吳志剛,陳思成,梁堅(jiān)坤,李利芬,雷 洪,董霽瑩
木質(zhì)素-苯酚-甲醛樹(shù)脂膠黏劑的性能與合成機(jī)理
吳志剛1,2,陳思成2,梁堅(jiān)坤3,李利芬2,雷 洪1※,董霽瑩1
(1. 西南林業(yè)大學(xué),云南省木材膠黏劑及膠合制品重點(diǎn)實(shí)驗(yàn)室,昆明 650224;2. 貴州大學(xué)林學(xué)院,貴陽(yáng) 550025;3. 凱里學(xué)院,凱里 556011)
為了降低酚醛樹(shù)脂的制備成本,該研究分別以30%、40%和50%堿木質(zhì)素部分替代苯酚合成木質(zhì)素-苯酚-甲醛(Lignin-Phenol-Formaldehyde, LPF)樹(shù)脂膠黏劑,主要研究了其替代比對(duì)LPF樹(shù)脂膠合性能、固化性能和熱穩(wěn)定的影響,同時(shí)探討了LPF合成機(jī)理。結(jié)果表明:1)LPF樹(shù)脂具有透明度低、固體含量大、游離甲醛較低、黏度大導(dǎo)致活性期短和施膠困難的特點(diǎn)。2)LPF制備的膠合板膠合強(qiáng)度隨堿木質(zhì)素增加呈先增加后減小的趨勢(shì),但均高于PF(Phenol-Formaldehyde)樹(shù)脂,堿木質(zhì)素取代苯酚量最大可達(dá)50%以上。3)DSC分析表明LPF樹(shù)脂固化溫度高,且隨堿木質(zhì)素添加量增加而升高。4)堿木質(zhì)素加量過(guò)高或過(guò)低都會(huì)影響LPF的熱穩(wěn)定性,為40%時(shí)的熱穩(wěn)定性高于PF樹(shù)脂。5)堿性條件下,無(wú)論是以苯酚、木質(zhì)素酚環(huán)還是木質(zhì)素側(cè)鏈為反應(yīng)起點(diǎn)合成LPF,羥甲基苯酚經(jīng)E1cb反應(yīng)機(jī)理形成亞甲基共軛結(jié)構(gòu),是合成LPF的關(guān)鍵。該研究工作的開(kāi)展可為L(zhǎng)PF合成工藝改進(jìn)和實(shí)際應(yīng)用提供進(jìn)一步的科學(xué)指導(dǎo)。
木質(zhì)素;樹(shù)脂;機(jī)理;堿木質(zhì)素;苯酚取代率;酚醛樹(shù)脂;合成機(jī)理
脲醛樹(shù)脂、酚醛樹(shù)脂和三聚氰胺甲醛樹(shù)脂是目前木材工業(yè)中應(yīng)用最為廣泛的膠黏劑,使用量占人造板行業(yè)總用膠量的60%~70%甚至更高[1-5]。酚醛樹(shù)脂膠黏劑因具有膠接強(qiáng)度高、耐久耐候、耐水性好和抗老化等優(yōu)點(diǎn)而廣泛應(yīng)用于室外用人造板的生產(chǎn),是僅次于脲醛樹(shù)脂的第二大的木材膠黏劑。但其在生產(chǎn)人造板的過(guò)程中存在固化溫度高且時(shí)間長(zhǎng)、易透膠等問(wèn)題,導(dǎo)致能源消耗大、生產(chǎn)周期過(guò)長(zhǎng)。原料苯酚毒性大且來(lái)自于不可再生的石化資源,近幾年來(lái)價(jià)格快速上漲,給室外人造板生產(chǎn)企業(yè)帶來(lái)了很大壓力[6-11]。此外,酚醛樹(shù)脂膠黏劑合成及后續(xù)人造板使用時(shí)有毒氣體釋放,也進(jìn)一步限制了其應(yīng)用,所以尋找苯酚的替代品成為關(guān)注的熱點(diǎn)。
生物質(zhì)基共縮聚技術(shù)越來(lái)越引起人們的重視,在保證樹(shù)脂性能的前提下明顯增加了可再生原料的使用。尤以大豆蛋白[12-15]、單寧[16-17]、淀粉[18-19]與三聚氰胺、甲醛共縮聚樹(shù)脂的研究最多,且有部分產(chǎn)品已開(kāi)始工業(yè)化生產(chǎn)。單寧為多酚結(jié)構(gòu),與苯酚在結(jié)構(gòu)上較為相似,具有取代部分苯酚制備木材膠黏劑的條件。利用單寧的高反應(yīng)活性特點(diǎn),使之代替苯酚-間苯二酚-甲醛樹(shù)脂或間苯二酚-甲醛樹(shù)脂中的部分間苯二酚的研究較多[20-24]。
木質(zhì)素是地球上唯一能從可再生資源中獲得的天然芳香族有機(jī)原料,具有無(wú)毒、價(jià)廉、易被生物分解的特性[25-27],由愈創(chuàng)木基型、紫丁香基型、對(duì)羥苯基型3種結(jié)構(gòu)單元構(gòu)成,水解后其分子上會(huì)含有甲氧基、酚羥基、醇羥基、不飽和雙鍵、磺酸鹽基和醚鍵等官能團(tuán),為部分替代苯酚制備酚醛膠黏劑提供了基礎(chǔ)。盡管木質(zhì)素的反應(yīng)活性比單寧低得多,但作為一種多酚類(lèi)化合物,同樣具有取代部分苯酚制備木材膠黏劑的條件和潛力。迄今為止,關(guān)于木質(zhì)素改性酚醛樹(shù)脂的研究報(bào)道較多,主要集中在木質(zhì)素-環(huán)氧樹(shù)脂[28-30]、木質(zhì)素-聚氨酯[31-32]、木質(zhì)素-丙烯酰胺[33-34]等研究。而作為制漿造紙廢棄物的堿木質(zhì)素價(jià)格低廉,利用其制備酚醛膠黏劑極具經(jīng)濟(jì)價(jià)值[35-36]。本研究以堿木質(zhì)素替代酚醛來(lái)合成木質(zhì)素-苯酚-甲醛樹(shù)脂膠黏劑(Lignin-Phenol-Formaldehyde,LPF),主要研究了不同替代比對(duì)LPF樹(shù)脂膠合性能、固化性能和熱穩(wěn)定的影響。
堿木質(zhì)素,棕色粉末(50%水溶液的pH值為10.5),南京都萊生物有限公司。甲醛(質(zhì)量分?jǐn)?shù)37%),分析純,國(guó)藥集團(tuán)化學(xué)試劑有限公司;其他化學(xué)試劑如NaOH、苯酚等均為分析純,國(guó)藥集團(tuán)。楊木單板(.,含水率8%~10%),單板幅面400 mm×400 mm,厚度1.5 mm,江蘇沭陽(yáng)。
摩爾比(甲醛):(苯酚)=1.3:1的酚醛樹(shù)脂制備,作為對(duì)照試驗(yàn):向配有機(jī)械攪拌棒、溫度計(jì)和冷凝管的圓底三口燒瓶中加入苯酚,啟動(dòng)攪拌器,加入1.6 g NaOH和第1份甲醛,緩慢升溫至90 ℃,保溫60 min后降溫至45 ℃;加入第2份甲醛并攪拌均勻,待溫度不再上升或者上升較慢時(shí),升溫至90 ℃,待達(dá)到要求終點(diǎn)后,迅速降溫,冷卻出料,所制備的酚醛樹(shù)脂記為PF。
木質(zhì)素-苯酚-甲醛(Lignin-Phenol-Formaldehyde, LPF)樹(shù)脂的制備:向配有機(jī)械攪拌棒、溫度計(jì)和冷凝管的圓底三口燒瓶中加入苯酚,啟動(dòng)攪拌器,加入1.6 g NaOH和第1份甲醛,緩慢升溫至90 ℃,保溫60 min后降溫至45 ℃;加入一定量的堿木質(zhì)素并加入第2份甲醛并攪拌均勻,待溫度不再上升或者上升較慢時(shí),升溫至90 ℃,待達(dá)到要求終點(diǎn)后,迅速降溫,冷卻出料。改變堿木質(zhì)素的加量,30%、40%和50%堿木質(zhì)素取代苯酚制備的樹(shù)脂分別標(biāo)記為L(zhǎng)1-PF、L2-PF和L3-PF。
樹(shù)脂的固含量、黏度、pH值,游離甲醛含量參照標(biāo)準(zhǔn)GB/T 14074-2017進(jìn)行測(cè)定。
自制3層楊木膠合板,幅面為400 mm×400 mm,LPF樹(shù)脂膠黏劑的雙面施膠量為230 g/m2。膠合板熱壓工藝為:時(shí)間4 min,溫度180 ℃,壓力1.5 MPa;其耐沸水膠合強(qiáng)度,參照國(guó)標(biāo)GB/T 17657-2013中I類(lèi)膠合板的測(cè)試方法進(jìn)行測(cè)試。
將樹(shù)脂PF、L1-PF、L2-PF和L3-PF冷凍干燥24 h后,均勻涂抹在KBr試片上,放入干燥器中去除水分,再進(jìn)行紅外光譜(Fourier Transform Infraredspectroscopy, FT-IR)的測(cè)試。采用傅立葉變換紅外光譜儀Varian 1000(美國(guó)瓦里安)進(jìn)行測(cè)定,掃描范圍400 ~ 4 000 cm-1,分辨率1 cm-1,掃描次數(shù)32。
參照文獻(xiàn)進(jìn)行核磁共振(C Nuclear Magnetic Resonance,13C-NMR)碳譜(13C-NMR)定量分析[37];分別取300L的PF、L1-PF、L2-PF和L3-PF樹(shù)脂與100L的氘代二甲亞砜(DMSO-d6)直接混合均勻后進(jìn)行核磁共振碳譜測(cè)試。采用Brucker AVANCE Ⅲ 600 高分辨超導(dǎo)核磁共振儀(瑞士Brucker 公司),脈沖序列zgig,內(nèi)標(biāo)為DMSO-d6,累加次數(shù)500~800次,測(cè)量譜寬39 062.5 Hz。
分別將PF、L1-PF、L2-PF和L3-PF樹(shù)脂冷凍干燥24 h后,再進(jìn)行測(cè)試。采用DSC 204 F1型差示掃描量(DifferentialScanningCalorimetry,DSC)熱儀(德國(guó)耐馳公司),測(cè)試條件:N2保護(hù),測(cè)試溫度范圍40~200 ℃,升溫速率10 ℃/min,NETZSCH Proteus分析軟件。
將PF、L1-PF、L2-PF和L3-PF樹(shù)脂在120 ℃固化2 h,固產(chǎn)物磨成粉,再進(jìn)行測(cè)試。采用TG 209 F3型熱重(Thermogravimetry, TG)分析儀(德國(guó)耐馳公司),測(cè)試條件:N2保護(hù),測(cè)試溫度范圍30~800 ℃,升溫速率10 ℃/min。
圖1為木質(zhì)素-苯酚-甲醛樹(shù)脂的外觀形態(tài),表1為木質(zhì)素-苯酚-甲醛樹(shù)脂基本性能。由表1可知,未改性的酚醛樹(shù)脂黏度為250 mPa·s,加入30%、40%和50%木質(zhì)素改性的酚醛樹(shù)脂黏度分別為800、2 500和4 500 mPa·s。從圖1以可以看出,隨著木質(zhì)素添加量的增加,樹(shù)脂的黏度顯著提高。木質(zhì)素加量30%改性的酚醛樹(shù)脂均勻性較好,加量40%的酚醛樹(shù)脂體系開(kāi)始出現(xiàn)絲狀不溶物,加量50%的樹(shù)脂絲狀不溶物則較為明顯。出現(xiàn)這種現(xiàn)象的原因有:1)木質(zhì)素中可能含有一定量不參與樹(shù)脂合成反應(yīng)的雜質(zhì),如淀粉、多糖等,遇水后會(huì)提高樹(shù)脂體系的黏度;2)木質(zhì)素分子量相對(duì)較大,與上述雜質(zhì)之間存在靜電力和氫鍵締合導(dǎo)致樹(shù)脂體系黏度較大;3)木質(zhì)素分子上的苯環(huán)具有憎水性,水對(duì)木質(zhì)素分子親和較慢,使得木質(zhì)素改性的酚醛樹(shù)脂的黏度較大。此外,木質(zhì)素的引入還能夠明顯提高酚醛樹(shù)脂的固體含量,尤其是降低酚醛樹(shù)脂中的游離甲醛,說(shuō)明木質(zhì)素可起到甲醛捕捉劑的作用,這恰好實(shí)現(xiàn)了利用農(nóng)林廢棄物替換苯酚制備環(huán)保型木材膠黏劑的初衷。
注:PF為酚醛樹(shù)脂,L1-PF、L2-PF和L3-PF分別為30%、40%和50%堿木質(zhì)素部分替代苯酚合成的木質(zhì)素-苯酚-甲醛樹(shù)脂, 下同。
表1 木質(zhì)素-苯酚-甲醛樹(shù)脂基本性質(zhì)
根據(jù)酚醛樹(shù)脂經(jīng)典合成理論,甲醛與苯酚的摩爾比對(duì)樹(shù)脂的交聯(lián)度和縮聚度影響較大,摩爾比較低時(shí)反應(yīng)產(chǎn)物為鄰羥甲基苯酚和對(duì)羥甲基苯酚,并以后者含量較多,最終縮聚產(chǎn)物線性結(jié)構(gòu)居多;摩爾比較高時(shí),反應(yīng)產(chǎn)物為二羥甲基苯酚甚至三羥甲基苯酚,后者隨著摩爾比的增加而增加[38],但摩爾比過(guò)高又會(huì)存在游離甲醛含量偏高的問(wèn)題。因此,本研究固定(甲醛):(苯酚)=1.3:1時(shí),以木質(zhì)素部分取代苯酚制備LPF。
LPF樹(shù)脂膠合性能測(cè)試結(jié)果如圖2所示。由圖2可知,未替代的酚醛樹(shù)脂干強(qiáng)度和沸水強(qiáng)度分別為0.87和0.96 MPa,30%木質(zhì)素替代的分別為1.45和1.37 MPa,40%替代的分別是1.32和1.38 MPa,50%替代的則分別是1.29和0.95 MPa。隨著木質(zhì)素替代率的增加,LPF樹(shù)脂的干強(qiáng)度和耐沸水強(qiáng)度都呈先增加后減小的趨勢(shì)。取代率在30% 和40%為樹(shù)脂的膠合性能增強(qiáng)的階段,取代率30%時(shí),干強(qiáng)度和耐沸水強(qiáng)度最大,增幅分別為67%和43%。取代率50%的樹(shù)脂膠合性能開(kāi)始下降,但耐沸水強(qiáng)度依然超過(guò)未替代的酚醛樹(shù)脂,故木質(zhì)素的取代率可以在50%以上。
圖2 木素-苯酚-甲醛樹(shù)脂膠合性能
LPF樹(shù)脂膠合板膠合性能并不隨著木質(zhì)素的替代率增加而提高,這是因?yàn)椋?)以木質(zhì)素替代酚醛樹(shù)脂,木質(zhì)素與甲醛反應(yīng)生成羥甲基木質(zhì)素,隨后羥甲基木質(zhì)素之間、羥甲基木質(zhì)素與羥甲基苯酚之間發(fā)生縮聚反應(yīng)。在甲醛不是非常充足的條件下,木質(zhì)素羥甲基化反應(yīng)和苯酚羥甲基化反應(yīng)存在競(jìng)爭(zhēng)關(guān)系,反而影響樹(shù)脂體系交聯(lián)度,進(jìn)而影響LPF樹(shù)脂的膠合性能。2)木質(zhì)素具有三維網(wǎng)狀結(jié)構(gòu),大量的活性基團(tuán)包裹在分子內(nèi)部,芳環(huán)上的取代基空間位阻較大,化學(xué)反應(yīng)活性較低,與酚醛樹(shù)脂不能發(fā)生有效反應(yīng),從而阻礙了苯酚與甲醛的正常聚合。3)樹(shù)脂在膠合的過(guò)程中,必須對(duì)被膠合的木材表面有一定的潤(rùn)濕、擴(kuò)散能力,使膠液形成薄而均勻的膠層,同時(shí)能夠在木材內(nèi)部形成足夠的膠釘,為達(dá)到良好膠合而創(chuàng)造必要的條件。膠黏劑的潤(rùn)濕性與其黏度密切相關(guān)。LPF黏度大,導(dǎo)致內(nèi)聚力增大,潤(rùn)濕性反而減弱。此外,黏度大還將影響LPF樹(shù)脂的施膠操作性能。
圖3是木質(zhì)素-酚醛樹(shù)脂固化性能測(cè)試結(jié)果。由圖3可知,未替代的酚醛樹(shù)脂僅有一個(gè)單一的固化峰,在109 ℃左右。L1-PF、L2-PF和L3-PF三者的固化曲線與PF不同,主要分為兩段固化,第一段107 ℃左右,主要是由酚醛樹(shù)脂中少量的游離水、酚、醛的揮發(fā)以及羥甲基苯酚之間的縮聚;第二段130 ℃左右,主要發(fā)生的是羥甲基苯酚與羥甲基木質(zhì)素之間的縮聚反應(yīng)。與PF相比,LPF的整個(gè)放熱峰向高溫方向移動(dòng),且木質(zhì)素加入量越高,放熱值溫度越高。
結(jié)合前面研究結(jié)果可知,雖然LPF樹(shù)脂在膠合性能和耐水性能上優(yōu)于未替代苯酚的PF樹(shù)脂,但仍存在熱壓溫度較高、黏度較大、活性期短和施膠困難等不足。
圖3 木素-苯酚-甲醛樹(shù)脂DSC測(cè)試結(jié)果
圖4、圖5和表2為木質(zhì)素-苯酚-甲醛樹(shù)脂固化產(chǎn)物的TG/DTG曲線及相應(yīng)參數(shù);可知,PF和L-PF樹(shù)脂固化產(chǎn)物的TG/DTG曲線趨勢(shì)基本一致,大致分為3個(gè)階段。
第一階段:35~300 ℃,未替代前的酚醛樹(shù)脂質(zhì)量損失率為22.86%,L1-PF、L2-PF和L3-PF質(zhì)量損失率分別為44.13%、23.11%和36.98%。木質(zhì)素改性的酚醛樹(shù)脂質(zhì)量損失率均高于未替代前的酚醛樹(shù)脂,質(zhì)量損失率最高的為30%木質(zhì)素改性的酚醛樹(shù)脂。這一階段主要是體系產(chǎn)生蒸汽和氣體及一些未參與反應(yīng)的小分子基團(tuán)的揮發(fā),體系中的木質(zhì)素在100 ℃左右開(kāi)始分解,導(dǎo)致木質(zhì)素替代改性酚醛樹(shù)脂的質(zhì)量損失率較高。
第二階段:300~650 ℃,未替代前的酚醛樹(shù)脂質(zhì)量損失率為27.48%,L1-PF、L2-PF和L3-PF質(zhì)量損失率分別為21.21%、25.43%和21.64%。木質(zhì)素替代改性的酚醛樹(shù)脂的質(zhì)量損失率均低于未替代前的酚醛樹(shù)脂。在這個(gè)熱解階段中,酚醛樹(shù)脂的骨架結(jié)構(gòu)被破壞,含氧官能團(tuán)在這一階段會(huì)受熱降解形成非晶碳,生成H2O、CH4、CO、CO2等揮發(fā)性氣體[39]。未改性前的酚醛樹(shù)脂失重較高,這是因?yàn)轶w系中的木質(zhì)素主要在第一階段分解,故木質(zhì)素改性的酚醛樹(shù)脂在第二階段的質(zhì)量損失率較小。
第三階段:650~800 ℃,未替代前的酚醛樹(shù)脂質(zhì)量損失率為1.07%,L1-PF、L2-PF和L3-PF質(zhì)量損失率分別為0.77%、1.16%和1.49%。這個(gè)階段可分解的物質(zhì)基本分解結(jié)束,TG曲線都趨于平緩,失重過(guò)程較為緩慢。這個(gè)過(guò)程含碳物質(zhì)繼續(xù)裂解、重排,向石墨化方向轉(zhuǎn)變,質(zhì)量損失率在3個(gè)階段中最小。
PF、L1-PF、L2-PF和L3-PF最終樹(shù)脂的殘重分別為48.59%、33.89%、50.30%和39.89%。L2-PF殘重最高,顯現(xiàn)出較大的熱穩(wěn)定性。僅40%木質(zhì)素替代改性的酚醛樹(shù)脂殘重高于未替代的酚醛樹(shù)脂,表明適量的木質(zhì)素引入,木質(zhì)素與苯酚甲醛縮聚反應(yīng)后形成的交聯(lián)網(wǎng)狀結(jié)構(gòu)更為致密,穩(wěn)定性更高。同時(shí)也表明,木質(zhì)素加入到酚醛樹(shù)脂體系,體系中的反應(yīng)存在競(jìng)爭(zhēng)性,木質(zhì)素過(guò)多或過(guò)少都會(huì)影響木質(zhì)素在體系中的縮聚和交聯(lián)。
圖4 木質(zhì)素-苯酚-甲醛樹(shù)脂熱重曲線
圖5 木質(zhì)素-苯酚-甲醛樹(shù)脂微商熱重曲線
表2 木質(zhì)素-苯酚-甲醛樹(shù)脂TG測(cè)試結(jié)果
為解析LPF樹(shù)脂合成機(jī)理,對(duì)木質(zhì)素、酚醛樹(shù)脂及木質(zhì)素-苯酚-甲醛樹(shù)脂的結(jié)構(gòu)分析尤為必要。酚醛樹(shù)脂的13C-NMR測(cè)試結(jié)果如圖6所示。
圖6 酚醛樹(shù)脂的核磁共振碳譜圖
由圖6可知,酚醛樹(shù)脂中未反應(yīng)的甲醛存在形式有多種,其中主要是以83×10-6的甲二醇形式存在,87×10-6~95×10-6區(qū)域內(nèi)也觀測(cè)到有微弱吸收峰,說(shuō)明還有一些是以聚合形式或半縮醛形式存在。由于H(OCH2)nOCH2O-在反應(yīng)過(guò)程中分解會(huì)釋放甲醇阻礙反應(yīng)的進(jìn)行,并且甲醛中常會(huì)添加少量CH3OH作為阻聚劑,其吸收峰出現(xiàn)在圖中50×10-6左右。苯酚的羥甲基主要有o-H2OH、p-H2OH、o-H2-p、o-(H2O)nH、p-(H2O)nH(≥2),以83×10-6處甲二醇為基準(zhǔn)峰,對(duì)所有吸收峰進(jìn)行積分。然后對(duì)所有亞甲基碳積分面積求和(5×10-5甲醇以及55×10-6甲氧醚除外),計(jì)算各類(lèi)型化學(xué)鍵積分值與總亞甲基碳積分值的比值為各類(lèi)型亞甲基碳質(zhì)量分?jǐn)?shù)[3,38-39]。34×10-6左右o-H2-p的質(zhì)量分?jǐn)?shù)為17.8%、40×10-6左右p-H2-p的質(zhì)量分?jǐn)?shù)為13.9%、60~65×10-6區(qū)間的Φ-H2OH、Φ-(H2OH)2、Φ-(H2OH)3的質(zhì)量分?jǐn)?shù)為55.8%,由此說(shuō)明酚醛樹(shù)脂存在一定程度的縮聚且含有大量的羥甲基。
圖7為木質(zhì)素的紅外光譜圖。波數(shù)23.6 cm-1吸收峰為O-H伸縮振動(dòng),2 928.8 cm-1吸收峰是木質(zhì)素側(cè)鏈上的-CH3和-CH2中C-H的伸縮振動(dòng),1 602.3 cm-1是苯環(huán)的骨架振動(dòng)峰,也是木質(zhì)素的特征譜帶;1 424.5 cm-1是CH3上的C-H不對(duì)稱(chēng)彎曲振動(dòng),表明木質(zhì)素存在甲氧基;1 125.0 cm-1是醚鍵的C-O伸縮振動(dòng),此峰強(qiáng)度較大,表明木質(zhì)素基本單元分子間以醚鍵鏈接居多,同時(shí)也表明堿木質(zhì)素中存在相當(dāng)數(shù)量的醚鍵。1 046.1和980.5 cm-1的吸收峰是芳香族C-H的變形振動(dòng)和平面外彎曲振動(dòng)。木質(zhì)素是屬于多酚類(lèi)化合物,苯丙烷是木質(zhì)素主體結(jié)構(gòu),由愈瘡木基丙烷(a)、紫丁香基丙烷(b)和對(duì)羥苯基丙烷(c)3種結(jié)構(gòu)單元構(gòu)成。木質(zhì)素苯環(huán)結(jié)構(gòu)上有未被取代的活潑氫,苯環(huán)上有酚羥基、側(cè)鏈上有醇羥基等活性官能團(tuán)。由此說(shuō)明,木質(zhì)素與酚醛樹(shù)脂結(jié)構(gòu)較為相似,其特有的對(duì)羥苯基雙鄰位、愈創(chuàng)木基單鄰位空位點(diǎn)具有極強(qiáng)的化學(xué)活性,能與苯酚、甲醛進(jìn)一步發(fā)生取代或縮合反應(yīng),具有取代部分苯酚制作酚醛樹(shù)脂的條件和潛力。
注:圖中a為愈瘡木基丙烷,b為紫丁香基丙烷,c對(duì)羥苯基丙烷,分別對(duì)應(yīng)圖中峰。
PF和LPF的紅外光譜曲線如圖8和圖9所示。LPF具有與PF相似的FT-IR 特征,如1 600 cm-1處左右尖峰是苯環(huán)C=C雙鍵的伸縮振動(dòng)吸收峰和3 430 cm-1處左右的游離羥基的特征峰等。LPF與PF圖譜也有許多不同之處,如1 616.4 cm-1處苯環(huán)骨架C=C雙鍵的伸縮振動(dòng)吸收峰減弱,而1 485.3 cm-1甲氧基C-H的彎曲振動(dòng)吸收峰增強(qiáng),說(shuō)明木質(zhì)素的引入使LPF具有不同的苯環(huán)取代結(jié)構(gòu),同時(shí)也表明木質(zhì)素參與了LPF的合成反應(yīng)。
圖8 酚醛樹(shù)脂的紅外光譜圖
圖9 木質(zhì)素-苯酚-甲醛樹(shù)脂的紅外光譜圖
以木質(zhì)素替代改性酚醛樹(shù)脂,主要是利用了木質(zhì)素中存在的類(lèi)似酚環(huán)的結(jié)構(gòu)。木質(zhì)素3種結(jié)構(gòu)單元中的紫丁香基丙烷結(jié)構(gòu)中酚羥基鄰位有2個(gè)甲氧基,導(dǎo)致其環(huán)上沒(méi)有反應(yīng)位點(diǎn),幾乎不參與LPF的合成反應(yīng)。愈瘡木基丙烷結(jié)構(gòu)中酚羥基存在未反應(yīng)的鄰位,對(duì)羥苯基丙烷結(jié)構(gòu)酚環(huán)結(jié)構(gòu)與苯酚一致,主要是這2個(gè)結(jié)構(gòu)參與LPF的合成反應(yīng)。以木質(zhì)素愈瘡木基丙烷結(jié)構(gòu)為例,闡述愈瘡木基丙烷結(jié)構(gòu)參與LPF合成反應(yīng)的機(jī)理,如式(1)~式(4)所示。
式(1)顯示的是以苯酚為起始結(jié)構(gòu)合成LPF的過(guò)程。苯酚與甲醛發(fā)生羥甲基化反應(yīng)形成羥甲基苯酚,再與愈瘡木基丙烷共縮聚。
式(2)顯示的是以愈瘡木基丙烷為起點(diǎn)參與合成LPF的過(guò)程。首先,愈瘡木基丙烷與甲醛發(fā)生羥甲基化反應(yīng),甲醛來(lái)源于酚醛樹(shù)脂中游離甲醛或酚醛樹(shù)脂脫掉的甲醛。該反應(yīng)體系處于堿性環(huán)境中,羥甲基化過(guò)程機(jī)理類(lèi)似于苯酚羥甲基化。羥甲基化的愈瘡木基丙烷可以與未參與反應(yīng)的愈瘡木基丙烷酚羥基鄰位發(fā)生縮聚反應(yīng)。羥甲基化的愈瘡木基丙烷也可以與苯酚酚羥基鄰位或?qū)ξ话l(fā)生共縮聚反應(yīng)。木質(zhì)素屬于大分子聚合物,分子的空間位阻較大,反應(yīng)活性較低。在這個(gè)反應(yīng)過(guò)程中,愈瘡木基丙烷與甲醛的羥甲基化反應(yīng)雖不能提高木質(zhì)素活性位點(diǎn)數(shù),但是反應(yīng)產(chǎn)生的羥甲基可繼續(xù)參與苯酚、甲醛、羥甲基酚反應(yīng),較大程度地提高了木質(zhì)素自身反應(yīng)活性。式(1)和式(2)的核心在于羥甲基酚結(jié)構(gòu)經(jīng)E1cb反應(yīng)路徑形成亞甲基共軛結(jié)構(gòu),此活性結(jié)構(gòu)作為反應(yīng)中間體再參與進(jìn)一步的縮合反應(yīng)。
式(3)是基于愈瘡木基丙烷結(jié)構(gòu)中可能存在類(lèi)似丙酮的結(jié)構(gòu),并以此為起點(diǎn)參與合成LPF的過(guò)程。在堿催化下,羥甲基易于接入羰基位置,形成羥甲基愈瘡木基丙烷。這種類(lèi)型的羥甲基愈瘡木基丙烷可與羥甲基苯酚的中間體亞甲基共軛結(jié)構(gòu)發(fā)生縮聚反應(yīng)形成醚鍵結(jié)構(gòu),其反應(yīng)機(jī)理依然是E1cb反應(yīng)機(jī)理。
式(4)是基于愈瘡木基丙烷結(jié)構(gòu)中可能存在碳碳雙鍵結(jié)構(gòu),并以此為起點(diǎn)參與合成LPF的過(guò)程。這種雙鍵與甲醛容易發(fā)生馬氏加成反應(yīng),羥甲基易接入碳位,形成羥甲基愈瘡木基丙烷。同理,羥甲基苯酚E1cb反應(yīng)路徑形成亞甲基共軛的中間體與羥甲基愈瘡木基丙烷發(fā)生縮聚反應(yīng)形成醚鍵結(jié)構(gòu)。
由此可見(jiàn),堿性條件下,羥甲基苯酚結(jié)構(gòu)經(jīng)E1cb反應(yīng)機(jī)理形成亞甲基共軛結(jié)構(gòu)是木質(zhì)素能夠參與合成LPF的關(guān)鍵。
論文分別以30%、40%和50%堿木質(zhì)素部分取代苯酚制備木質(zhì)素-苯酚-甲醛(LPF)樹(shù)脂膠黏劑,主要研究了其替代比對(duì)LPF樹(shù)脂膠合性能、固化性能和熱穩(wěn)定的影響,同時(shí)探討了LPF合成機(jī)理。得出如下結(jié)論:
1)LPF樹(shù)脂具有透明度低、固體含量大、游離甲醛較低、黏度大導(dǎo)致活性期短和施膠困難的特點(diǎn)。
2)隨木質(zhì)素添加量的增加,LPF樹(shù)脂的膠合強(qiáng)度呈先增加后減小的趨勢(shì),但均高于未替代改性的酚醛樹(shù)脂樹(shù)脂。木質(zhì)素替代率30%和40%時(shí)的膠合強(qiáng)度較高,替代率50%時(shí)膠合強(qiáng)度開(kāi)始減小,替代率最大可達(dá)50%。
3)未替代改性的PF樹(shù)脂僅有1個(gè)固化峰,LPF樹(shù)脂有2個(gè)固化放熱峰,后者的固化峰值溫度均高于前者,且LPF樹(shù)脂固化溫度隨木質(zhì)素添加量增加而升高。
4)LPF合成過(guò)程中存在木質(zhì)素羥甲基化和苯酚羥甲基化2個(gè)競(jìng)爭(zhēng)反應(yīng),木質(zhì)素加量過(guò)高或過(guò)低都會(huì)影響LPF樹(shù)脂體系的交聯(lián)網(wǎng)狀結(jié)構(gòu),最終影響LPF的熱穩(wěn)定性,木質(zhì)素替代率為40%時(shí)的熱穩(wěn)定性相對(duì)較高。
5)堿性條件下,無(wú)論是以苯酚、木質(zhì)素酚環(huán)還是木質(zhì)素側(cè)鏈為反應(yīng)起點(diǎn)合成LPF樹(shù)脂,羥甲基苯酚經(jīng)E1cb反應(yīng)形成亞甲基共軛結(jié)構(gòu)是3種不同反應(yīng)歷程的共同點(diǎn),是合成LPF的關(guān)鍵。
[1] Deng S D, Pizzi A, Du, G B, et al. Synthesis, structure characterization and application of melamine–glyoxal adhesive resins[J]. European Journal of Wood and Wood Products, 2017, 76(1): 283-296.
[2] Prestifilippo M, Pizzi A, Norback H, et al. Low addition of melamine salts for improved UF adhesives water resistance[J]. Holz Als Roh- Und Werkstoff, 1996, 54(6): 393-398.
[3] Wu Z G, Lei H, Du G B,et al. Urea-formaldehyde resin prepared with concentrated formaldehyde [J]. Journal of Adhesion Science and Technology,2016, 30(24): 2655-2666.
[4] Lei H, Frazier C E. Curing behavior of melamine-urea- formaldehyde (MUF) resin adhesive[J]. International Journal of Adhesion and Adhesives, 2015, 62: 40-44.
[5] 徐強(qiáng),孫倩倩,趙新坤,等. 工業(yè)堿木質(zhì)素羥甲基化改性研究[J]. 林業(yè)工程學(xué)報(bào),2017,2(3):90-96.
Xu Qiang, Sun Qianqian, Zhao Xinkun, et al. Study on hydroxymethylation of industrial lignin[J]. Journal of Forestry Engineering, 2017, 2(3): 90-96. (in Chinese with English abstract)
[6] Wang J, Zhang Y F. Chemical structure and curing characteristics of phenol formaldehyde resins catalyzed with calcium oxide[J]. Polymer-Plastics Technology and Engineering, 2012, 51(12): 1213-1217.
[7] Pizzi A, Orovan E, Cameron F A. The development of weather- and boil-proof phenol-resorcinol-furfural cold-setting adhesives[J]. Holz Als Roh- Und Werkstoff, 1984, 42(12): 467-472.
[8] Myers G E, Christiansen A W, Geimer R L, et al. Phenol-formaldehyde resin curing and bonding in steam-injection pressing. I. Resin synthesis, characterization, and cure behavior[J]. Journal of Applied Polymer Science, 1991, 43(2): 237-250.
[9] Wang J, Laborie M P G, Wolcott M P. Correlation of mechanical and chemical cure development for phenol-formaldehyde resin bonded wood joints[J]. Thermochimica Acta, 2011, 513(1/2): 20-25.
[10] Shams M I, Yano H, Endou K. Compressive deformation of wood impregnated with low molecular weight phenol formaldehyde (PF) resin III: Effects of sodium chlorite treatment[J]. Journal of Wood Science, 2005, 51(3): 234-238.
[11] Grinins J, Biziks V, Irbe I, et al. Water Related Properties of Birch Wood Modified with Phenol-Formaldehyde (PF) Resins[J]. Key Engineering Materials, 2019, 800: 246-250.
[12] Qu P, Huang H, Wu G, et al. The effect of hydrolyzed soy protein isolate on the structure and biodegradability of urea–formaldehyde adhesives[J]. Journal of Adhesion Science and Technology, 2015, 29(6): 502-517.
[13] Qu P, Huang H, Wu G, et al. Hydrolyzed soy protein isolates modified urea-formaldehyde resins as adhesives and its biodegradability[J]. Journal of Adhesion Science and Technology, 2015, 29(21): 2381-2398.
[14] Gao Q, Shi S Q, Zhang S F, et al. Soybean meal-based adhesive enhanced by MUF resin[J]. Journal of Applied Polymer Science, 2012, 125(5): 3676-3681.
[15] Wu Z G, Xi X D, Yu L P, et al. An eco-friendly urea-formaldehyde resin: Preparation, structure and properties[J]. Wood Research, 2018, 63(1): 45-56.
[16] Pizzi A. The chemistry and development of tannin/urea- formaldehyde condensates for exterior wood adhesives[J]. Journal of Applied Polymer Science, 1979, 23(9): 2777-2792.
[17] Moubarik A, Pizzi A, Allal A, et al. Cornstarch-mimosa tannin-urea formaldehyde resins as adhesives in the particleboard production[J]. Starch- St?rke, 2010, 62(3/4): 131-138.
[18] Luo J, Zhang J, Gao Q, et al. Toughening and enhancing melamine-urea-formaldehyde resin properties via in situ polymerization of dialdehyde starch and microphase separation[J]. Polymers, 2019, 11(7): 1167.
[19] Baishya P, Maji T K. Studies on Effects of Different Cross-Linkers on the Properties of Starch-Based Wood Composites[J]. ACS Sustainable Chemistry & Engineering, 2014, 2(7): 1760-1768.
[20] Hoong Y B, Paridah M T, Loh Y F, et al. A new source of natural adhesive: Acacia mangium bark extracts co-polymerized with phenol-formaldehyde (PF) for bonding Mempisang (spp.) veneers[J]. International Journal of Adhesion and Adhesives, 2011, 31(3): 164-167.
[21] Gornik D, Hemingway R W, Ti?ler V. Tannin-based cold-setting adhesives for face lamination of wood[J]. Holz Als Roh- Und Werkstoff, 2000, 58(1/2): 23-30.
[22] Pizzi A, Pasch H, Celzard A, et al. Oligomer distribution at the gel point of tannin-resorcinol-formaldehyde cold-set wood adhesives[J]. Journal of Adhesion Science and Technology, 2012, 26(1/2/3): 79-88.
[23] Sauget A, Zhou X J, Pizzi A. Tannin-resorcinol- formaldehyde resin and flax fiber biocomposites[J]. Journal of Renewable Materials, 2014, 2(3): 173-181.
[24] Lee W J, Lan W C. Properties of resorcinol-tannin- formaldehyde copolymer resins prepared from the bark extracts of Taiwan acacia and China fir[J]. Bioresource Technology, 2006, 97: 257-264.
[25] 楊增玲,杜書(shū)榮,梅佳琪,等. FTIR顯微成像表征堿處理后玉米秸稈木質(zhì)素含量及分布[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(8):280-286.
Yang Zengling, Du Shurong, Mei Jiaqi, et al. Lignin content and distribution in alkali pretreated corn straw based on Fourier transform infrared microspectroscopic imaging[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(8): 280-286. (in Chinese with English abstract)
[26] 蘇玲,方桂珍. 甲醛交聯(lián)工業(yè)堿木質(zhì)素-聚乙烯醇薄膜的力學(xué)性能[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(23):281-288.
Su Ling, Fang Guizhen. Tensile properties of alkaline lignin-poly vinyl alcohol film with formaldehyde crosslinker[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(23): 281-288. (in Chinese with English abstract)
[27] 劉慰,司傳領(lǐng),杜海順,等. 納米纖維素基水凝膠的制備及其在生物醫(yī)學(xué)領(lǐng)域的應(yīng)用進(jìn)展[J]. 林業(yè)工程學(xué)報(bào),2019,4(5):11-19.
Liu Wei, Si Chuanling, Du Haishun, et al. Advance in preparation of nanocellulose-based hydrogels and their biomedical applications[J]. Journal of Forestry Engineering, 2019, 4(5): 11-19. (in Chinese with English abstract)
[28] Li R J, Gutierrez J, Chung Y L, et al. A lignin-epoxy resin derived from biomass as an alternative to formaldehyde-based wood adhesives[J]. Green Chemistry, 2018, 20(7): 1459-1466.
[29] Sun G, Sun H, Liu Y, et al. Comparative study on the curing kinetics and mechanism of a lignin-based-epoxy/anhydride resin system[J]. Polymer, 2007, 48(1): 330-337.
[30] Ferdosian F, Yuan Z, Anderson M, et al. Synthesis of lignin-based epoxy resins: optimization of reaction parameters using response surface methodology[J]. RSC Advance 2014, 4(60): 31745-31753.
[31] Nacas A M, Ito N M, Sousa R R D, et al. Effects of NCO:OH ratio on the mechanical properties and chemical structure of Kraft lignin–based polyurethane adhesive[J]. The Journal of Adhesion, 2016, 93(1/2), 18-29.
[32] Li J, Wang B, Chen K, et al. The use of lignin as cross-linker for polyurethane foam for potential application in adsorbing materials[J]. BioResources, 2017, 12(4): 8653-8671.
[33] Hasan A, Fatehi P. Stability of kaolin dispersion in the presence of lignin-acrylamide polymer[J]. Applied Clay Science, 2018, 158: 72-82.
[34] Rong H, Gao B, Zhao Y, et al. Advanced lignin-acrylamide water treatment agent by pulp and paper industrial sludge: Synthesis, properties and application[J]. Journal of Environmental Sciences, 2013, 25(12): 2367-2377.
[35] 邸明偉,王森,姚子巍. 木質(zhì)素基非甲醛木材膠黏劑的研究進(jìn)展[J]. 林業(yè)工程學(xué)報(bào),2017,2(1):8-14.
Di Mingwei, Wang Sen, Yao Ziwei. Research progress in the lignin-based formaldehyde-free wood adhesives[J]. Journal of Forestry Engineering, 2017, 2(1): 8-14. (in Chinese with English abstract)
[36] 黃曹興,何娟,梁辰,等. 木質(zhì)素的高附加值應(yīng)用研究進(jìn)展[J]. 林業(yè)工程學(xué)報(bào),2019,4(1):17-26.
Huang Caoxing, He Juan, Liang Chen, et al. Progress in applications of high value-added lignin materials[J]. Journal of Forestry Engineering, 2019, 4(1): 17-26. (in Chinese with English abstract)
[37] Liang J K, Wu Z G, Xi X D, et al. Investigation of the reaction between a soy-based protein model compound and formaldehyde[J]. Wood Science and Technology, 2019, 53(5): 1061-1077.
[38] Cao M, Li T H, Liang J K, et al. A13C-NMR study on the 1,3-dimethylolurea-phenol co-condensation reaction: A model for amino-phenolic co-condensed resin synthesis[J]. Polymers, 2016, 8(11): 391.
[39] 楊昇,王鈞,李改云,等. 尿素改性木質(zhì)素基酚醛樹(shù)脂的性能[J]. 林業(yè)工程學(xué)報(bào),2018,3(5):28-33.
Yang Sheng, Wang Jun, Li Gaiyun, et al. Performances of lignin-phenol-formaldehyde resin modified by urea[J]. Journal of Forestry Engineering, 2018, 3(5): 28-33. (in Chinese with English abstract)
Properties and synthesis mechanism of lignin-phenol-formaldehyde resin
Wu Zhigang1,2, Chen Sicheng2, Liang Jiankun3, Li Lifen2, Lei Hong1※, Dong Jiying1
(1.,650224; 2.550025; 3.,556011)
Phenol Formaldehyde (PF) resin is the earliest industrial synthetic polymer material, which has a history of more than 100 years. PF resin adhesive are widely used in the production of outdoor wood-based panels due to their advantages such as high bonding strength, weathering resistance, good water resistance, aging resistance, and so on, and it is the second largest wood adhesive after urea-formaldehyde resin. PF has some defects, such as high production cost, dark color, hard and brittle after curing, easy cracking, low initial viscosity, high toxicity, and so on, which lead to low production efficiency and high energy consumption of wood-based panels, thus limiting its wider application. Therefore, the study of alternatives for phenol has become the focus. Lignin is similar to phenol in chemical structures, and it has the condition and potential to replace part of phenol to prepare phenol formaldehyde resin. It can reduce the cost of the preparation of PF, and increase the biomass content of PF to improve its the biodegradability, and also realize the effective utilization of lignin resources. In order to reduce the cost of phenol formaldehyde resin, 30%, 40% and 50% alkali lignin was substituted for phenol to prepare Lignin-Phenol-Formaldehyde (LPF). Effects of substitution ratios on bonding performance, curing properties and thermal stability of LPF were studied, and the synthesis mechanism of LPF was also discussed in this paper. The results indicated that: 1) Compared with phenol formaldehyde resin, LPF had low transparency, high solid content, low free formaldehyde, high viscosity and bad operation. 2) With the increase of lignin addition, the bonding strength of LPF increased and then decreased, but all generally higher than that of phenol formaldehyde resin. The ratios of lignin substitution for phenol could be up to 50%. 3) LPF resin required a higher curing temperature, and the more the lignin addition, the higher the hot-pressing temperature. 4) The lignin addition could affect the thermal stability of LPF resin, and it’s thermal stability was higher than that of phenol formaldehyde resin when lignin addition was only 40%. 5) At alkaline conditions, whether phenol, lignin phenol ring or lignin side chains were used as the starting reaction points for the synthesis of LPF, forming methylene conjugate structures by reaction mechanism based on hydroxymethyl phenol was the key. In conclusion, the research has a great significance to provide further scientific guidance for the improvement of LPF synthesis process and its practical application.
lignin; resin; mechanism; alkali lignin; lignin substitution ratios for phenol; PF resin; synthesismechanism
吳志剛,陳思成,梁堅(jiān)坤,等. 木質(zhì)素-苯酚-甲醛樹(shù)脂膠黏劑的性能與合成機(jī)理[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(21):308-315. doi:10.11975/j.issn.1002-6819.2020.21.037 http://www.tcsae.org
Wu Zhigang, Chen Sicheng, Liang Jiankun, et al. Properties and synthesismechanism of lignin-phenol-formaldehyde resin[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(21): 308-315. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.21.037 http://www.tcsae.org
2020-06-06
2020-10-15
國(guó)家自然科學(xué)基金項(xiàng)目(31800481和31870546);貴州省科技計(jì)劃項(xiàng)目(黔科合平臺(tái)人才[2018]5781號(hào));貴州省科技攻關(guān)項(xiàng)目([2020]1Y125和黔科合支撐[2019]2308);貴州省教育廳項(xiàng)目(黔教合KY字[2017]114號(hào))
吳志剛,博士,副教授,從事森林資源綜合利用的研究。Email:wzhigang9@163.com
雷洪,教授,博士生導(dǎo)師,從事木材膠黏劑與木質(zhì)復(fù)合材料的研究。Email:lfxgirl@163.com
10.11975/j.issn.1002-6819.2020.21.037
TQ432.7; TS653
A
1002-6819(2020)-21-0308-08