素導致N2O排放的關鍵[2]。
當前中國普遍存在施肥量過多的現象,2018年農作物化肥用量達到340.8 kg/hm2,遠高于世界平均施用水平120 kg/hm2。肥料的盲目過量施用不僅會致使農產品質量下降,還會引起土壤酸化、水體污染及溫室氣體排放等環境問題[5]。減量施肥能夠減小土壤N2O排放,被認為是一項有效的N2O減排措施;但減量施肥同時會帶來作物一定程度的減產[6],如何協調作物產量和生態環保間矛盾是作物種植環節中難以突破的瓶頸。肥料深施是指將肥料施到作物根系密集、活力最強的土層[7];與地表撒施相比,肥料深施通過抑制NH3揮發和氮徑流[8],顯著提高了N素利用效率并減少N素損失,最終增加作物產量[7,9]。可見,肥料深施能夠較好地補償減量施肥帶來的減產效應。目前,肥料深施條件下減量施肥對水稻、小麥、玉米等作物產量影響開展了研究,但其對農田土壤N2O排放的研究仍不足;研究深施肥條件下減量施肥對農田土壤N2O排放及作物產量的影響將為農田增產減排措施的制定提供依據。
油菜是中國種植面積最大的油料作物,2018年全國油菜種植面積達655.1萬hm2。同時,油菜也是中國長江流域主要的冬季作物,其種植面積占全國油菜種植面積的85%以上,種植模式以稻油輪作、水旱交替為主。研究發現,水旱輪作系統N2O排放主要集中在旱季作物生長期,油菜季N2O排放量占整個輪作期N2O排放總量的65%[10]。因此,研究稻油種植模式下冬油菜農田N2O排放能為準確估算中國油菜農田生態系統N2O排放提供地區觀測數據。本文以油菜為試驗材料,研究肥料深施條件下減量施肥對長江流域稻油輪作模式下冬油菜農田土壤N2O排放、水分和溫度的影響,結合作物產量及肥料利用率,以期探索出有效的減氮減排及增產增效措施,為深入研究冬油菜區N2O減排及油菜機械化直播種植合理施肥提供參考。
試驗于2019年10月至2020年5月在湖北省監利縣水稻-油菜(輪作)全程機械化生產示范基地進行,試驗地位于113°01′14″E,29°48′47″N,海拔29 m。該區域常年為水稻-油菜水旱輪作種植模式;地處長江中游,屬于亞熱帶季風氣候,年均日照時數約2 000 h,年均降雨量約1 226 mm,年均氣溫為16.3 ℃,無霜期平均為255 d。土壤類型為水稻土,試驗前測得0~10 cm土層內土壤容重為1.13 g/cm3,pH值為6.91。氣象數據采用與試驗點最近的,位于監利縣紅城鄉新港村(112°54′16″E,29°52′31″N)的國家氣象觀測站采集到的數據(http://data.cma.cn/);冬油菜生長季內日均氣溫在1.8~28.0 ℃之間變化,累計降雨量達480 mm(圖1)。
圖1 冬油菜生長季降雨量和平均氣溫日變化
1.2.1 供試材料
供試作物為優質雙低油菜,品種為華油雜62,由湖北國科高新技術有限公司生產。
供試肥料為油菜專用緩釋配方肥—宜施壯,肥料總養分質量分數≥40.0%,其中N、P2O5、K2O和中微量元素(B、Ca、Mg、Zn、S)配比為25:7:8:5;由華中農業大學研制、湖北宜施壯農業科技有限公司生產。
供試機械采用由華中農業大學研制的2BFQ-6型油菜精量聯合直播機和主動式防堵深施肥裝置[11],一次性完成開溝、種床旋耕、精量播種、同步深施肥、覆土等作業,施肥深度合格率達到93.3%。直播機主要工作參數為:排種器類型為正負氣壓組合式單粒精量排種器[12]、工作幅寬2 m、播種行數6行(即1廂6行作物)、行距28 cm、播種深度10~20 mm;廂溝呈梯形,溝上口寬、溝底寬和溝深平均分別為30、22和12 cm,用于田間排水。
1.2.2 試驗設計
參照宜施壯和深施肥的節肥效應,本研究中機械同步深施肥條件下減量施肥以20%為梯度水平,按照當地推薦緩釋肥量(750 kg/hm2)的100%、80%和60%設置3個施肥水平,分別記為DF100、DF80和DF60,施肥深度為10 cm;以地表撒施當地推薦緩釋肥量(深施肥對照,BF100)和不施肥(空白對照,F0)為對照,共計5個處理;各處理氮、磷和鉀養分含量見表1。每個處理3個重復,采用完全隨機設計。一廂作為一個重復,每廂采樣測試有效面積(去除播種機作業啟停段作業區域)為60 m2(30 m×2 m)。油菜于2019年10月10日播種,播種量為4.5 kg/hm2;肥料在播種時一次性基施,不再追肥,采用側位施肥方式(肥料位于種子側下方),其他田間管理按當地農作習慣進行;于2020年5月3日收獲,生育期共206 d。
表1 不同施肥處理下氮、磷和鉀養分含量
注:DF100、DF80和DF60分別表示深施當地推薦緩釋肥量(750 kg·hm-2,N-P2O5-K2O:25-7-8)的100%、80%和60%,BF100和F0分別表示地表撒施當地推薦緩釋肥量和不施肥,下同。
Note: DF100, DF80, and DF60 meant 100%, 80%, and 60% of the local recommended slow-release fertilizer (750 kg·hm-2, N-P2O5-K2O:25-7-8) under deep fertilization, respectively. BF100 and F0 meant broadcast with the local recommended slow-release fertilizer and no fertilizer, respectively, the same as below.
N2O排放通量測定采用靜態暗箱-氣相色譜法。采樣箱由底座、中段箱和頂箱構成。底座(50 cm×50 cm×15 cm)由不銹鋼材料制成,嵌入土壤10 cm深;底座上面附有凹槽,采樣時注水密封以隔絕箱外環境。中段箱(50 cm × 50 cm×70 cm)和頂箱(50 cm×50 cm×50 cm)均用6 mm厚的聚氯乙烯材料制成且均用海綿與錫箔紙包裹箱體外表面,防止取樣期間因為陽光照射導致箱內溫度發生劇烈變化。中段箱頂部有密封水槽,可根據作物生長高度適時增加;頂箱頂部安裝有小風扇以保證箱內氣體均勻,且安裝有溫度計以觀測箱內溫度。取樣時間自2019年10月20日開始,苗期平均每8 d采集一次氣體,花期至成熟期平均每17 d采集一次氣體。本研究中,采樣工作在當地時間早上9:00-11:00進行,具體時間為關箱后的0、10、20和30 min時刻利用帶有三通閥的60 mL注射器進行4次氣體采集,每次采集50 mL氣體。氣體樣品采用預先抽好真空且配有硅橡膠塞式密封蓋的玻璃瓶(容積10 mL)存儲、運輸,利用安捷倫氣相色譜儀(AgilentTechnologies 7890A GC System,美國)進行室內N2O濃度測定。去除奇異點,使4個樣品濃度測量值隨時間的線性回歸系數2≥0.90。N2O排放通量采用如下公式計算[13]:
式中為N2O氣體排放通量,g/(m2·h);是標準狀態下氣體密度,g/cm3;為箱體高度,m;為箱內溫度,℃;為N2O氣體體積分數,L/L;為時間間隔,h。
除去播種后第44、89和101天,每次氣體采集時利用土鉆在各廂面設定采樣區的首、中、末端3點采集土樣,將其混合作為該重復的土樣,用烘干法測定0~10 cm深度層土壤質量含水率,然后轉換成土壤充水孔隙率(Soil Water-Filled Pore Space,WFPS,%):
式中為土壤質量含水率,%;為土壤容重,g/cm3。
每次氣體采集同時,用地溫計測定土壤10 cm深度處溫度。
待油菜成熟后,各重復廂面上選擇2個1.12 m×1.12 m方形區域進行收獲、曬干和脫粒等工序后,測定油菜產量,取各重復產量的平均值作為該處理的產量。
使用Excel 2010軟件處理試驗數據;PASW Statistics18.0軟件進行方差分析和相關性分析,顯著性水平為=0.05;采用OriginPro 8.5軟件作圖并求各處理N2O的累積排放量。土壤N2O的溫度敏感系數(10),即溫度增加10 ℃土壤N2O改變的熵,采用10=e10b進行計算,其中,為溫度響應系數。
單產N2O累積排放量(Yield-scaled N2O emissions,N2O,g/kg):
式中為全生育期土壤N2O累積排放量,kg/hm2;為油菜產量,kg/hm2。
N2O排放系數(N2O emission factor,,%):
式中C和0分別為施肥和不施肥處理全生育期土壤N2O累積排放量,kg/hm2;F為施氮量,kg/hm2。
肥料利用率用肥料偏生產力(Partial Factor Productivity, PFP,kg/kg)和農學利用率(Agronomic Efficiency,AE,kg/kg)表征,計算方法如下:
式中Y和0分別為施肥和不施肥處理油菜產量,kg/hm2;為肥料純養分(分別指氮、磷、鉀)投入量,kg/hm2。
冬油菜整個生長季,不同施肥處理土壤N2O排放的季節變化有明顯的時間變異性(圖2)。從圖2a可知,播種后37 d內,N2O排放通量呈大幅下降的趨勢,由40.12~85.14g/(m2·h)逐漸降至3.78~10.52g/(m2·h);37 d后,各處理土壤N2O排放通量均維持在較低水平,在0.76~17.92g/(m2·h)范圍內波動(圖2a)。處理間對比發現,在當地推薦緩釋肥用量條件下,播種后20 d內,肥料深施處理(DF100)土壤N2O排放通量要小于肥料地表撒施處理(BF100),DF100處理N2O通量均值較BF100處理小14.6%;20 d后,DF100處理土壤N2O排放通量在大多數時間內要大于BF100處理,DF100處理N2O通量均值較BF100處理高44.6%。就冬油菜整個生育期N2O通量均值而言,DF100處理比BF100處理高10.8%。此外,在相同施肥深度條件下,減量施肥減小了土壤N2O排放通量,DF100處理N2O通量均值分別是DF80、DF60和F0處理的1.30、1.55和2.45倍。
圖2 冬油菜生長季不同施肥處理N2O排放通量和N2O累積排放量的動態變化
各處理土壤N2O累積排放量隨播種后天數增加呈逐漸增加的趨勢(圖2b),表現為土壤是N2O的排放源。肥料深施對冬油菜田土壤N2O累積排放量未產生顯著影響(>0.05),而減量施肥顯著減小了土壤N2O累積排放量(<0.01)。不同施肥處理全生育期土壤N2O累積排放量在0.26~0.65 kg/hm2范圍變化,且37 d內各處理N2O排放量占全生育期N2O累積排放量的38.7%~48.4%(圖2b)。全生育期土壤N2O累積排放量平均值以DF100處理最大,較BF100、DF80、DF60和F0處理分別增加了13.3%、22.7%、42.5%和153.7%(圖2b,表2)。相同施肥量水平下,肥料深施顯著增加了N2O排放系數(<0.05),DF100處理N2O排放系數是BF100處理的1.24倍;相同施肥深度條件下,減量施肥顯著減小了N2O排放系數(<0.05),DF100處理N2O排放系數較DF80和DF60處理分別增加了15.2%和18.1%。
表2 不同施肥處理全生育期N2O累積排放量(C)、N2O排放系數(f)、冬油菜產量及單產N2O累積排放量(Y-SN2O)
注:不同小寫字母代表處理間差異顯著。ns代表方差分析不顯著;*代表顯著(<0.05);**代表極顯著(<0.01),下同。
Note:Different lowercase letters indicate significant differences among treatments. ns means not significant; * means significant (<0.05); ** means extremely significant (<0.01), The same as below.
冬油菜生長季,不同施肥處理WFPS和土壤溫度的動態變化如圖3所示。播種后90 d內,WFPS在冬油菜整個生長季相對較低,在39.3%~68.9%之間波動;而90 d后,由于降雨較多(圖1),WFPS在冬油菜整個生長季相對較高,在81.7%~96.5%之間波動(圖3a)。相關分析發現,在土壤N2O排放劇烈(播種后37 d內)及穩定階段(播種37 d后),N2O排放通量均隨WFPS增加而增加,兩者間呈極顯著線性相關關系(N2O排放劇烈階段:N2O=1.976WFPS-74.337,=0.007;N2O排放穩定階段:N2O=0.118WFPS-3.683,=0.006),決定系數分別達0.275和0.180,說明WFPS的變化在2個生長階段能夠分別解釋N2O排放通量27.5%和18.0%的變化。本研究中,各處理N2O通量最大值出現在WFPS為54.5%~56.2%時。
不同施肥處理土壤10 cm深度處溫度在冬油菜生長季內整體呈“V”字型(圖3b),最低值出現在101 d,平均溫度為7.1 ℃(6.6~7.4 ℃);而在10 d和收獲時(206 d)土壤溫度相對較高,平均溫度分別為26.6(24.7~27.7)和26.5 ℃(23.8~27.9 ℃)。相關分析發現,在土壤N2O排放劇烈階段,N2O排放通量與土壤溫度呈極顯著線性正相關關系(N2O=4.085-50.424,=0.006;為土壤溫度),決定系數為0.285,說明此階段土壤溫度的變化可以解釋N2O排放通量28.5%的變化。在土壤N2O排放穩定階段,N2O排放通量隨土壤溫度增加呈指數形式增加(N2O=1.950e0.057T),10為1.76;且土壤N2O排放通量與土壤溫度的相關性達到極顯著水平(=0.002),決定系數為0.173,說明土壤溫度的變化可以解釋N2O排放通量17.3%的變化。
圖3 冬油菜生長季不同施肥處理土壤充水孔隙率和土壤溫度的動態變化
肥料深施顯著增加了冬油菜產量(<0.05,表2),DF100處理冬油菜產量比BF100處理高20.1%。此外,減量施肥顯著減小了冬油菜產量(<0.01,表2),DF100處理冬油菜產量分別是DF80、DF60和F0處理的1.30、2.24和3.24倍。
肥料深施顯著提高了肥料利用率(<0.05,表3),較BF100處理相比,DF100處理增加了20.1% PFP和31.9% AE;減量施肥顯著減小了PFP和AE(<0.05),DF100處理較DF80和DF60處理PFP分別增加了3.8%和34.5%,AE分別增加了19.7%和201.3%(表3)。
從表2可以看出,肥料深施和施肥提高冬油菜產量的同時也導致N2O排放增加;但肥料深施減小了N2O,DF100處理N2O較BF100處理減小了5.0%。而隨著施肥量增加,N2O呈先增加后減小的趨勢(DF100 表3 不同施肥處理冬油菜氮、磷、鉀肥利用率 注:PFP和AE分別表示肥料偏生產力和農學利用率。 Note: PFP and AE meant partial factor productivity and agronomic efficiency, respectively. 如何兼顧作物高產及溫室氣體減排是科研工作者密切關注的一個問題。由表2和表3可見,DF100處理N2O最低且肥料利用率最高,說明其增產減排潛能最好且肥料利用程度最高。因而,該試驗地兼顧產量和累積N2O排放的基礎上,采用深施緩釋肥750 kg/hm2處理為較佳的管理模式。但當考慮N2O排放量占施肥量的比例(即N2O排放系數)時,可在深施緩釋肥750 kg/hm2的基礎上有所減小,但需高于600 kg/hm2。 不同施肥處理土壤N2O排放通量在37 d內呈現驟降的趨勢,之后氣體排放維持在較低水平(圖2a),這與不少研究學者的規律相似[14-15]。出現這種現象的原因可能是由于水旱輪作系統旱作季N2O排放通量的峰值一般出現在施肥后伴隨降水時[16-17]。本研究中,試驗只施基肥,油菜生育前期供N2O產生的基質豐富[13],為土壤硝化和反硝化微生物提供足夠的N源;加之降雨帶來合適的水分條件(WFPS為54.5%~56.2%,圖3a),利于硝化微生物活動;導致了10 d時N2O氣體峰值的出現。10~37 d內,隨著土壤溫度的降低(圖3b),加之作物對土壤養分的不斷吸收導致土壤中供N2O產生的基質含量減小,引起N2O排放通量的不斷降低。而37 d后,尤其是90 d后,較高的土壤水分含量(WFPS>80%,圖3a)雖利于反硝化反應的進行,但供N2O產生的基質含量較少,導致N2O排放維持在較低的水平。油菜生長中后期,降雨對N2O排放通量的影響不大,可能是因為土壤長期處于相對厭氧狀態,不利于氣體排放,使N2O進一步還原為N2。 肥料深施對土壤水分、無機氮含量、微生物數量、酶活性、有機質分解等產生影響[7,9,18-21],土壤生物和非生物因子的改變勢必導致土壤N2O排放的變化。但是,肥料深施對油菜田土壤N2O排放的影響研究仍較少。本研究發現,肥料深施較肥料地表撒施增加13.3%土壤N2O排放(表2),這與油菜[22-23]和小麥-玉米-大豆生態系統[19]等旱地農田及部分稻田[24]的結果相似。張岳芳等[22]發現,氮肥條施和氮肥穴施(深約8 cm)較氮肥撒施分別增加37.2%和19.3%油菜田土壤N2O排放。Engel等[23]指出,肥料深施5 cm較肥料地表撒施平均增加89.6%油菜田土壤N2O排放。產生該現象的原因一方面在于肥料地表撒施較肥料深施會引起較高的NH3揮發和地表徑流損失[25],導致供N2O產生的土壤N含量(NH4+、NO2-和NO3-)減少[23,26],進而產生較低的氣體排放。另一方面,在肥料深施時土壤將可硝化肥料濃縮,增加N2O產生潛力[27];加之氮肥深施處土壤水分含量大于表層土壤而O2濃度較低,利于反硝化反應的進行;同時,氮肥深施后肥料的相對集中使施肥處的土壤養分含量較高,水肥的耦合效應促進了N2O產生[23]。本文中,肥料深施土壤N2O排放雖高于肥料地表撒施,但在統計上未達顯著水平(>0.05,表2);這可能是由于深施肥對N2O的作用受到土壤性質、試驗條件和肥料本身性質等因素的影響。 施肥量通過改變土壤中反應底物濃度及供N2O產生的基質含量來影響土壤N2O排放的變化。本研究中,減量施肥顯著減小了冬油菜田土壤N2O排放(表2);這與前人研究的規律相一致[23,28]。Engel等[23]指出,肥料地表撒施和深施條件下施氮量200 kg/hm2處理油菜田土壤N2O排放量分別是施氮量100 kg/hm2處理的1.70和2.97倍。杜婭丹等[28]的溫室小區試驗表明,施氮量250 kg/hm2處理芹菜地土壤N2O通量均值分別是施氮量200和150 kg/hm2處理的1.9和3.7倍。土壤NO3-含量、硝化細菌和反硝化細菌數量均與土壤N2O排放通量呈極顯著正相關關系[28];減量施肥減小了土壤NO3-含量、硝化細菌和反硝化細菌數量[28],進而抑制了土壤N2O排放。 土壤水分影響土壤的通氣狀況、氮素轉化速率、微生物活性、酶活性、無機氮在土壤中的分布等,進而對土壤N2O的產生與排放產生影響。本研究中,在氣體排放劇烈及穩定階段,土壤N2O排放通量與WFPS均呈極顯著線性正相關關系,N2O通量主峰值出現在WFPS為54.5%~56.2%時(圖2a,圖3a);這與不少研究學者的結果相似[14,28]。當WFPS小于60%時,硝化細菌活性隨WFPS增加而增加,導致土壤N2O排放呈增長的趨勢。而當WFPS大于60%時,由于擴散速率受到嚴重限制,硝化作用的O2和CO2底物的可用性會下降,導致土壤N2O排放呈降低的趨勢。 土壤溫度影響土壤微生物活性及有機質分解速率,進而影響N2O產生。前人研究表明,15~35 ℃是硝化作用微生物活動的適宜溫度范圍,<5或>40 ℃都抑制硝化作用發生;反硝化微生物所要求的適宜溫度為5~75 ℃[17]。本研究中,各處理土壤溫度在6.6~27.9 ℃范圍內變化,其與土壤N2O排放通量呈正相關關系,這與前人研究結果相一致[28]。土壤溫度增加促進了土壤N2O排放,一方面可能是由于土壤溫度增加促進了土壤呼吸[29],由此造成的厭氧環境促進了土壤反硝化作用;另一方面是由于土壤溫度增加提高了土壤的礦化速率,基質可利用性的提高增加了土壤N2O排放。 肥料深施通過將肥料施到土壤特定層次,易于作物根系吸收利用,被證實具有較好的增產效應。本研究中,DF100處理比BF100處理冬油菜產量高20.1%(表2);這與一些油菜作物的研究結果相似[7,22]。谷曉博等[7]通過盆栽試驗發現,地下10 cm施肥較地表施肥冬油菜產量平均增加了46.8%,這與作物地上部干物質量、主根干質量、養分吸收、單株分枝數、單株角果數及千粒質量的增加密切相關。Su等[9]發現,較肥料地表條施相比,肥料深施10 cm促進了作物根系生長及對N、P和K的養分吸收,進而增加了冬油菜產量。肥料深施對作物的影響首先表現在改善了根系生長及生理性狀[7,9],進而促進了作物對土壤養分和水分的吸收與利用,最終提高了產量[21,30-32]。 在當前國家提倡化肥零(負)增長的大背景下,如何保持高產量水平的同時減少肥料的投入是當今面臨的一個挑戰。基于此,國內外學者就減量施肥對作物產量影響研究做了大量工作。杜婭丹等[28]指出,在充分灌水條件下,隨著施氮量減小,溫室番茄產量在不斷降低。Devkota等[33]總結到,減量施氮減小了帕爾帕區和納瓦帕拉希區小麥產量及納瓦帕拉希區油菜產量。谷曉博等[34]發現,在0~240 kg/hm2施氮量范圍內,2014-2015和2015-2016年試驗中冬油菜產量隨施氮量的減小而顯著減小。這與本研究的規律相似,較推薦施肥量相比,減量施肥均不同程度的減小了冬油菜產量(表2)。減量施肥減小了作物生物量積累、根系生長、光合速率、植物養分吸收等[33-34],進而對作物產量產生負效應。 本研究發現,肥料深施減小了5.0%N2O,被認為是一項獲得高產低排的有效措施,在生產實踐中被廣泛采用[7,9,22]。但本研究只比較了肥料深施10 cm與肥料地表撒施的土壤N2O排放及冬油菜產量的差異,未涉及不同施肥深度的影響;不同施肥深度條件增產減排效應研究有待進一步驗證。與前人研究結果相似[23,28,33],減量施肥減小N2O排放的同時帶來作物一定程度的減產,實際生產中在減量施肥時可以通過配合其他農田管理措施(如肥料深施)達到穩產減排的效應。另外,土壤N2O排放與降雨量、氣溫、土壤質地等氣象及土壤要素有關,而本研究錯過了冬油菜蕾薹期,且只比較了一季試驗中各處理間N2O排放及冬油菜產量差異,肥料減量深施條件下N2O排放特征及冬油菜產量的季節及年際間差異有待在將來的試驗中完善和驗證。 1)較肥料地表撒施相比,肥料深施土壤N2O排放量增加了13.3%,但不顯著(>0.05);而冬油菜產量顯著增加了20.1%,肥料偏生產力和農學利用率分別顯著提高了20.1%和31.9%(<0.05)。 2)減量施肥顯著減小了土壤N2O排放、冬油菜產量及肥料利用率(<0.05)。施緩釋肥750 kg/hm2處理土壤N2O排放量較施緩釋肥600、450和0 kg/hm2處理分別增加了22.7%、42.5%和153.7%;施緩釋肥750 kg/hm2處理油菜產量分別是施緩釋肥600、450和0 kg/hm2處理的1.30、2.24和3.24倍;施緩釋肥750 kg/hm2處理較施緩釋肥600和450 kg/hm2處理肥料偏生產力分別增加了3.8%和34.5%,農學利用率分別增加了19.7%和201.3%。 3)該試驗地在深施當地推薦緩釋肥施用量的基礎上適當減量施肥,但需高于600 kg/hm2,可兼顧試驗區冬油菜產量和肥料利用率,同時有效降低土壤N2O排放。 [1] IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[R]. Cambridge, United Kingdom and New York, USA: Cambridge University Press, 2013. [2] 李玥,巨曉棠. 農田氧化亞氮減排的關鍵是合理施氮[J]. 農業環境科學學報,2020,39(4):842-851. Li Yue, Ju Xiaotang. Rational nitrogen application is the key to mitigate agricultural nitrous oxide emission[J]. Journal of Agro-Environment Science, 2020, 39(4): 842-851. (in Chinese with English abstract) [3] Tian H, Yang J, Xu R, et al. Global soil nitrous oxide emissions since the preindustrial era estimated by an ensemble of terrestrial biosphere models: Magnitude, attribution, and uncertainty[J]. Global Change Biology, 2019, 25: 640-659. [4] 焦燕,黃耀,宗良綱,等. 氮肥水平對不同土壤N2O排放的影響[J]. 環境科學,2008,29(8):2094-2098. Jiao Yan, Huang Yao, Zong Lianggang, et al. Impact of different levels of nitrogen fertilizer on N2O emission from different soils[J]. Environmental Science, 2008, 29(8): 2094-2098. (in Chinese with English abstract) [5] 唐漢,王金武,徐常塑,等. 化肥減施增效關鍵技術研究進展分析[J]. 農業機械學報,2019,50(4):1-19. Tang Han, Wang Jinwu, Xu Changsu, et al. Research progress analysis on key technology of chemical fertilizer reduction and efficiency increase[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(4): 1-19. (in Chinese with English abstract) [6] Qi D, Yan J, Zhu J. Effect of a reduced fertilizer rate on the water quality of paddy fields and rice yields under fishpond effluent irrigation[J]. Agricultural Water Management, 2020, 231: 105999. [7] 谷曉博,李援農,杜婭丹,等. 施肥深度對冬油菜產量、根系分布和養分吸收的影響[J]. 農業機械學報,2016,47(6):120-128,206. Gu Xiaobo, Li Yuannong, Du Yadan, et al. Effects of fertilization depth on yield, root distribution and nutrient uptake of winter oilseed rape (L.)[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(6): 120-128, 206. (in Chinese with English abstract) [8] Liu T Q, Fan D J, Zhang X X, et al. Deep placement of nitrogen fertilizers reduces ammonia volatilization and increases nitrogen utilization efficiency in no-tillage paddy fields in central China[J]. Field Crops Research, 2015, 184: 80-90. [9] Su W, Liu B, Liu X, et al. Effect of depth of fertilizer banded-placement on growth, nutrient uptake and yield of oilseed rape (L.)[J]. European Journal of Agronomy, 2015, 62: 38-45. [10] 于亞軍,朱波,王小國,等. 成都平原水稻-油菜輪作系統氧化亞氮排放[J]. 應用生態學報, 2008, 19(6): 1277-1282. Yu Yajun, Zhu Bo, Wang Xiaoguo, et al. N2O emission from rice-rapeseed rotation system in Chengdu Plain of Sichuan Basin[J]. Chinese Journal of Applied Ecology, 2008, 19(6): 1277-1282. (in Chinese with English abstract) [11] 廖宜濤,高麗萍,廖慶喜,等. 油菜精量聯合直播機深施肥裝置設計與試驗[J]. 農業機械學報,2020,51(2):65-75. Liao Yitao, Gao Liping, Liao Qingxi, et al. Design and test of side deep fertilizing device of combined precision rapeseed seeder[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(2): 65-75. (in Chinese with English abstract) [12] 廖宜濤,廖慶喜,王磊,等. 氣力式小粒徑種子精量排種器吸種效果影響因素研究[J]. 農業工程學報,2018,34(24):10-17. Liao Yitao, Liao Qingxi, Wang Lei, et al. Investigation on vacuum singulating effect influencing factors of pneumatic precision seed metering device for small particle size of seeds[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(24): 10-17. (in Chinese with English abstract) [13] 陳慧,侯會靜,蔡煥杰,等. 加氣灌溉溫室番茄地土壤N2O排放特征[J]. 農業工程學報,2016,32(3):111-117. Chen Hui, Hou Huijing, Cai Huanjie, et al. Soil N2O emission characteristics of greenhouse tomato fields under aerated irrigation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(3): 111-117. (in Chinese with English abstract) [14] 陳慧,商子惠,王云霏,等. 灌水量對溫室番茄土壤CO2、N2O和CH4排放的影響[J]. 應用生態學報,2019,30(9):3126-3136. Chen Hui, Shang Zihui, Wang Yunfei, et al. Effects of irrigation amounts on soil CO2, N2O and CH4emissions in greenhouse tomato field[J]. Chinese Journal of Applied Ecology, 2019, 30(9): 3126-3136. (in Chinese with English abstract) [15] Tian D, Zhang Y, Mu Y, et al. The effect of drip irrigation and drip fertigation on N2O and NO emissions, water saving and grain yields in a maize field in the North China Plain[J]. Science of the Total Environment, 2017, 575: 1034-1040. [16] 侯會靜,陳慧,楊士紅,等. 水稻控制灌溉對稻麥輪作農田N2O排放的調控效應[J]. 農業工程學報,2015,31(12):125-131. Hou Huijing, Chen Hui, Yang Shihong, et al. Effects of controlled irrigation of paddy fields on N2O emissions from rice-winter wheat rotation systems[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(12): 125-131. (in Chinese with English abstract) [17] 蔡祖聰,徐華,馬靜. 稻田生態系統CH4和N2O排放[M]. 合肥:中國科學技術大學出版社,2009. [18] 蘇志峰,楊文平,杜天慶,等. 施肥深度對生土地玉米根系及根際土壤肥力垂直分布的影響[J]. 中國生態農業學報,2016,24(2):142-153. Su Zhifeng, Yang Wenping, Du Tianqing, et al. Effect of fertilization depth on maize root and rhizosphere soil fertility vertical distribution in immature loess subsoil[J]. Chinese Journal of Eco-Agriculture, 2016, 24(2): 142-153. (in Chinese with English abstract) [19] Drury C, Reynolds D, Tan C W, et al. Emissions of nitrous oxide and carbon dioxide: Influence of tillage type and nitrogen placement depth[J]. Soil Science Society of America Journal, 2006, 70(2): 570-581. [20] Ke J, He R, Hou P, et al. Combined controlled-released nitrogen fertilizers and deep placement effects of N leaching, rice yield and N recovery in machine-transplanted rice[J]. Agriculture, Ecosystems & Environment, 2018, 265: 402-412. [21] Zhang M, Yao Y, Zhao M, et al. Integration of urea deep placement and organic addition for improving yield and soil properties and decreasing N loss in paddy field[J]. Agriculture, Ecosystems & Environment, 2017, 247: 236-245. [22] 張岳芳,周煒,王子臣,等. 氮肥施用方式對油菜生長季氧化亞氮排放的影響[J]. 農業環境科學學報,2013,32(8):1690-1696. Zhang Yuefang, Zhou Wei, Wang Zicheng, et al. Effects of nitrogen fertilizer application modes on nitrous oxide emissions during growing season of oilseed rape ()[J]. Journal of Agro-Environment Science, 2013, 32(8): 1690-1696. (in Chinese with English abstract) [23] Engel R, Liang D L, Wallander R, et al. Influence of urea fertilizer placement on nitrous oxide production from a silt loam soil[J]. Journal of Environmental Quality, 2010, 39: 115-125. [24] Linquist A B, Maria A, Adviento-Borbe M, et al. Fertilizer management practices and greenhouse gas emissions from rice systems: A quantitative review and analysis[J]. Field Crops Research, 2012, 135: 10-21. [25] Banger K, Wagner-Riddle C, Grant B B, et al. Modifying fertilizer rate and application method reduces environmental nitrogen losses and increases corn yield in Ontario[J]. Science of the Total Environment, 2020, 722: 137851. [26] Maharjan B, Venterea R T. Nitrite intensity explains N management effects on N2O emissions in maize[J]. Soil Biology and Biochemistry, 2013, 66: 229-238. [27] Burger M, Venterea R. Effects of nitrogen fertilizer types on nitrous oxide emissions, understanding greenhouse gas emissions from agricultural management[J]. ACS Symposium Series, 2011, 1072: 179-202. [28] 杜婭丹,張倩,崔冰晶,等. 加氣灌溉水氮互作對溫室芹菜地N2O排放的影響[J]. 農業工程學報,2017,33(16):127-134. Du Yadan, Zhang Qian, Cui Bingjing, et al. Effects of water and nitrogen coupling on soil N2O emission characteristics of greenhouse celery field under aerated irrigation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(16): 127-134. (in Chinese with English abstract) [29] Chen H, Hou H, Wang X, et al. The effects of aeration and irrigation regimes on soil CO2and N2O emissions in a greenhouse tomato production system[J]. Journal of Integrative Agriculture, 2018, 17: 449-460. [30] 方日堯,趙惠青,同延安. 渭北旱原冬小麥深施肥溝播綜合效應研究[J]. 農業工程學報,2000,16(1):49-52. Fang Riyao, Zhao Huiqing, Tong Yan’an, et al. Research on integrated effect deep application of fertilizer and furrow-sowing winter wheat on Weibei rainfed highland[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2000, 16(1): 49-52. (in Chinese with English abstract) [31] Nkebiwe P M, Weinmann M, Bar-Tal A, et al. Fertilizer placement to improve crop nutrient acquisition and yield: A review and meta-analysis[J]. Field Crops Research, 2016, 196: 389-401. [32] 劉威,周劍雄,謝媛圓,等. 控釋尿素不同條施深度下鮮食玉米產量和氮素利用效應[J]. 水土保持學報,2018,32(1):246-251,258. Liu Wei, Zhou Jianxiong, Xie Yuanyuan, et al. Yield and nitrogen utilization efficiency of fresh edible maize under different fertilization depths[J]. Journal of Soil and Water Conservation, 2018, 32(1): 246-251, 258. (in Chinese with English abstract) [33] Devkota K P, Devkota M, Khadka L, et al. Nutrient responses of wheat and rapeseed under different crop establishment and fertilization methods in contrasting agro-ecological conditions in Nepal[J]. Soil and Tillage Research, 2018, 181: 46-62. [34] 谷曉博,李援農,黃鵬,等. 種植方式和施氮量對冬油菜產量與水氮利用效率的影響[J]. 農業工程學報,2018,34(10):113-123. Gu Xiaobo, Li Yuannong, Huang Peng, et al. Effects of planting patterns and nitrogen application rates on yield, water and nitrogen use efficiencies of winter oilseed rape (L.)[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(10): 113-123. (in Chinese with English abstract) Effects of reduced and deep fertilizer on soil N2O emission and yield of winter rapeseed Chen Hui, Gao Liping, Liao Qingxi, Zhang Qingsong, Xiao Wenli, Wei Guoliang, Liao Yitao※ (1.430070,; 2.430070,) Nitrous oxide (N2O) has made a strong contribution to the climate change, particularly on the global warming potential 265 times greater than that of CO2on a 100-year time horizon. Agricultural soil is an important source of N2O emission, accounting for approximately 33% of the global N2O. Furthermore, nitrogenous fertilizer plays a crucial role in N2O emission in agriculture, accounting for approximately 70% of the agricultural soil N2O emissions. Therefore, the reduced fertilizer can be used to alleviate the soil N2O emission, but it simultaneously can decrease the crop yield. A tradeoff between crop yield and ecological environment has become urgent in the planting link of crops. An application of deep fertilization has the potential to increase the crop yield and the use efficiency of fertilizer. However, there is still lacking the effect of reduced fertilizer on soil N2O emission under deep fertilization. In this study, a field experiment was conducted using the static chamber method and gas chromatography to determine the impacts of fertilizer treatments on soil N2O emission, soil Water-Filled Pore Space (WFPS), soil temperature, and yield of winter rapeseed, from October 2019 to May 2020. Five treatments included: 100% (DF100), 80% (DF80), and 60% (DF60) of the local recommended slow-release fertilizer (N-P2O5-K2O=187.5-52.5-60 kg/hm2) under deep fertilization, broadcast with the local recommended slow-release fertilizer (BF100), and no fertilizer (F0). The results showed that the soil N2O emission under DF100 was 13.3% greater than that of BF100, but the difference was not significant (>0.05). The DF100 treatment significantly increased the yield of winter rapeseed by 20.1%, Partial Factor Productivity (PFP) by 20.1%, and Agronomic Efficiency (AE) by 31.9% (<0.05). The DF100 treatment reduced the yield-scaled N2O emissions(N2O) by 5.0%, indicating that the increasing rate of rapeseed yield was greater than that of N2O emission under deep fertilization. In addition, the reduced fertilizer significantly decreased the soil N2O emission, winter rapeseed yield, and fertilizer use efficiency (<0.05). The soil N2O emission under DF100 increased by 22.7%, 42.5%, and 153.7%, compared with the DF80, DF60, and F0 treatment, respectively. The yield of winter rapeseed under the DF100 treatment was 1.30, 2.24, and 3.24 times greater than that of DF80, DF60, and F0, respectively. The PFP under DF100 treatment increased by 3.8% and 34.5% than that of DF80 and DF60, respectively. Meanwhile, the AE under DF100 treatment increased by 19.7% and 201.3% than that of DF80 and DF60, respectively. A trend of an initial increase then decrease in the value ofN2Owas observed with the increase of fertilizer amount. The maximumN2Owas 0.293 g/kg under the DF60 treatment, increasing by 23.1%, 48.8%, and 57.4% than that under the F0, DF80, and DF100 treatment, respectively. To balance environmental and economic conditions, the application amount of slow-release fertilizer can be reduced appropriately, according to the local recommendation, but it should be greater than 600 kg/hm2. The optimal combination on the amount of slow-release fertilizer and deep fertilization can be used to increase the yield of winter rapeseed and use efficiency of fertilizer, as well as reduce soil N2O emission. This finding can provide a sound reference for the reduction of N2O emission in winter rapeseed fields, and rational fertilization in mechanized direct-seeded rapeseed. soils; fertilizers; N2O emission; deep fertilization; reduced fertilizer; winter rapeseed 陳慧,高麗萍,廖慶喜,等. 肥料減量深施對土壤N2O排放和冬油菜產量的影響[J]. 農業工程學報,2020,36(21):80-87. doi:10.11975/j.issn.1002-6819.2020.21.010 http://www.tcsae.org Chen Hui, Gao Liping, Liao Qingxi, et al. Effects of reduced and deep fertilizer on soil N2O emission and yield of winter rapeseed[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(21): 80-87. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.21.010 http://www.tcsae.org 2020-07-30 2020-10-13 國家重點研發計劃項目(2018YFD0200901);中國博士后科學基金資助項目(2020M672371);湖北省自然科學基金(2019CFB153);湖北省博士后科技活動項目 陳慧,博士,博士后,主要從事機械作業下農田高效栽培管理模式構建與農田生態效應研究。Email:chenhui2019@mail.hzau.edu.cn 廖宜濤,博士,副教授,主要從事油菜機械化生產研究。Email:liaoetao@mail.hzau.edu.cn 10.11975/j.issn.1002-6819.2020.21.010 S275 A 1002-6819(2020)-21-0080-083 討 論
3.1 施肥對冬油菜田土壤N2O排放的影響
3.2 土壤N2O排放對土壤水分和溫度的響應
3.3 施肥對冬油菜產量的影響
4 結 論