999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

麥蚜對擬除蟲菊酯類殺蟲劑抗性研究進展

2021-03-12 03:29:18龔培盼李新安王超李祥瑞張云慧李建洪朱勛
植物保護 2021年1期

龔培盼 李新安 王超 李祥瑞 張云慧 李建洪 朱勛

摘要 :麥蚜是為害小麥的一類重要害蟲,廣泛分布于我國各小麥種植區。2016年-2018年我國麥蚜總體偏重發生,嚴重影響小麥產量和品質,造成巨大的經濟損失。擬除蟲菊酯類殺蟲劑是防治麥蚜的主要殺蟲劑類型之一,但由于化學農藥的長期使用,麥蚜對擬除蟲菊酯類殺蟲劑產生了不同程度的抗性。本文綜述了擬除蟲菊酯類殺蟲劑作用機制、麥蚜對擬除蟲菊酯類殺蟲劑的抗性現狀以及近年來擬除蟲菊酯類殺蟲劑抗性機制研究的主要進展。

關鍵詞 :麥蚜; 擬除蟲菊酯殺蟲劑; 抗藥性

中圖分類號: S 481.4

文獻標識碼: A

DOI: 10.16688/j.zwbh.2019543

Research advances in pyrethroid insecticide resistance in wheat aphids

GONG Peipan1,2, LI Xinan2, WANG Chao2, LI Xiangrui2, ZHANG Yunhui2, LI Jianhong1*, ZHU Xun2*

(1. Hubei Key Laboratory of Utilization of Insect Resources and Sustainable Pest Management, College of

Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China;

2. State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of

Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China)

Abstract :Wheat aphids are a group of important pests that infect wheat cereal and are widely distributed in China. The overall occurrence of wheat aphids in China in 2016-2018 has seriously affected wheat yield and quality, causing huge economic losses. Pyrethroid insecticides are among the main types of insecticides for controlling the wheat aphid. However, due to the longterm use of chemical insecticides, wheat aphids have developed varying degrees of resistance to pyrethroid insecticides. This article reviewed the mechanisms of action of pyrethroid insecticides, the current status of resistance of wheat aphids to pyrethroid insecticides, and the main advances in the research of pyrethroid insecticide resistance mechanisms in recent years.

Key words :wheat aphids; pyrethroid insecticides; pesticide resistance

小麥在世界各地廣泛種植,是我國主要的糧食作物之一,年播種面積僅次于水稻和玉米。小麥蚜蟲是小麥上的重要害蟲之一,在我國為害小麥的蚜蟲種類主要有麥長管蚜Sitobion miscanthi (Fabricius)、禾谷縊管蚜 Rhopalosiphum padi (Linnaeus)、麥二叉蚜Schizaphis graminum (Rondani) 和麥無網長管蚜 Metopolophium dirhodum (Walker)。麥蚜屬于半翅目 Hemiptera 蚜科 Aphididae,以成蚜、若蚜吸食小麥葉、莖、嫩穗的汁液引起植株營養惡化,造成小麥籽粒饑瘦或不能結實,排泄的蜜露覆蓋在葉片表面,影響呼吸和光合作用。此外,麥蚜也是傳播植物病毒的重要昆蟲媒介,造成小麥黃矮病[1]。近年來由于全球氣候變暖,北方地區冬季溫暖少雨,年后氣溫回升快等氣候條件,麥蚜呈現出蟲害發生提前、為害期長、峰期蚜量大等特點,嚴重影響小麥品質和產量,造成巨大損失[2]。目前生產上對麥蚜的防治仍以化學防治為主,而化學防治引起的抗藥性問題是導致防效降低,甚至防治失敗的重要原因。麥蚜對各類常用殺蟲劑的抗性報道也越來越多[34]。

1 擬除蟲菊酯殺蟲劑

擬除蟲菊酯類殺蟲劑是從天然除蟲菊素衍生而來的一類化學農藥。天然除蟲菊素包括除蟲菊素Ⅰ(pyrethrins Ⅰ)、除蟲菊素Ⅱ(pyrethrins Ⅱ)、瓜葉除蟲菊素Ⅰ(cinerin Ⅰ)、瓜葉除蟲菊素Ⅱ(cinerin Ⅱ)、茉酮除蟲菊素Ⅰ(jasmolin Ⅰ)和茉酮除蟲菊素Ⅱ(jasmolin Ⅱ)6種結構相似的化合物,它們的共同特征是具有酯的結構。除了除蟲菊素Ⅰ外的其他5種除蟲菊素對蚊、蠅有很高的殺蟲活性,其中除蟲菊素Ⅱ有較快的擊倒作用。化學家們在保持除蟲菊素基本骨架的基礎上,通過改變和簡化菊酸部分的結構,先后仿制合成了一系列除蟲菊素衍生物——擬除蟲菊酯殺蟲劑。和除蟲菊素相比,擬除蟲菊酯類化合物具有更高的光穩定性和殺蟲效力。根據結構中是否含有氰基以及對昆蟲產生毒性作用的特點,擬除蟲菊酯殺蟲劑可分為Ⅰ型和Ⅱ型兩類[5]。Ⅰ型擬除蟲菊酯殺蟲劑不含α氰基,包括聯苯菊酯、氯菊酯、胺菊酯等;Ⅱ型擬除蟲菊酯殺蟲劑含有α氰基,包括氰戊菊酯、甲氰菊酯、氟氰戊菊酯和溴氰菊酯等,擬除蟲菊酯類殺蟲劑自應用以來在全球殺蟲劑市場中一直占據著重要位置。新煙堿類殺蟲劑銷售額在殺蟲劑中占比18.0%~21.8%長期位居第一[6],然而有研究表明暴露于亞致死濃度新煙堿殺蟲劑中會導致非靶標生物如蜜蜂的神經疾病[7],部分地區新煙堿類殺蟲劑被禁限使用,為擬除蟲菊酯類殺蟲劑提供了機遇。

有研究發現VGSC并不是擬除蟲菊酯類殺蟲劑的唯一作用靶標。棉鈴蟲神經細胞上存在大電導鈣激活鉀通道(large conductance calciumactivated potassium channels, BKCa),藏媛媛等通過全細胞膜片鉗技術首次記錄了棉鈴蟲中樞神經細胞BKCa通道的電流,并分析了七氟菊酯和溴氰菊酯對BKCa通道的影響,結果發現棉鈴蟲神經細胞膜上表達BKCa通道,而七氟菊酯和溴氰菊酯均能顯著抑制BKCa通道的峰值電流,使BKCa通道激活的電壓依賴性發生改變,證實該通道是七氟菊酯和溴氰菊酯的作用靶標[57]。

4 麥蚜對擬除蟲菊酯類殺蟲劑的抗性機制

關于麥蚜對擬除蟲菊酯類殺蟲劑抗性機制的研究在現階段并不多,這可能與目前麥蚜對擬除蟲菊酯類殺蟲劑仍處于敏感和低水平抗性有關。左亞運進行禾谷縊管蚜抗高效氯氰菊酯品系的篩選,篩選至20代,抗性系數增長為9.89。比較禾谷縊管蚜抗性品系和敏感品系羧酸酯酶和多功能氧化酶O脫甲基酶的活性,發現抗性品系的羧酸酯酶比活力是敏感品系的1.63倍;抗性品系的多功能氧化酶O脫甲基酶比活力是敏感品系的1.90倍,并在抗性監測中發現河南南陽禾谷縊管蚜田間種群中存在M918L突變[58]。Foster等[55]在麥長管蚜中檢測到鈉離子通道突變位點L1014F的存在,并證實該突變與麥長管蚜對高效氯氟氰菊酯的抗性相關。雖然麥蚜對擬除蟲菊酯殺蟲劑的抗性不像家蠅、淡色庫蚊和埃及伊蚊等媒介昆蟲那樣嚴重,但仍存在抗性風險,麥蚜對擬除蟲菊酯類殺蟲劑抗性機制的研究仍處于與解毒酶活性相關的生理生化水平。

目前,棉蚜和桃蚜已經對擬除蟲菊酯產生了較高的抗性,綜合已有文獻報道可知麥蚜存在對擬除蟲菊酯類殺蟲劑產生抗性突變的風險。抗性監測是了解害蟲田間種群對殺蟲劑敏感性最直接有效的方法。褐飛虱、棉蚜和桃蚜等很多重要害蟲的抗藥性監測工作也一直在開展,這些都為麥蚜抗性監測工作的開展和抗性機理的研究提供了寶貴的借鑒經驗。通過抗性監測了解麥蚜田間種群對擬除蟲菊酯類殺蟲劑的抗性水平和相關解毒酶活性水平的變化情況,從中發掘出與擬除蟲菊酯類殺蟲劑抗性相關的解毒酶系及相關基因;對于田間發現的高抗種群,通過建立一定數量的單雌系品系進一步篩選出純合的高抗品系,測定其解毒酶活性水平,并對已在其他害蟲中報道的鈉離子突變位點進行檢測,同時可以利用轉錄組測序技術分析敏感品系和抗性品系的基因表達情況等。這些工作對于田間麥蚜化學防治用藥策略的調整具有重要的指導作用,對于延緩麥蚜對擬除蟲菊酯類殺蟲劑抗性發展速率和開展麥蚜抗藥性機制的研究具有重要意義。

5 展望

麥蚜種類多、分布廣泛、生殖方式多樣、生活史相對復雜并且具有遷飛性,這使得麥蚜的防治和抗藥性研究變得比較困難。麥蚜抗性問題日趨嚴重,擬除蟲菊酯類殺蟲劑作為防治麥蚜的一類主要殺蟲劑,研究明確其產生抗藥性的機制對于豐富麥蚜的防治手段、提高防治效果、延緩麥蚜抗藥性的發展和延長擬除蟲菊酯類殺蟲劑的使用壽命具有積極意義。

參考文獻

[1] CONNERY J, KENNEDY T F. Grain yield reductions in spring barley due to barley yellow dwarf virus and aphid feeding [J]. Irish Journal of Agricultural and Food Research, 2005, 44(1):111128.

[2] 武銀玉, 曹亞萍, 楊秀麗, 等. 麥蚜抗藥性現狀及抗性治理研究進展[J]. 小麥研究, 2017(2): 18.

[3] ZHANG Liuping, LU Hong, GUO Kun, et al. Insecticide resistance status and detoxification enzymes of wheat aphids Sitobion avenae and Rhopalosiphum padi [J]. Science China Life Sciences, 2017, 60(8): 927930.

[4] 于曉慶, 張帥, 宋姝娥, 等. 小麥蚜蟲對六種殺蟲劑的抗藥性及田間藥效評價[J]. 昆蟲學報, 2016, 59(11): 12061212.

[5] 陳夢麗. 基于鈉離子通道突變體的擬除蟲菊酯殺蟲劑抗性的機理研究[D].杭州:浙江大學, 2017.

[6] 李新. 擬除蟲菊酯類殺蟲劑研發及市場概況[J]. 農化市場十日訊, 2016(27): 1719.

[7] COOK S C. Compound and dosedependent effects of two neonicotinoid pesticides on honey bee (Apis mellifera) metabolic physiology [J/OL]. Insects, 2019, 10(1): 18.DOI:10.3390/insects10010018.

[8] FENG Xuechun, LI Ming, LIU Nannan. Carboxylesterase genes in pyrethroid resistant house flies, Musca domestica [J]. Insect Biochemistry and Molecular Biology, 2018, 92: 3039.

[9] JOHNSON B J, FONSECA D M. Insecticide resistance alleles in wetland and residential populations of the west nile virus vector Culex pipiens in New Jersey [J]. Pest Management Science, 2016, 72(3): 481488.

[10]ZUO Yayun, WANG Kang, ZHANG Meng, et al. Regional susceptibilities of Rhopalosiphum padi (Hemiptera: Aphididae) to ten insecticides [J]. Florida Entomologist, 2016, 99(2): 269275.

[11]劉燕承. 禾谷縊管蚜抗藥性及呋蟲胺對其亞致死效應研究[D]. 雅安:四川農業大學, 2016.

[12]黃彥娜. 陜西關中地區禾谷縊管蚜抗藥性監測及共生菌檢測[D]. 楊凌:西北農林科技大學, 2018.

[13]李曉倩,張亞鑫,解曉平,等. 兩種麥蚜對殺蟲藥劑的抗藥性監測[J].大麥與谷類科學, 2018, 35(4): 61.

[14]陳澄宇,史雪巖,髙希武. 昆蟲對擬除蟲菊酯類殺蟲劑的代謝抗性機制研究進展[J].農藥學學報, 2016, 18(5): 545555.

[15]MIAH M A, ELZAKI M E A, HUSNA A, et al. An overexpressed cytochrome P450 CYP439A1v3 confers deltamethrin resistance in Laodelphax striatellus Fallén (Hemiptera: Delphacidae) [J/OL]. Archives of Insect Biochemistry and Physiology, 2019, 100(2): e21525.DOI:10.1002/arch.21525.

[16]ZHANG Xueyao, DONG Jie, WU Haihua, et al. Knockdown of cytochrome P450 CYP6 family genes increases susceptibility to carbamates and pyrethroids in the migratory locust, Locusta migratoria [J]. Chemosphere, 2019, 223: 4857.

[17]梁曉, 伍春玲, 陳青, 等. 擬除蟲菊酯類殺蟲劑對赤擬谷盜 CYP4 基因的誘導表達特性[J]. 熱帶作物學報, 2018,39(7): 149156.

[18]YAN Zhengwen, HE Zhengbo, YAN Zhengtian, et al. Genomewide and expressionprofiling analyses suggest the main cytochrome P450 genes related to pyrethroid resistance in the malaria vector, Anopheles sinensis (Diptera Culicidae) [J]. Pest Management Science, 2018, 74(8): 18101820.

[19]WONDJI C S, IRVING H, MORGAN J, et al. Two duplicated P450 genes are associated with pyrethroid resistance in Anopheles funestus, a major malaria vector [J]. Genome Research, 2009, 19(3): 452459.

[20]LIAO Chongyu, FENG Yingcai, LI Gang, et al. Antioxidant role of PcGSTd1 in fenpropathrin resistant population of the citrus red mite, Panonychus citri (McGregor) [J/OL]. Frontiers in Physiology, 2018, 9: 314.DOI:10.3389/fphys.2018.00314.

[21]LABADE C P, JADHAV A R, AHIRE M, et al. Role of induced glutathioneStransferase from Helicoverpa armigera (Lepidoptera: Noctuidae) HaGST8 in detoxification of pesticides [J]. Ecotoxicology and Environmental Safety, 2018, 147: 612621.

[22]HU Bo, HUANG He, WEI Qi, et al. Transcription factors CncC/Maf and AhR/ARNT coordinately regulate the expression of multiple GSTs conferring resistance to chlorpyrifos and cypermethrin in Spodoptera exigua [J]. Pest Management Science, 2019, 75(7): 20092019.

[23]YING Xiaoli, CHI Qingping, GE Mengying, et al. Analysis of UB and L40, related to deltamethrin stress in the diamondback moth, Plutella xylostella (L.) [J]. Gene, 2019, 684: 149153.

[24]NIKOU D, RANSON H, HEMINGWAY J. An adultspecific CYP6 P450 gene is overexpressed in a pyrethroidresistant strain of the malaria vector, Anopheles gambiae [J]. Gene, 2003, 318: 91102.

[25]DJOUAKA R F, BAKARE A A, COULIBALY O N, et al. Expression of the cytochrome P450s, CYP6P3 and CYP6M2 are significantly elevated in multiple pyrethroid resistant populations of Anopheles gambiae s.s. from Southern Benin and Nigeria [J/OL]. BMC Genomics, 2008, 9(1): 538.DOI:10.1186/147121649538.

[26]STEVENSON B J, BIBBY J, PIGNATELLI P, et al. Cytochrome P450 6M2 from the malaria vector Anopheles gambiae metabolizes pyrethroids: sequential metabolism of deltamethrin revealed [J]. Insect Biochemistry and Molecular Biology, 2011, 41(7): 492502.

[27]GUO Qin, HUANG Yun, ZOU Feifei, et al. The role of mir2~13~71 cluster in resistance to deltamethrin in Culex pipiens pallens [J]. Insect Biochemistry and Molecular Biology, 2017, 84: 1522.

[28]DUSFOUR I, ZORRILLA P, GUIDEZ A, et al. Deltamethrin resistance mechanisms in Aedesaegypti populations from three French overseas territories worldwide [J]. PLoS Neglected Tropical Diseases, 2015, 9(11): e0004226.DOI:10.1371/journal.pntd.0004226.

[29]IBRAHIM S S, RIVERON J M, BIBBY J, et al. Allelic variation of cytochrome P450s drives resistance to bednet insecticides in a major malaria vector [J]. PLoS Genetics, 2015, 11(10): e1005618.DOI:10.1371/journal.pgen.1005618.

[30]JOUΒEN N, AGNOLET S, LORENZ S, et al. Resistance of Australian Helicoverpa armigera to fenvalerate is due to the chimeric P450 enzyme CYP337B3 [J]. Proceedings of the National Academy of Sciences, 2012, 109(38): 1520615211.

[31]RASOOL A, JOUΒEN N, LORENZ S, et al. An independent occurrence of the chimeric P450 enzyme CYP337B3 of Helicoverpa armigera confers cypermethrin resistance in Pakistan [J]. Insect Biochemistry and Molecular Biology, 2014, 53: 5465.

[32]AROURI R, LE GOFF G, HEMDEN H, et al. Resistance to lambdacyhalothrin in Spanish field populations of Ceratitis capitata and metabolic resistance mediated by P450 in a resistant strain [J]. Pest Management Science, 2015, 71(9): 12811291.

[33]ZIMMER C T, BASS C, WILLIAMSON M S, et al. Molecular and functional characterization of CYP6BQ23, a cytochrome P450 conferring resistance to pyrethroids in European populations of pollen beetle, Meligethes aeneus [J]. Insect Biochemistry and Molecular Biology, 2014, 45: 1829.

[34]劉月慶. 粘蟲細胞色素 P450 的克隆和特性分析[D]. 哈爾濱:東北農業大學, 2017.

[35]SHI Li, XU Zhifeng, SHEN Guangmao, et al. Expression characteristics of two novel cytochrome P450 genes involved in fenpropathrin resistance in Tetranychus cinnabarinus (Boisduval) [J]. Pesticide Biochemistry and Physiology, 2015, 119: 3341.

[36]MUTHUSAMY R, SHIVAKUMAR M S. Resistance selection and molecular mechanisms of cypermethrin resistance in red hairy caterpillar (Amsacta albistriga Walker) [J]. Pesticide Biochemistry and Physiology, 2015, 117: 5461.

[37]PAN Jing, YANG Chan, LIU Yan, et al. Novel cytochrome P450 (CYP6D1) and voltage sensitive sodium channel (Vssc) alleles of the house fly (Musca domestica) and their roles in pyrethroid resistance [J]. Pest Management Science, 2018, 74(4): 978986.

[38]PAURON D, BARHANIN J, AMICHOT M, et al. Pyrethroid receptor in the insect sodium channel: alteration of its properties in pyrethroidresistant flies [J]. Biochemistry, 1989, 28(4): 16731677.

[39]SCOTT J G. Life and death at the voltagesensitive sodium channel: evolution in response to insecticide use [J]. Annual Review of Entomology, 2019, 64: 243257.

[40]MACKENZIE T D B, ARJU I, POIRIER R, et al. A genetic survey of pyrethroid insecticide resistance in aphids in New Brunswick, Canada, with particular emphasis on aphids as vectors of Potato virus Y [J]. Journal of Economic Entomology, 2018, 111(3): 13611368.

[41]BALVN O, BOOTH W. Distribution and frequency of pyrethroid resistanceassociated mutations in host lineages of the bed bug (Hemiptera: Cimicidae) across Europe [J]. Journal of Medical Entomology, 2018, 55(4): 923928.

[42]GONZ LEZlCABRERA J, BUMANN H, RODRGUEZVARGAS S, et al. A single mutation is driving resistance to pyrethroids in European populations of the parasitic mite, Varroa destructor [J]. Journal of Pest Science, 2018, 91(3): 11371144.

[43]YESSINOU R E, AKPO Y, OSS R, et al. Molecular characterization of pyrethroids resistance mechanisms in field populations of Rhipicephalus microplus (Acari: Ixodidae) in district of Kpinnou and Opkara, Benin [J]. International Journal of Acarology, 2018, 44(45): 198203.

[44]LOPEZMONROY B, GUTIERREZRODRIGUEZ S M, VILLANUEVASEGURA O K, et al. Frequency and intensity of pyrethroid resistance through the CDC bottle bioassay and their association with the frequency of kdr mutations in Aedes aegypti (Diptera: Culicidae) from Mexico [J]. Pest Management Science, 2018, 74(9): 21762184.

[45]GRANADA Y, MEJAJARAMILLO A, STRODE C, et al. A point mutation V419L in the sodium channel gene from natural populations of Aedes aegypti is involved in resistance to λcyhalothrin in Colombia [J/OL]. Insects, 2018, 9(1): 23.DOI:10.3390/insects9010023.

[46]RASLI R, LEE H, WASI AHMAD N, et al. Susceptibility status and resistance mechanisms in permethrinselected, laboratory susceptible and fieldcollected Aedes aegypti from Malaysia [J/OL]. Insects, 2018, 9(2): 43.DOI:10.3390/insects9020043.

[47]CHEN Mengli, DU Yuzhe, NOMURA Y, et al. Mutations of two acidic residues at the cytoplasmic end of segment IIIS6 of an insect sodium channel have distinct effects on pyrethroid resistance [J]. Insect Biochemistry and Molecular Biology, 2017, 82: 110.

[48]CHEN Xuewei, TIE Minyuan, CHEN Anqi, et al. Pyrethroid resistance associated with M918L mutation and detoxifying metabolism in Aphis gossypii from Bt cotton growing regions of China [J]. Pest Management Science, 2017, 73(11): 23532359.

[49]CARLETTO J, MARTIN T, VANLERBERGHEMASUTTI F, et al. Insecticide resistance traits differ among and within host races in Aphis gossypii [J]. Pest Management Science: Formerly Pesticide Science, 2010, 66(3): 301307.

[50]MARSHALL K L, MORAN C, CHEN Y, et al. Detection of kdr pyrethroid resistance in the cotton aphid, Aphis gossypii (Hemiptera: Aphididae), using a PCRRFLP assay [J]. Journal of Pesticide Science, 2012, 37(2): 169172.

[51]MARTINEZTORRES D, FOSTER S P, FIELD L M, et al. A sodium channel point mutation is associated with resistance to DDT and pyrethroid insecticides in the peachpotato aphid, Myzus persicae (Sulzer) (Hemiptera: Aphididae) [J]. Insect Molecular Biology, 1999, 8(3): 339346.

[52]PANINI M, ANACLERIO M, PUGGIONI V, et al. Presence and impact of allelic variations of two alternative skdr mutations, M918T and M918L, in the voltagegated sodium channel of the green peach aphid Myzus persicae [J]. Pest Management Science, 2015, 71(6): 878884.

[53]ELEFTHERIANOS I, FOSTER S P, WILLIAMSON M S, et al. Characterization of the M918T sodium channel gene mutation associated with strong resistance to pyrethroid insecticides in the peachpotato aphid, Myzus persicae (Sulzer) [J]. Bulletin of Entomological Research, 2008, 98(2): 183191.

[54]CASSANELLI S, CERCHIARI B, GIANNINI S, et al. Use of the RFLPPCR diagnostic test for characterizing MACE and kdr insecticide resistance in the peach potato aphid Myzus persicae [J]. Pest Management Science: Formerly Pesticide Science, 2005, 61(1): 9196.

[55]FOSTER S P, PAUL V L, SLATER R, et al. A mutation (L1014F) in the voltagegated sodium channel of the grain aphid, Sitobion avenae, is associated with resistance to pyrethroid insecticides [J]. Pest Management Science, 2014, 70(8): 12491253.

[56]ZUO Yayun, PENG Xiong, WANG Kang, et al. Expression patterns, mutation detection and RNA interference of Rhopalosiphum padi voltagegated sodium channel genes [J/OL]. Scientific Reports, 2016, 6(1): 30166.DOI:10.1038/srep30166.

[57]藏媛媛, 盧潔, 劉藝, 等. 七氟菊酯和溴氰菊酯對棉鈴蟲神經細胞大電導鈣激活鉀通道電流的影響[J]. 南開大學學報(自然科學版), 2018, 51(1): 2633.

[58]左亞運. 禾谷縊管蚜抗藥性監測及其對高效氯氰菊酯的抗藥性機理初步研究[D]. 楊凌: 西北農林科技大學, 2015.

(責任編輯:田 喆)

主站蜘蛛池模板: h网址在线观看| 久久性妇女精品免费| 国产凹凸视频在线观看| 在线a网站| 久久国产黑丝袜视频| 亚洲综合狠狠| 在线播放真实国产乱子伦| 啊嗯不日本网站| 99久久国产综合精品女同| 成人福利视频网| 国产JIZzJIzz视频全部免费| 免费可以看的无遮挡av无码| 国产精品99久久久| 一级毛片在线免费视频| 午夜啪啪网| 亚洲视频一区| 亚洲色大成网站www国产| 国产a在视频线精品视频下载| 国产精品自在在线午夜| 精品国产污污免费网站| 国产永久在线视频| 尤物在线观看乱码| 欧美亚洲国产一区| 日韩精品一区二区深田咏美| 欧美成人在线免费| 亚洲国产综合精品一区| 在线观看亚洲精品福利片| 国产成人a在线观看视频| 福利一区在线| 国产福利一区视频| 国产亚洲精品资源在线26u| 国产女人在线观看| 精品国产自在在线在线观看| 免费又爽又刺激高潮网址| 毛片免费视频| 日韩精品一区二区三区swag| 亚洲欧洲国产成人综合不卡| 91久久性奴调教国产免费| 国产视频你懂得| 亚洲毛片在线看| h视频在线播放| 中文字幕在线一区二区在线| 成·人免费午夜无码视频在线观看| 色网站在线免费观看| 免费可以看的无遮挡av无码| 天堂网国产| 日韩精品毛片人妻AV不卡| 午夜成人在线视频| 97人妻精品专区久久久久| 日本人真淫视频一区二区三区| 久久99国产乱子伦精品免| 一级毛片免费观看不卡视频| 18禁黄无遮挡免费动漫网站| 日韩亚洲高清一区二区| 2018日日摸夜夜添狠狠躁| 男女男免费视频网站国产| 久久黄色影院| 亚洲日本在线免费观看| 香蕉视频在线观看www| 老司机久久99久久精品播放| 福利视频久久| 真人高潮娇喘嗯啊在线观看 | 亚洲精品国产综合99| 国模视频一区二区| 精品福利视频导航| 日日拍夜夜操| 亚洲中久无码永久在线观看软件| 国产在线观看一区精品| 国产成人无码久久久久毛片| 午夜影院a级片| 欧美不卡视频一区发布| 国产打屁股免费区网站| 在线看片国产| 欧美精品在线免费| 亚洲乱码在线视频| 久久久精品无码一区二区三区| 国产丝袜无码精品| 日韩久草视频| 久久精品中文字幕少妇| 日本少妇又色又爽又高潮| 亚洲中文字幕国产av| 中国国产A一级毛片|