徐鵬翔,沈玉君,丁京濤,孟海波,張朋月
規模化奶牛場糞污全量貯存及肥料化還田工藝設計
徐鵬翔,沈玉君,丁京濤,孟海波※,張朋月
(農業農村部規劃設計研究院農村能源與環保研究所,農業農村部資源循環利用技術與模式重點實驗室,北京 100125)
為推進糞污全量貯存和肥料化還田模式在規模化奶牛場的應用,該研究以存欄500頭規模奶牛場為例,分析了糞污收集量、貯存工藝與設施和糞肥還田等內容,提出了糞污貯存池設計容積和糞肥還田配套土地面積等參數。結果表明:奶牛糞污全量收集量為17.33 t/d,全量貯存設施分為舍內貯存池和舍外貯存囊2種。單個舍內貯存池尺寸為85 m×12 m×2 m(長×寬×深),糞污存儲期9個月,所需貯存池數量為5個,總容積10 200 m3;舍外貯存囊占地尺寸為90 m×30 m(長×寬),深2.2 m,總容積5 615 m3。糞肥全部還田所需土地面積與種植作物類型和種植制度相關,種植作物為小麥、玉米、小麥+玉米和水稻(1年2熟)時,需配套土地分別為248.4、400.6、122.8和127.0 hm2。糞肥還田成本為10.37萬元/a,全部還田可節省化肥22.8萬元/a,年可產生經濟效益12.43萬元。
糞;貯存; 奶牛場;還田利用;工藝設計
據統計,2017年中國奶牛存欄量達到1 340.4萬頭,已成為世界第三大產奶國[1]。隨著奶牛養殖規模的逐步增加,奶牛糞污處理和資源化利用也越來越受到關注。目前,奶牛糞污處理常用工藝技術有好氧堆肥、厭氧發酵、兼氧貯存和污水處理等,其中以固液分離后固體糞便進行堆肥、液體糞水經存儲一定時間后還田利用工藝應用較為普遍[2-3]。
從歐美等發達國家奶牛養殖現狀來看,奶牛飼養正在向適度規模和種養結合模式方向發展,糞污的最終出路以肥料化和能源化為主,規模化奶牛場的污染控制問題得到了較好的解決。據了解,法國規模化奶牛場實行種養結合和農牧一體的模式,大部分奶牛場糞污處理都采取“水泡糞全量收集+貯存后直接還田”工藝;荷蘭奶牛場比較注重糞污的循環利用,糞污處理采取2種工藝,一種是“糞尿漏縫地板收集+舍內地下貯存池/舍外地上貯存池儲存”工藝,另一種是“刮糞板收集+固液分離+糞便壓塊/糞水還田”工藝;德國側重于支持可再生能源發展,奶牛場糞污處理主要采取秸稈與牛糞全混合沼氣發酵工藝[4]。美國奶牛養殖場多數采用機械化清糞工藝,主要類型有水沖糞、水泡糞和干清糞3種,糞污通過堆肥、厭氧發酵、污水凈化和生態過濾等技術處理后進行資源化利用[5]。
近年來,隨著中國養殖業的規模化發展,種養分離現象逐漸嚴重,養殖場糞污處理量大和糞肥消納難等問題隨之出現,養殖污染已成為農業面源污染的主要來源之一。為了促進種養業健康發展,中國提出農業綠色發展之路,種養結合成為必然選擇,同時養殖糞污肥料化利用也成為糞污處理的主要方向。目前,中國奶牛場普遍采用了固液分離工藝,從糞污肥料化利用角度來看,固液分離反而增加了養分的損失。現有研究表明,與糞污固液分離后固體糞便和液體糞水分別處理相比,糞污全量貯存有利于提高糞肥中養分的留存率。以奶牛糞污貯存中氮養分為例,全量糞污貯存中氮損失率為6.8%;而糞污經固液分離分別貯存時氮損失率為12.6%[6]。與全量貯存及還田相比,奶牛糞污固液分離后貯存及還田過程中的NH3損失增加了44%[7],牛糞固液分離后糞便的氨排放系數是尿液氨排放系數的1.85倍[8]。另有研究結果表明,豬糞污固液分離后存儲過程中NH3損失增加了39%(冬季)和24%(夏季)[9]。
綜合國內外奶牛糞污處理現狀,國外以糞污全量收集貯存工藝為主,而中國以固液分離后糞便堆肥、厭氧發酵和糞水貯存等工藝應用較多。糞污全量貯存與肥料化還田作為一種糞污資源化利用的典型模式,對于種養循環發展具有重要意義,在土地匹配較充足的地區具有很好的應用前景。然而,現有關于糞污全量貯存工藝設計的研究是圍繞養豬場糞污特性和設施類型展開的[10],其設計參數不適用于奶牛養殖場,且在糞肥還田量要求方面缺少數據支撐。本文重點圍繞規模化奶牛場糞污全量收集、糞污貯存工藝、貯存設施設計和糞肥還田面積等方面進行分析,旨在為奶牛糞污全量收集、貯存和還田利用模式的推廣應用提供參考。
規模化奶牛場糞污產生量與養殖規模和牛群結構等因素相關,不同生長階段的奶牛糞污產生量差異較大。史樞卿等[11]從牛群淘汰率角度出發研究了國內外奶牛場牛群的分布,并提出典型國內奶牛場牛群結構,以養殖規模500頭為例,牛群結構為犢牛46頭、育成牛182頭和產奶牛272頭。以此為基礎,本研究對不同生長階段的奶牛糞污產生量進行了統計,結果詳見表1。

表1 規模化奶牛場糞污產生量統計[12-13]
由表1可知,以存欄500頭規模奶牛養殖場為例,每天產生糞污總量為17.33 t,則全年產生糞污總量為6 325.5 t。
糞污全量收集通常采用漏縫地板收集工藝,該方法可隨時收集糞污,起到保持牛體和臥床干凈的作用。漏縫地板根據材質不同分為水泥漏縫地板、鑄鐵漏縫地板和塑料漏縫地板等,不同類型的漏縫地板其耐久性、舒適性和投資成本等不同。漏縫地板的縫隙比例過小會影響漏糞效果,太大容易損害牛蹄,奶牛舍漏縫地板縫隙寬設計推薦值為3.5~4.0 cm[14];同時,通過鋪設配套的漏縫橡膠墊可起到增加地板柔軟性和防滑效果,從而減少肢蹄損傷。與實心地板相比,漏縫地板可減少220 mg/(m2·h)的氨揮發[15],從源頭節省了沖洗水的使用,糞污收集量與產生量一致。
奶牛場糞污全量貯存是將牛舍內的糞尿通過漏縫地板收集至貯存池,經存儲一定時間后進行還田利用。糞污貯存時間與環境溫度相關,當環境溫度≤5℃時,要求至少存儲6個月;當環境溫度﹥5℃時,要求至少存儲4個月[16]。糞污收集后不需要固液分離,總固體含量(Total Solid,TS)一般為5%~15%。糞污貯存工藝流程如下:
奶牛糞污貯存設施分為舍內貯存設施和舍外貯存設施,2種設施外形和建設參數不同。舍內貯存設施具有易于糞污收集和節省占地面積的特點,但需與圈舍同時規劃設計,建設成本較高,適用于新建養殖場;舍外貯存設施建設成本低,設施外形有圓形、方形和矩形等[17],場地布置靈活,可顯著減少糞污存儲對養殖環境的污染,適用于新建養殖場或已建養殖場。舍外貯存囊是一種經濟實用的貯存設施,與圓形鋼混結構貯存池相比建設成本可減少50%[18]。本研究以常用的舍內貯存池和舍外貯存囊為例,分別計算其設施設計參數。

圖1 糞污全量貯存工藝流程
2.2.1 舍內貯存池
奶牛糞污舍內貯存池設置在養殖圈舍下方,池體面積與牛舍面積相同。研究表明[19-20],不同生長階段的牛群所需要的牛舍面積不同,每頭產奶牛的牛舍占地面積為8~12 m2,育成牛的牛舍占地面積為7~8 m2,犢牛的牛舍占地面積為4~5 m2。牛舍占地面積由牛舍結構和奶牛飼養數量確定,中國北方地區牛舍多采取雙列式牛床布置,牛舍長度一般為82~85 m,跨度12 m,每棟約容納100頭成乳牛[21]。
奶牛糞污舍內貯存池容積計算方法如下
糞污貯存池占地面積=·(1)
式中指牛舍的長度,m;指牛舍的寬度,m。
單獨舍內糞污產生量V=Q··(2)
式中Q指平均每頭奶牛每天的糞污產生量,m3;指單棟舍內奶牛飼養數量,頭;指糞污貯存時間,d。
糞污在舍內貯存池所需凈高H= 1.2V/(3)
式中H指奶牛糞污在舍內貯存池所需凈高,m;1.2指糞污產生量預留容積系數。
糞污貯存池深度=H +0.5 (4)
式中指舍內貯存池總深度,m;0.5指糞污表面與漏縫地板之間預留空間深度,m。
糞污貯存池容積pit=·(5)
式中pit指舍內貯存池容積,m3。
以100頭成乳牛牛舍為例,牛舍長度取85 m,寬度取12 m,依據公式(1)可得牛舍占地面積為1 020 m2;由1.1可知每頭產奶牛每天糞污產生量為46.05 kg(0.046 m3),糞污貯存時間一般要求6~9個月,此設計方案中取最大值270 d,依據公式(2)可得糞污產生總量為1 242 m3;依據公式(3)可得糞污在舍內貯存池所需凈高為1.47 m;依據公式(4)可得糞污貯存池深度為1.97 m,取2.0 m。依據公式(5)可得單棟牛舍地下貯存池容積為2 040 m3,存欄500頭規模奶牛場需要建設5棟牛舍,糞污貯存池總容積為10 200 m3。
2.2.2 舍外貯存囊
部分奶牛養殖場建廠時未建造舍內地下貯存池,糞污經漏縫地板或刮糞板收集后通過地下糞溝排入暫存池,再由暫存池輸送至舍外貯存囊進行存儲。舍外貯存囊是一種以高密度聚乙烯防滲膜(High Density Polyethylene,HDPE)為主要材料,以類似氧化塘結構為載體的糞水貯存設施,具有建設成本低、臭氣控制好和安裝管理方便等特點。舍外貯存囊一般采用矩形,長寬比不小于3∶1,通常以舊河道、池塘、洼地等為基礎進行修建,深度不超過6 m[22]。舍外貯存囊實物圖見圖2。

圖2 全量糞污貯存囊
舍外貯存囊容積計算方法如下:
糞污產生總量V= Q··(6)
式中指奶牛存欄量,頭。
舍外貯存囊容積lagoon= 1.2V(7)
式中lagoon指舍外貯存囊容積,m3;1.2指糞污產生量預留容積系數。
以存欄500頭規模奶牛養殖場為例,依據1.1和公式(6)可得每天產生糞污量為17.33 t,存儲時間為270 d,則依據公式(7)可得舍外貯存囊容積為5 615 m3。依據《污水穩定塘設計規范(CJJ/T 54—93)》,給出以下設計參數供參考:承載貯存囊的塘體長取90 m,寬取30 m(長寬比3∶1),塘體深度取2.2 m(坡比2.2∶1),塘體容積為5 676 m3。
奶牛場糞肥養分含量因飼喂原材料、糞污收集方式和沖洗污水量等因素影響而不同[23-24],天津市27家奶牛養殖場固液分離后糞水中的總氮和總磷平均質量濃度分別為1.85和0.07 g/L[25],與全量糞肥相比養分含量較低。全量收集奶牛糞肥養分含量見表2。

表2 奶牛場全量糞污主要養分含量
由奶牛糞肥養分含量和收集率計算可知,全量糞肥中總氮含量為4.77 g/kg,總磷含量為0.86 g/kg。
奶牛場糞肥還田面積可通過計算糞肥中氮(磷)養分總量和單位土地糞肥氮(磷)養分需求量來獲得[26-27]。計算過程如下:
land=Q,p/N,p(8)
式中land指配套土地面積,hm2;Q,p指奶牛場還田利用的糞肥氮(磷)養分總量,kg/a;N,p指種植作物的單位土地糞肥氮(磷)養分需求量,kg/(hm2·a)。
Q,p=··R·T(9)
式中指畜禽糞肥氮(磷)排泄量,kg/(頭·d);R指畜禽糞肥氮(磷)養分留存率,%;T指奶牛飼養時間,取值0~365 d。
N,p=N·P·P/R (10)
式中N指種植作物單位面積氮(磷)養分需求總量,kg/(hm2·a);P指作物總養分中施肥供給養分占比,%;P指畜禽糞肥養分含量占施肥總量的比例,%;R指糞肥當季利用率,%。
N= ∑ (P·Q· 10) (11)
式中P指第季種植作物的單位目標產量,t/(hm2·季);Q指第季作物形成100 kg產量吸收的氮(磷),kg。
以存欄500頭規模奶牛養殖場為例,假設種植作物類型有小麥、玉米和水稻,糞肥類型為全量糞肥,分別以氮和磷養分為基準對配套土地面積進行計算,結果見表3。

表3 奶牛場全量糞肥還田配套土地面積計算
注:小麥、玉米和水稻的目標產量為4.5、6.0和6.0 t·hm-2,每形成100 kg產量需氮量為3.0、2.3和2.2 kg,每形成100 kg產量需磷量為1.0、0.3和0.8 kg;施肥供給養分占比取45%;畜禽糞肥養分含量占施肥總量的比例取50%;糞肥氮素當季利用率取25%,糞肥磷素當季利用率取30%[24]。
Note: The target production of wheat, maize and rice is 4.5, 6.0 and 6.0 t·hm-2respectively; The amount of nitrogen demand for each 100 kg yield of wheat, corn and rice is 3.0, 2.3 and 2.2 kg; The amount of phosphorus demand for each 100 kg yield of wheat, corn and rice is 1.0, 0.3 and 0.8 kg; The proportion of nutrients supplied by fertilizer is 45%; The proportion of manure nutrient content to the nutrient of all the fertilizers is 50%; The utilization rate of nitrogen from manure in the current season is 25%; The utilization rate of phosphorus from manure in the current season is 30%.
由表3數據可知,當作物種植類型和種植制度不同時,全量糞肥還田所需要配套的土地面積不同。為防止糞肥過量施用,配套土地面積應取以氮和磷為基準計算結果的較高值。奶牛場全量糞肥還田時,若種植作物為小麥(1年1熟),則需要配套土地248.4 hm2;若種植作物為玉米(1年1熟),則需要配套土地400.6 hm2;若種植作物為小麥和玉米(1年2熟),則需要配套土地122.8 hm2;若種植作物為水稻(1年2熟),則需要配套土地127.0 hm2。
糞肥施用成本包括糞污收集與施用過程中的人工費、電費和運輸費。以存欄500頭規模奶牛場為例,全量糞肥施用成本為10.37萬元/a,各項費用詳見表4。

表4 奶牛場全量糞肥年施用成本
經計算,存欄500頭奶牛養殖場每年產生的全量糞肥中氮養分含量可折算尿素量為130 t,磷養分含量可折算過磷酸鈣量為8.9 t,若尿素和過磷酸鈣價格分別以1 700元/t和800元/t計,則糞肥全部還田可折合節省化肥22.8萬元。綜上所述,存欄500頭奶牛養殖場采用糞污全量貯存與肥料化還田工藝時,每年可產生經濟效益12.43萬元。
1)奶牛場糞污全量貯存及肥料化還田模式可從源頭節省用水,簡化糞污處理流程,提高糞肥中養分的留存率,在種養結合和循環農業發展中具有較好的應用前景。該研究從糞污全量貯存和肥料化還田工藝設計角度出發,提出了糞污收集量、貯存設施類型與容積、糞肥養分含量和配套土地面積等參數和計算方法,為糞污全量貯存和糞肥還田提供了參考。
2)常用的糞污全量貯存設施分為舍內貯存池和舍外貯存囊2種,舍內貯存池適用于新建養殖場;舍外貯存囊適用于新建或已建養殖場,養殖場可根據場地面積、投資費用和周邊環境等條件選擇適宜的設施類型。以存欄500頭奶牛場為例,共需5個舍內貯存池,建設總容積為10 200 m3,而舍外貯存囊所需總容積為5 615 m3。
3)糞肥還田土地面積與糞肥中氮(磷)養分含量、土壤養分背景值、種植作物類型和種植制度等因素相關。存欄500頭奶牛場糞肥全部還田,每年種植作物分別為小麥、玉米、小麥和玉米、水稻(1年2熟)時,需配套相應的土地面積為248.4、400.6、122.8 和127.0 hm2。糞肥還田成本為10.37萬元/a,全部還田可節省化肥22.8萬元/a,年可產生經濟效益12.43萬元。
[1] 樊斌,薛曉聰,李萌,等. 中國奶牛養殖生產布局優化研究:基于比較優勢的實證分析[J]. 農業現代化研究,2020,41(2):331-340. Fan Bin, Xue Xiaocong, Li Meng, et al. Production layout optimization of dairy farming in China: An empirical analysis based on comparative advantage[J]. Research of Agricultural Modernization, 2020, 41(2): 331-340. (in Chinese with English abstract)
[2] 施正香,王盼柳,張麗,等. 我國奶牛場糞污處理現狀與綜合治理技術模式分析[J]. 中國畜牧雜志,2016,52(14):62-66. Shi Zhengxiang, Wang Panliu, Zhang Li, et al. State of dairy waste treatment and comprehensive management mode in China[J]. Chinese Journal of Animal Science, 2016, 52(14): 62-66. (in Chinese with English abstract)
[3] 羅娟,趙立欣,姚宗路,等. 規模化養殖場畜禽糞污處理綜合評價指標體系構建與應用[J]. 農業工程學報,2020,36(17): 182-189. Luo Juan, Zhao Lixin, Yao Zonglu, et al. Construction and application of comprehensive evaluation index system for waste treatment on intensive livestock farms[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(17): 182-189.(in Chinese with English abstract)
[4] 李孟嬌,董曉霞,李宇華. 發達國家奶牛規模化養殖的糞污處理經驗:以歐盟主要奶業國家為例[J]. 世界農業,2014,5:10-15.
[5] 李孟嬌,董曉霞,郭江鵬. 美國奶牛規模化養殖的環境政策與糞污處理模式[J]. 生態經濟,2014,30(7):55-59. Li Mengjiao, Dong Haixia, Guo Jiangpeng. The environment policy and manure treatment models of large-scale milk cows breeding in US[J]. Ecological Economy, 2014, 30(7): 55-59. (in Chinese with English abstract)
[6] Perazzolo F, Mattachini G, Tambone F, et al. Nutrient losses from cattle co-digestate slurry during storage[J]. Journal of Agricultural Engineering, 2016, 47(2): 94-99.
[7] Dinuccio E, Berg W, Balsari P. Effects of mechanical separation on GHG and ammonia emissions from cattle slurry under winter conditions[J]. Animal Feed Science and Technology, 2011, 166: 532–538.
[8] 美英,魏坤昊,崔鈉淇,等. 集約化奶牛養殖場不同糞尿處理階段氮素分布及氨排放特征[J]. 農業工程學報,2018,34(18): 261-267. Mei Ying, Wei Kunhao, Cui Naqi, et al. Nitrogen distribution and ammonia emission characteristics in different livestock manure treatment processes in intensive dairy farms[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(18): 261-267.(in Chinese with English abstract)
[9] Dinuccio E, Gioelli F, Balsari P, et al. Ammonia losses from the storage and application of raw and chemo-mechanically separated slurry[J]. Agriculture, Ecosystems and Environment, 2012, 153: 16-23.
[10] 徐鵬翔,沈玉君,丁京濤,等. 規模化養豬場糞污全量收集及貯存工藝設計[J]. 農業工程學報,2020,36(9): 255-262. Xu Pengxiang, Shen Yujun, Ding Jingtao, et al. Slurry manure collection and design of storage system on scaled pig farms[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(9): 255-262.(in Chinese with English abstract)
[11] 史樞卿,李守忠. 關于奶牛場設計和建設的奶牛體尺、牛群結構標準參數[J]. 中國奶牛,2006,1:47-50.
[12] 楊前平,李曉鋒,熊琪,等. 奶牛場糞污產生量及性能參數測定[J]. 湖北農業科學,2019,58(24):106-108,119. Yang Qianping, Li Xiaofeng, Xiong Qi, et al. Determination of feces production and performance parameters in dairy farm[J]. Hubei Agricultural Sciences, 2019, 58(24): 106-108, 119. (in Chinese with English abstract)
[13] 中國農業科學院農業環境與可持續發展研究所,環境保護部南京環境科學研究所. 第一次全國污染源普查畜禽養殖業源產排污系數手冊[Z]. 北京:國務院第一次全國污染源普查領導小組辦公室,2009.
[14] 劉繼軍,賈永全. 畜牧場規劃設計[M]. 北京:中國農業出版社,2008:237-283.
[15] 趙潤,張蕙杰,劉琦,等. 歐盟奶業環境污染防治經驗-以集約化奶牛場糞水管控為例[J]. 環境保護,2019,9:69-74.
[16] Manyi-Loh C E, Mamphweli S N, Meyer E L, et al. An overview of the control of bacterial pathogens in cattle manure[J]. International Journal of Environmental Research and Public Health, 2016, 13(9): 1-27.
[17] Aboltins A, Priekulis J, Aboltina B, et al. Effect of slurry lagoon redesign on reduction of ammonia emission during livestock manure storage[J]. Agronomy Research, 2017, 15(5): 1822-1830.
[18] Priekulis J, Murikov V. Research in liquid manure removal and storage technological versions on milk farms[J]. Agronomy Research, 2008, 6(Special issue): 299-306.
[19] 張靖靜,柳玉華,陳杭. 我國南方地區中小型奶牛場設計Ⅱ.牛舍、運動場等建筑設計[J].江蘇農業科學,2003,2:49-52.
[20] 尤震晨,胥磊,黃錫霞,等. 新疆北疆地區奶牛場建設與糞污處理情況分析[J]. 家畜生態學報,2019,40(1):60-64. You Zhenchen, Xu Lei, Huang Xixia, et al. Analysis on dairy farm construction and manure treatment in northern Xinjiang[J]. Acta Ecologiae Animalis Domastici, 2019, 40(1): 60-64. (in Chinese with English abstract)
[21] 劉海源. 我國北方地區工廠化奶牛場設計研究[D]. 哈爾濱:哈爾濱工業大學,2009. Liu Haiyuan. The Research of the Factory-dairy Farm Design in Northern China[D]. Harbin: Harbin Institute of Technology. 2009. (in Chinese with English abstract)
[22] 中華人民共和國國家質量監督檢驗檢疫總局中國國家標準化管理委員會. 畜禽養殖污水貯存設施設計要求:GB/T26624—2011[S]. 北京:中國標準出版社.
[23] 趙潤,楊仁杰,牟美睿,等. 基于中紅外光譜的規模化奶牛場糞水總氮快速預測方法[J]. 農業工程學報,2019,35(15): 217-224. Zhao Run, Yang Renjie, Mou Meirui, et al. Rapid prediction method of total nitrogen in slurry of large-scale dairy farm by mid-infrared spectroscopy[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(15): 217-224.(in Chinese with English abstract)
[24] 張帥,陸鵬,陳碩,等. 京郊畜禽糞污氮磷含量特征及影響因素分析[J]. 農業工程學報,2018,34(8): 244-251. Zhang Shuai, Lu Peng, Chen Shuo, et al. Characteristics of nitrogen and phosphorus content and analysis of its influencing factors in feces and wastewater of livestock farms in Beijing suburb[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(8): 244-251.(in Chinese with English abstract)
[25] 孫迪,楊仁杰,李夢婷,等. 春秋季對近紅外光譜模型預測奶牛場糞水氮磷含量結果的影響[J]. 農業工程學報,2020,36(10): 197-205. Sun Di, Yang Renjie, Li Mengting, et al. Influences of spring and autumn on the nitrogen and phosphorus contents of the slurry predicted by near-infrared spectrum model on dairy farms[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(10): 197-205.(in Chinese with English abstract)
[26] 全國畜牧總站中國飼料工業協會國家畜禽養殖廢棄物資源化利用科技創新聯盟. 土地承載力測算技術指南[M]. 北京:中國農業出版社,2017.
[27] 韓成吉,王國剛,朱立志. 畜禽糞污土地承載力系統動力學模型及情景仿真[J]. 農業工程學報,2019,35(22): 170-180. Han Chengji, Wang Guogang, Zhu Lizhi. System dynamic model and scenario simulation of land carrying capacity for livestock and poultry manure[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(22): 170-180.(in Chinese with English abstract)
Technological design of slurry manure storage and returning to farmland for fertilization on large-scale dairy farm
Xu Pengxiang, Shen Yujun, Ding Jingtao, Meng Haibo※, Zhang Pengyue
(,,,,,100125,)
In order to promote the healthy development of animal husbandry, China put forward the road of green development of agriculture. The combination of planting and breeding has become an inevitable choice. The utilization of manure back to farmland is an important way of waste treatment in dairy farms. There are three types of manure, including solid, liquid, and slurry manure, which can be used as organic fertilizers. At present, returning of solid manure (after composting) and liquid manure (after storage or anaerobic fermentation) to the cropland has become the main way in dairy farms in China, while the slurry manure (after storage) is widely used in developed countries, such as Europe and America. Compared to other types of manure, the slurry manure contained higher nutrient, showing a promising application prospect in the areas with sufficient farmland. The storage technology of slurry manure has some good characteristics, such as easy collection of excrement, saving storage areas, and low treatment cost. However, only a few application cases were realized in China. In this study, the following contents were investigated for the technological design of manure storage, including the amount of collected manure wastes, parameters of storage facilities, parameters of manure utilization to farmland, costs of operation and so on,the volume of slurry manure storage facilities and the matching land areas of manure returning to farmland were given at the end. The results showed that the obvious advantages can be found in the slurry manure technology. A scaled farm with 500 dairy cattle was taken as an example, where the amount of slurry manure was 17.33 t per day. There are two types of slurry manure storage facilities, under-floor storage pit inside the breeding house and manure storage lagoon outside. The length, width, and depth of one under-floor storage pit were 85, 12 and 2 m, respectively, which can meet the storage need of slurry manure produced during 9 months. In the scaled farm with 500 dairy cattle, it needed 5 under-floor storage pits, where the total volume was 10 200 m3. The length, width, and depth of one manure storage lagoon were 90, 30 and 2.2 m, respectively, with a total volume of 5 615 m3, which can meet the storage need of slurry manure produced during 9 months. The farmland area for the application of manure was closely related to crop species and planting system. If the planting crops were wheat, harvest once a year, 248.4 hm2of farmland was needed for manure application. If the planting crops were corn, harvest once a year, 400.6 hm2of farmland was needed for manure application. If the planting crops were wheat and corn, harvest twice a year, 122.8 hm2of farmland was needed for manure application. If the planting crops were rice, harvest twice a year, 127.0 hm2of farmland was needed for manure application. The cost of all slurry manure returning to farmland was 103.7 thousand yuan, saving about 228 thousand yuan a year, compared with that of chemical fertilizers, and the annual economic benefit is 124.3 thousand yuan. The finding can provide a potential support for the application of storage technology for slurry manure.
manure; storage; dairy farms; farmland utilization; technological design
徐鵬翔,沈玉君,丁京濤,等. 規模化奶牛場糞污全量貯存及肥料化還田工藝設計[J]. 農業工程學報,2020,36(21):260-265. doi:10.11975/j.issn.1002-6819.2020.21.031 http://www.tcsae.org
Xu Pengxiang, Shen Yujun, Ding Jingtao, et al. Technological design of slurry manure storage and returning to farmland for fertilization on large-scale dairy farm[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(21): 260-265. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.21.031 http://www.tcsae.org
2020-06-30
2020-09-23
農業農村部規劃設計研究院自主研發項目:畜禽養殖糞水酸化貯存及施用技術研究(2018ZZYF0101)
徐鵬翔,博士,高級工程師,主要從事農業廢棄物資源化利用研究。Email:xpx527@126.com
孟海波,博士,研究員,主要從事農業廢棄物資源化利用研究。Email:newmhb7209@163.com
10.11975/j.issn.1002-6819.2020.21.031
X713
A
1002-6819(2020)-21-0260-06