999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

Glass formation and physical properties of Sb2S3–CuI chalcogenide system*

2021-01-21 02:08:06QilinYe葉旗林DanChen陳旦andChangguiLin林常規
Chinese Physics B 2021年1期

Qilin Ye(葉旗林), Dan Chen(陳旦), and Changgui Lin(林常規),?

1Laboratory of IR Materials and Devices,The Research Institute of Advanced Technologies,Ningbo University,Ningbo 315211,China

2Key Laboratory of Photoelectric Detection Materials and Devices of Zhejiang Province,Ningbo University,Ningbo 315211,China

Keywords: chalcogenide glass,infrared(IR)transparency,Sb2S3,SbSI,Raman spectra

1. Introduction

Chalcogenide glass (ChG) is well known for its feature properties, including wide infrared (IR) transmission window, low phonon energy, fast ionic conduction, and large linear/nonlinear optical refractive index.[1,2]To facilitate the glass-forming ability of ChG, the incorporation of halogens is an efficient and feasible method and produces a new kind of glass,i.e.,chalcohalide glass.Compared to ChG,chalcohalide glass not only retains the excellent IR-transmitting property of ChG, but also possesses better thermal stability, higher rareearth ion solubility, and stronger glass-forming ability.[3–5]Various chalcohalide glasses have been investigated extensively, including As–Sb–S–I,[6]GeS2–Sb2S3–CsCl,[7]Ge–Te–Ga–CuI glass,[8]etc. The glass network of ternary or quasi-ternary systems are very complicated, which was difficult to clarify the effect of halides on the structural and physical properties of ChGs. It requires a simple glass system for clarifying the role of halogens in ChGs.

Amorphous Sb2S3composed by the basic structural units of [SbS3] pyramids, has received a remarkable technological and theoretical interest because of its intriguing photophysical properties.[9,10]Amorphous Sb2S3is normally obtained through film deposition.[11,12]Sb2S3acts as intermediate phase in glassy network,and cannot form as glass through traditional melt-quenching.[13,14]It is essential to introduce trivalent or tetra-valent atoms, such as Ge and Ga, which act as glassy network former and increase the dimensionality of the structure and the glass forming ability of the Sb2S3.[8,15]Alloying with halides is another strategy to obtain Sb2S3-based chalcohalide glass.[6,14]Halogen (Cl, Br, I) in glass systems is monovalent, which forms non-bridging structural motif with the free electrons.[16,17]High atomic-mass halogens bonding with Sb increases the complexity and randomness of the network connectivity, thus inhibiting the crystal formation of Sb2S3. Consequently,stable bulk glasses of Sb–S–I system can be fabricated, whose microstructure is built by a weak interaction among [SbS3], [SbS3-xIx], and [SbI3]pyramids.[16,18]Nevertheless, iodine sublimation occurs easily during glass preparation, especially in vacuum extraction process,which would destroy the vacuum pump. Thus,metal iodide is a good choice for exploring the role of halogens in ChGs.

In this work,we report novel ChGs based on Sb2S3–CuI system. CuI was introduced to facilitate the glass formation of Sb2S3. The present work aims to study the effect of CuI on the glass-forming and physical properties of Sb2S3-based glasses, and to explore the role of halogens in chalcogenide glassy structure. In addition,fast Cu-ion conduction was also investigated in this glassy system,which is of guiding significance for future designing solid glassy electrolytes.[19–22]

2. Experimental

The samples of (100-x)Sb2S3–xCuI (x = 20, 30, 40,45, 50, and 55 mol%) were prepared by traditional meltquenching method. High-purity Sb,S,and CuI were weighed and placed into silica tubes that sealed under ~10-3Pa,the inner diameter of the quartz tube is 9 mm,and the wall thickness is 2 mm.After melting at 920?C for 6 h,rod samples were obtained by quenching the melts into cold water 3 seconds. The as-quenched samples were annealed at 150?C for 2 hours.The rods were cut and polished to obtain Φ9 mm×2 mm disks.

All samples were analyzed by x-ray diffraction (XRD,Bruker D2 Phaser, DE) to identify the amorphous nature of samples or the presence of crystalline phases. Glass characteristic temperatures,including glass transition temperature(Tg)and crystallization temperature(Tx), were measured by using DSC (TA Q2000, USA) by heating 10-mg powdered sample at a rate of 10?C/min. Density was measured according to Archimedes principle which consists in comparing the difference of sample weights in air and alcohol. Vickers hardness(Hv) was determined by Hengyi MH-3 micro-indenter with a static load of 50 g. IR transmission spectra were obtained through using a Nicolet 381 FTIR spectrometer. Visible and near-IR spectra were recorded using a PerkinElmer Lambda 950 spectrophotometer. A Renishaw InVia Raman spectrometer equipped with an excitation wavelength at 785 nm was employed to obtain Raman spectra. Gold films were sputtered on the surfaces of the studied samples as electrodes for electrical measurements. Electrical conductivity was measured using complex impedance technique with electrochemical platform (Shanghai Chenhua CHI800D series). Ac impedance was measured from 30?C to 200?C.

3. Results and discussion

According to previous investigations of Sb2S3-based glass systems,[12,14,23]pure Sb2S3is difficult to form glass.CuI here acts as network modifier to improve the glassforming ability. Figure 1 shows the XRD patterns of (100-x)Sb2S3–xCuI samples. Glassy samples were obtained when CuI content (x) are 30 mol% and 40 mol%. Sharp and different diffraction were observed in 80Sb2S3·20CuI samples,the main diffraction peaks belonging to Sb2S3(JCPDS card No. 73-0393) and the several indistinct diffraction peaks (as marked by dotted frame) belonging to SbSI (JCPDS card No. 74-2246). It indicates that Sb2S3crystallites would be formed spontaneously at a low CuI content (x <20 mol%),together with SbSI. The increasing CuI improves their glass forming ability when 30 mol%<x <40 mol%. With the further addition of CuI, iodine-related crystal phase of SbSI was phase-separated out. Thus, the glass formation region of (100-x)Sb2S3–xCuI is ranging from x = 30 mol% to 40 mol%.

Figure 2 presents the transmission spectra of 70Sb2S3·30CuI and 60Sb2S3·40CuI glasses. Although Sb2S3–CuI glasses are black and visible opaque as displayed by the inset photos in Fig.2,they possess a wide transmission window ranging from near-IR(0.8 μm)to mid-IR(~14 μm),which normally can not be achieved in sulfide glasses. IR absorption bands at about 2.9,4.1,and 6.1 μm are assigned to the OH-,S–H,and H2O impurities,respectively.[24]Glass distillation purification is needed to eliminate these hydroxide contaminations. The maximum transmittance of 70Sb2S3·30CuI and 60Sb2S3·40CuI is about 70%and 40%,respectively. The transmission drop might be due to the occurrence of amorphous phase separation in 60Sb2S3·40CuI glass.[5]

Fig. 1. XRD patterns of (100-x)Sb2S3–xCuI (x =20, 30, 40, 50, and 55 mol%)samples. The standard JCPDS cards of No. 79-0393 Sb2S3 and No.74-2246 SbSI are also included for comparison.

Fig. 2. Transmission spectra of (100-x)Sb2S3–xCuI glasses. The inset shows the sample photos.

The scanning electron microscope (SEM) was employed to observe the microstructure of the Sb2S3–CuI samples. As shown in Fig. 3(a), the freshly cracked surfaces of 60Sb2S3·40CuI as-prepared sample present a clean and smooth structure. After etching in 10% NaOH solution for 3 s, irregular particles were formed on its surface(Fig.3(b)).Due to the different solubility of the Sb2S3and SbSI phases in the NaOH solution,protrusions with different heights were formed during the etching process. It suggests amorphous phase separation occurs in the 60Sb2S3·40CuI sample,which might be responsible for the nearly 30%drop of transmittance as shown in Fig. 2. A large number of unevenly distributed crystal particles appeared in the SEM image of 45Sb2S3·55CuI(Fig.3(c)), with sizes between 50 nm–150 nm. According to the XRD pattern(Fig.1),these particles are belonging to SbSI crystal phase. Interestingly, the crystal grains show a phenomenon of regional aggregation, further indicating the possible amorphous phase separation. Such large phase-separated structure results in that the 45Sb2S3·55CuI sample is opaque.

Fig. 3. The SEM image of 60Sb2S3·40CuI (a), etched samples by 10%NaOH solution(b),and 45Sb2S3·55CuI(c).

The detailed Vickers hardness(Hv),density(ρ),and glass characteristic temperatures of (100-x)Sb2S3–xCuI samples are enumerated in Table 1. The density (ρ) values increase as CuI content increases. It is easy to understand the evolution of density because CuI has a relatively large atomic mass. The typical DSC analysis curves of (100-x)Sb2S3–xCuI samples are displayed in Fig. 4. Notably, since several samples were crystallized as shown in Fig. 1, the Tgof these samples were actually the measurement results of the residual glass matrix.[2]For the Sb2S3–CuI system, the Tgvalues are ranging from 185?C to 209?C, showing a negative correlation with CuI concentration as shown in the inset of Fig. 4.The iodine acts as a non-bridging modifier in Sb2S3–CuI system, which would impair the glass network connectivity of glass networks in ChGs.[5,8,22]For the same reason, the Hvalso decreases with the increasing CuI as listed in Table 1.The crystallization temperature(Tx)also shows a negative correlation with CuI content, except for the 80Sb2S3·20CuI sample.It could be attributed the 80Sb2S3·20CuI sample was nearly ceramic-like.[25]A large number of Sb2S3crystals were precipitated in the 80Sb2S3·20CuI sample,which makes the sample network structure loose. Thus, it leads to the decrease of the Hvof 80Sb2S3·20CuI sample.[7,26]

Fig. 4. DSC curves of (100-x)Sb2S3–xCuI (x=20, 30, 40, 45, 50, and 55 mol%) samples. The inset presents the function of Tg as a function of CuI content.

Table 1. Physical properties of(100-x)Sb2S3–xCuI(x=20,30,40,45,50,and 55 mol%)samples.

Figures 5(a) and 5(b) display the typical Nyquist plot of bulk 70Sb2S3·30CuI and 45Sb2S3·55CuI sample at 30?C,respectively. The intersection point (Z′0) with the real axis is considered to be the specific value of the bulk resistance.[22,27]The resistance values of the 70Sb2S3·30CuI sample is 4.79×107Ω,and the resistance values of 45Sb2S3·55CuI samples is decreasing two orders of magnitude (8.45×105Ω).Conductivity of (100-x)Sb2S3–xCuI samples can be calculated according to σ = L/(SZ′0) (L: the thickness of asprepared samples; S: electrolyte–electrode surface area; Z′0:specific value of the bulk resistance).[21,22]Figure 5(c)shows the temperature-dependence (between 30?C to 200?C) of conductivities for the(100-x)Sb2S3–xCuI samples.The conductivity of glass ceramics is dependent on the composition and structure of glass ceramics. For example,45Sb2S3·55CuI glass ceramics contain SbSI crystal which with an high electronic conductivity at room temperature.[28]The SEM of the 45Sb2S3·55CuI sample is shown in Fig. 3(c), and the SbSI crystal size is in a range of 50 nm–150 nm. However, SbSI crystal does not contribute the ionic conductivity of the studied samples. The glass matrix still acts as the ion transport channel in the Sb2S3–CuI system.[29,30]Therefore(100-x)Sb2S3–xCuI sample ion conductance behavior shows a typical glass conduction behavior. According to the corresponding Arrhenius plots the room-temperature ionic conductivities (30?C)and activation energy of (100-x)Sb2S3–xCuI samples were listed in Table 2. The highest ionic conductivity (σ) of glasses and glass–ceramics calculated from the total resistance is σ =3.68×10-4mS/cm at 30?C, which shows obvious Cu+ion conducting behavior.[31–33]In addition,Cu has two chemical valences. CuI is stable in the Cu+oxidation state, while in other halide salts of copper, the Cu2+oxidation state is favored.[34]Therefore, it is reasonable that Cu+plays a dominant role in the Sb2S3–CuI system. The linear dependence of logσ versus (1/T) follows the Arrhenius law and indicates phase stability over the given temperature range.[20,27]The ionic conductivity of 45Sb2S3·55CuI glassceramic is more than two order of magnitude higher than that of 70Sb2S3·30CuI glass. Activation energy(Ea)of Cu+conduction was determined by using the Arrhenius equation and listed in Table 2. Eaincreased with the increase of Cu+ions concentration. Yet,the Eaof 45Sb2S3·55CuI sample is lower than that of 50Sb2S3·50CuI.It can be attributed the SbSI crystal were precipitated in the 45Sb2S3·55CuI sample,which hindered the transportation of Cu+ions.

Fig.5. (a)and(b)Representative Nyquist plots at 30 ?C of 70Sb2S3·30CuI sample and 45Sb2S3·55CuI sample. (c) (100-x)Sb2S3–xCuI (x=30, 40,45,50,and 55)ionic conductivity from 30 ?C to 200 ?C.

Table 2. Activation energy of ion conduction and ionic conductivities at room temperature(30 ?C)of(100-x)Sb2S3–xCuI(x=30, 40, 45,50,and 55)samples.

To further get insight into the evolution of structural modifications, the Raman spectra of (100-x)Sb2S3–xCuI samples were obtained at room temperature as shown in Fig. 6.The most intense peaks 280 and 310 cm-1–319 cm-1could be assigned to the asymmetric stretching vibrations of[SbS3]pyramids and Sb-I stretching vibrations of [SbSI] pyramid units,[16,22,35,36]the ascription of other Raman bands have been marked in Fig.6.[35,37–39]When the CuI incorporated of 20 mol%,the several sharp Raman bands and small bump situated at 310 cm-1were observable in the 80Sb2S3·20CuI sample. Combine with the XRD result(Fig.1), excessive[SbS3]units caused a large number of Sb2S3crystals uncontrolled precipitated,and the[SbSI]units were disconnected from the glass network, and the continuous aggregation led to the nucleation and crystallization of SbSI crystals.

Fig.6. Raman spectra of(100-x)Sb2S3–xCuI(x=20,30,40,45,50,and 55 mol%)at room temperature.

According to the previous studies,the sulfur in structural units is readily replaced by iodine,[21,22]thus the[SbSI]units were easily formed. It results in the sustained increasing of Raman peaks at 110 cm-1and 138 cm-1as CuI concentration increases. On the other hand, a large amount of [SbSI] units were formed to impair the connectivity of glass network structure, which is responsible for the decreasing of Tg(Fig. 4).Meanwhile, the [SbSI] units would act as the structural similarity for the nucleation and growth of SbSI crystals.[6,25]Thus, the SbSI crystallites were precipitated when CuI concentration reached 55 mol%. The network structure of the Sb2S3–CuI system should be composed mainly by[SbS3]and[SbSI] pyramids, and Cu+ions dispersed randomly among those structural units.[20,22]Therefore, the conductivity increases linearly with the increasing CuI content. In addition,the Raman peaks located at 165 cm-1was vanished, which might belong to [SbI3] units or Sb–I bonds.[15,40]In a word,the introduction of iodine with a suitable content (30 mol%–40 mol%) could transform the [SbS3] pyramids into [SbSI]units,improving the glass-forming ability of Sb2S3–CuI.

4. Conclusions

We alloyed simple binary ChG system of Sb2S3–CuI to investigate the effect of halogen on their glass formation and physical properties. XRD results indicate the glass formation region of Sb2S3–CuI glass ranges from x=30 mol% to 40 mol%. All glassy samples have a wide IR optical transmitting window from 0.8 μm to 14 μm, which is the rare wide transparency range obtained in sulfide glass. Moreover,45Sb2S3·55CuI sample exhibits a high ionic conductivity of 3.68×10-4mS/cm at room temperature.The structural results suggest that the introduction of appropriate iodine(30 mol%–40 mol%) could facilitate the formation of [SbSI] units, improving the glass-forming ability of Sb2S3–CuI. These findings would offer important guidance to further development of novel ChG for IR transmitting materials and high-performance solid electrolytes.

主站蜘蛛池模板: 99福利视频导航| 97一区二区在线播放| 色噜噜中文网| 成人字幕网视频在线观看| 98精品全国免费观看视频| 免费国产小视频在线观看| 国产视频自拍一区| 全部免费毛片免费播放| 综合人妻久久一区二区精品 | 成人在线不卡视频| 久久久久亚洲av成人网人人软件| 亚洲成人精品久久| 久久窝窝国产精品午夜看片| 伦伦影院精品一区| 91精品啪在线观看国产60岁 | 欧美国产日韩在线观看| 亚洲精品无码成人片在线观看 | 日韩精品专区免费无码aⅴ| 国产日韩精品欧美一区灰| 欧美精品H在线播放| 国产综合精品日本亚洲777| 精品一區二區久久久久久久網站| 精品自拍视频在线观看| 免费国产好深啊好涨好硬视频| 制服丝袜 91视频| 亚洲综合18p| 亚洲美女高潮久久久久久久| 日本欧美一二三区色视频| 欧美日韩精品一区二区视频| 欧美日韩在线亚洲国产人| 无码精品国产dvd在线观看9久| 99无码中文字幕视频| 日本一区二区三区精品国产| 在线另类稀缺国产呦| 制服丝袜亚洲| 国产91色| 国产不卡网| 亚洲精品中文字幕无乱码| 色老头综合网| 国产二级毛片| 香蕉精品在线| 国产精品青青| 日本a级免费| 2020久久国产综合精品swag| 91国语视频| 亚洲人成色77777在线观看| 中文字幕在线看视频一区二区三区| 在线日韩日本国产亚洲| 免费午夜无码18禁无码影院| 欧美日韩国产综合视频在线观看| 精品無碼一區在線觀看 | 91丝袜乱伦| 欧美国产菊爆免费观看| 免费亚洲成人| 国产久操视频| 欧美三级日韩三级| 少妇高潮惨叫久久久久久| 黄色网站不卡无码| 国产网站免费观看| 国产一级精品毛片基地| 午夜不卡福利| 91人妻在线视频| 亚洲中字无码AV电影在线观看| 为你提供最新久久精品久久综合| 2020国产在线视精品在| 夜精品a一区二区三区| 四虎影视无码永久免费观看| 国产午夜福利在线小视频| 国产99视频免费精品是看6| 亚洲最新在线| 欧美19综合中文字幕| 中文字幕伦视频| 天堂网国产| 中文字幕在线视频免费| 欧美一区二区人人喊爽| 玖玖精品视频在线观看| 老司机精品99在线播放| 国产在线视频二区| 亚洲va欧美ⅴa国产va影院| 欧美a在线视频| 欧美综合成人| 亚洲日韩Av中文字幕无码|