劉仲秋,徐杭杭,張浩男,2,吳 浩,李全起
推遲灌拔節水條件下種植模式對冬小麥抗倒伏特性和產量的影響
劉仲秋1,徐杭杭1,張浩男1,2,吳 浩1,李全起1※
(1. 山東農業大學水利土木工程學院,泰安 271018; 2. 沂沭河水利管理局沭河水利管理局,臨沂 276001)
華北平原冬小麥在糧食生產中占據重要地位,受到灌溉用水短缺影響以及生育后期易倒伏減產的制約,冬小麥供需矛盾日益突出。該研究探究了推遲灌拔節水條件下不同種植模式對冬小麥抗倒伏特性的影響,設置寬幅精播(W)與常規種植(C)2種種植模式,每種種植模式設置灌拔節水60 mm(I1)和推遲10 d灌拔節水60 mm(I2)2種灌溉處理,研究冬小麥關鍵生育期莖稈物理指標,倒數第2節間莖桿力學、抗倒伏指數、蠕變變形量、產量及其組成等指標,探究冬小麥抗倒伏特性綜合調優的種植模式和灌溉制度。結果表明,寬幅精播模式下推遲灌拔節水對抽穗期倒數第2節間莖桿抗折力有顯著提升的趨勢,顯著提高了抗彎剛度,顯著降低了蠟熟期倒數第2節間莖桿抗折力和抗彎剛度,以及植株蠟熟期鮮質量;寬幅精播模式下推遲灌拔節水顯著提高了抽穗期抗倒伏指數,并提升了灌漿期抗倒伏指數,該處理在抽穗期、灌漿期和蠟熟期的抗倒伏指數平均值分別為2.03、1.58和1.87 N/(m·g)。冬小麥倒數第2節間莖桿在施加小于其極限抗折力的不同比例荷載時具有蠕變特性,寬幅精播模式下推遲灌拔節水莖桿蠕變極值平均值在抽穗期最大,灌漿期表現仍然較好,均由減速蠕變過渡到穩定蠕變階段,蠕變極值范圍介于0.6%~3.7%,蠕變極值平均值介于0.7%~2.5%。綜合考慮抗倒伏指數和蠕變試驗結果,冬小麥在寬幅精播模式下結合推遲10 d灌拔節水處理的抗倒伏特性最優。研究結果可為華北平原冬小麥節水高產提供理論依據和技術支持。
灌溉;種植模式;冬小麥;寬幅精播;抗倒伏指數;蠕變
華北平原是中國重要的農業生產區之一,冬小麥產量約占中國總產量的75%[1],同時華北平原也是世界上水資源短缺最為嚴峻的地區之一[2]。近年來,冬小麥產量水平不斷提高。為了進一步提高冬小麥產量,余松烈院士團隊[3]提出了寬幅精播種植模式,播種量相同的情況下,改傳統播種機播幅寬3.0~5.0 cm為6.0~8.0 cm,改生產上密集一條線條播為單粒分散式粒播,這一播種模式在北方冬麥區獲得了大面積單產最高紀錄。但是,高產冬小麥田群體數量大,在生育后期莖稈負荷力持續增大,倒伏問題加劇[4],增加真菌霉素污染儲存籽粒的可能性[5],還會帶來收獲困難等問題,制約了冬小麥的高產和穩產。
虧缺灌溉是有效的農業節水措施,能合理利用有限的水資源[6]。研究表明,虧缺灌溉顯著改善了冬小麥旗葉光合特性和水分利用效率等生理指標,其形態結構和產量亦會受到影響[7]。由拔節期灌溉推遲至拔節后10 天灌溉,冬小麥的水分利用效率和籽粒產量均顯著提高[8-9]。Pierre等[10]研究認為,拔節期前水分脅迫可調節小麥植株節間長度、外徑和硬度。Ma等[11]研究發現,拔節期水分虧缺處理提高了節間單位長度干質量,提升了莖稈抗倒伏能力。植物莖稈是一種黏彈性材料,受到可變的外部壓力時,可通過蠕變與松弛行為來調節自身機體的幾何結構從而適應外界變化[12]。Feng等[5]認為,風速是引起倒伏的主要因子,小麥倒伏主要是由基部節間上的風引起的彎曲力矩導致的。Chen等[13]研究了21種冬小麥莖稈的應力松弛特性,表明分數階Zener模型能夠準確描述應力松弛現象。梁莉等[14]利用四元件Burgers模型精準描述了蠟熟期小麥莖稈拉伸蠕變特性。有研究表明,應力水平、應力保持時間對拉伸蠕變有顯著影響[15]。到目前為止,推遲灌拔節水條件下寬幅精播冬小麥莖稈節間力學、抗倒伏指數和蠕變特性研究較少,制約了推遲灌拔節水和寬幅精播技術的進一步發展。本研究以種植模式和拔節水灌溉時間為切入點,分析冬小麥抗倒伏特性,以期為華北平原冬小麥節水高產提供理論依據和技術支持。
本試驗于2016年10月-2018年6月在山東農業大學試驗站(36°10′19″N,117°09′03″E)水分池內進行。水分池長×寬為3.0 m×3.0 m,深1.5 m,四周水泥抹面,不封底,池中土壤為壤質黏土,0~20 cm土壤堿解氮、速效磷和速效鉀含量分別為108.1、16.1和92.4 mg/kg,有機質質量分數為1.4%,土壤容重為1.5 g/cm3,田間持水率為32.4%(體積含水率)。該試驗點屬溫帶大陸性半季風氣候區,多年平均降水量為697.0 mm,約70%集中在7-9月。冬小麥生育期氣象數據由氣象站采集記錄,距離試驗地約150 m。2016-2018年冬小麥生育期氣溫和降雨情況如圖1所示。自然降雨不能滿足冬小麥正常生長需水,冬小麥生育期間必須進行補充灌溉。
供試冬小麥品種為濟麥22。試驗采用裂區設計,主區為2種種植模式:寬幅精播(W)與常規種植(C);副區為2個灌溉時間,灌溉拔節水60 mm(I1)的時間分別為2017年3月23日和2018年3月21日,推遲10 d灌溉拔節水60 mm(I2)的時間為2017年4月2日和2018年4月1日,采用水表嚴格控制水量。2種種植模式的播種量均為222粒/m2,采用人工點播。寬幅精播種植模式的行距為28 cm,播幅為6~8 cm;常規種植模式的行距為20 cm,播幅為2~3 cm。播種前,每個水分池底施尿素19.2 g/m2,磷酸二銨26.1 g/m2,硫酸鉀21.0 g/m2,拔節期追施尿素19.2 g/m2。2個生長季中,冬小麥生長期間不遮雨。本試驗共4個處理,每處理重復3次,共12個水分池,隨機區組排列。
于冬小麥抽穗期、灌漿期和蠟熟期,各小區連續取15株有代表性植株,采用精度10-2g電子天平測量其鮮質量(M,g),精度1 mm的卷尺測量株高(,cm)和重心高度(H,cm)。截取倒數第2節間(剝離葉鞘),采用精度為10-4g的電子天平測量其鮮質量(M2,g),精度為1 mm的直尺測量莖稈長度(L2,mm),精度為0.02 mm游標卡尺測量長軸(D,mm)、短軸外徑(D,mm)和壁厚(,mm)。
倒數第2節間莖桿外徑()(mm)計算公式為
倒數第2節間莖稈鮮密度(ρ2,g/cm3)[16]計算公式為
采用量程為0~200 N的微機控制電子萬能試驗機對倒數第2節間進行三點彎曲試驗和蠕變試驗,加載速度分別為50和0.5 mm/min,支點間距離()為5 cm,為中間加載點的彎曲撓度(cm)。彎曲試驗測定的時間-應力曲線峰值即為莖稈抗折力(B,N),蠕變試驗測定時間-應變曲線,加載時間為400 s。考慮到莖桿個體差異性,蠕變試驗每個處理選取3個試樣,施加荷載采用每個處理平均抗折力的40%、60%和80%,達到額定荷載時保持力不變,測定時間-應變曲線。
倒數第2節間抗彎剛度(EI,N·cm2)[16]為
冬小麥抗倒伏指數(R,N/(m·g))[17]計算公式為
產量及產量構成因素測定:在冬小麥成熟時,每小區取除邊3行外生長均勻一致的1.5 m雙行考察穗數,后風干脫粒測產。另每小區連續選取具有代表性的20株,于室內計數穗粒數和千粒質量。
采用數據處理系統(Data Processing System)統計分析系統、Microsoft Excel 2016和Origin Pro 2017進行數據處理和統計分析,采用最小顯著差數法(Least-Significant Difference method,LSD)進行顯著性檢驗。
2016-2017生長季,抽穗期WI1處理的株高較CI1處理顯著降低了5.8%(表1);抽穗期CI1處理的植株鮮質量顯著大于WI1和WI2處理,WI1處理的鮮質量較CI1處理顯著降低了27.0%。蠟熟期WI1處理的鮮質量最高。2017-2018生長季,灌漿期WI2處理的植株鮮質量較CI1處理顯著降低了12.3%。從2個生長季來看,寬幅精播模式下推遲灌拔節水會顯著降低蠟熟期鮮質量;2017-2018生長季各處理株高和重心高度均低于2016-2017生長季,而蠟熟期的鮮質量均高于2016-2017生長季。
2016-2017生長季,抽穗期CI2處理倒數第2節間鮮密度顯著高于其余處理(表2);灌漿期CI2處理壁厚顯著低于其余處理,蠟熟期WI2處理壁厚較CI2處理顯著增加40%。2017-2018生長季,灌漿期CI2處理鮮密度較WI1處理顯著增加31.9%,蠟熟期WI2鮮密度在各處理中最低;抽穗期WI2處理壁厚較CI1處理顯著增加25%,蠟熟期WI1處理的壁厚顯著大于CI1和CI2處理。從2個生長季來看,2016-2017生長季從抽穗期到灌漿期莖桿外徑逐漸增大;2017-2018生長季各處理莖桿鮮密度均高于2016-2017生長季;寬幅精播模式有提高蠟熟期倒數第2節間莖桿壁厚的傾向。

表1 冬小麥不同生育期植株株高、重心高度和鮮質量
注:數據后不同字母表示同一生育期處理間差異(<0.05)。WI1、WI2、CI1、CI2分別為寬幅精播灌溉拔節水60 mm、寬幅精播推遲10 d灌溉拔節水60 mm、常規種植灌溉拔節水60 mm、常規種植推遲10 d灌溉拔節水60 mm。下同。
Note: Different letters after the data indicate significant difference among treatments at same growth stage (<0.05) .WI1, WI2, CI1 and CI2 are wide precision planting pattern with 60 mm irrigation at jointing stage, wide precision planting pattern with 10-d delaying irrigation 60 mm at jointing stage, conventional cultivation planting pattern with 60 mm irrigation at jointing stage, conventional cultivation planting pattern with 10-d delaying irrigation 60 mm at jointing stage, respectively. The same below.

表2 冬小麥不同生育期倒數第2節間莖稈外徑、鮮密度和壁厚
2016-2017生長季,抽穗期WI1處理倒數第2節間抗折力較CI1處理顯著降低了46.9%(圖2a),寬幅精播模式顯著降低了抗彎剛度(圖2b),灌漿期CI1處理抗折力和抗彎剛度均顯著高于其余處理;蠟熟期WI1處理抗折力和抗彎剛度均顯著高于其余處理。2017-2018生長季,抽穗期WI2處理抗折力顯著高于其余處理,CI1處理抗彎剛度顯著高于其余處理;灌漿期CI1處理抗折力和抗彎剛度均顯著高于其余處理;蠟熟期WI1處理抗折力顯著高于其余處理,CI2處理抗彎剛度顯著低于其余處理。從2個生長季來看,2017-2018生長季各處理抗折力和抗彎剛度均高于2016-2017生長季,抽穗期WI1處理抗折力和抗彎剛度最小,灌漿期CI1處理抗折力和抗彎剛度最大,蠟熟期WI1處理抗折力最大,CI2處理抗折力和抗彎剛度最小;寬幅精播模型下推遲灌溉拔節水對抽穗期抗折力有顯著提升的趨勢,對抗彎剛度有顯著提升,對蠟熟期抗折力和抗彎剛度有顯著降低。
2016-2017生長季,抽穗期WI1處理抗倒伏指數顯著低于WI2和CI2處理(圖3),較WI2處理降低了29.9%;灌漿期CI1處理指數顯著高于其余處理,較WI2處理提高了55.4%;蠟熟期WI2處理指數顯著低于WI1處理。2017-2018生長季,抽穗期WI2處理指數顯著高于其余處理,灌漿期CI2處理指數顯著低于其余處理,蠟熟期WI1處理指數顯著低于CI1處理。從2個生長季來看,2017-2018生長季抗倒伏指數顯著大于2016-2017生長季;抽穗期WI2處理指數最高,灌漿期CI1處理指數最高,寬幅精播模式下推遲灌拔節水顯著提高了抽穗期抗倒伏指數,并提升了灌漿期抗倒伏指數;灌拔節水時,寬幅精播模式抽穗期和灌漿期抗倒伏指數均可能小于常規種植模式;蠟熟期各處理年際差異較大,但寬幅精播模式下推遲灌拔節水表現在2017-2018年仍然較好,此模式下在抽穗期、灌漿期和蠟熟期抗倒伏指數2 a的平均值分別為2.03、1.58和1.87 N/(m·g)。
一般材料蠕變試驗下時間-應變曲線可分為瞬時變形、減速蠕變、穩定蠕變和加速蠕變4個階段,主要與應變率相關。當曲線斜率逐漸增加,并有明顯的斜率增加突變值時,即認為進入加速蠕變階段,此時莖桿的應變會迅速增加。大部分莖桿材料在施加小于其極限抗折力的比例荷載時均表現為蠕變的前3個階段(圖4)。從2個生長季來看,生育后期含水率下降,莖稈變形量也相應減少,減速與穩定蠕變階段曲線符合General Kelvin模型中的Burgers模型。
2016-2017生長季,不考慮加速蠕變曲線,抽穗期不同比例荷載下各處理加載400 s內蠕變極值應變范圍為0.8%~3.7%(表3),灌漿期和蠟熟期應變范圍分別為0.6%~3.1%和0.7%~1.4%;共出現4次加速蠕變,分別為抽穗期CI1處理倒數第2節間加載到平均抗折力80%,灌漿期CI1處理加載到60%,以及蠟熟期WI2和CI1處理加載到80%。2017-2018生長季,抽穗期蠕變極值應變范圍為0.7%~3.2%,灌漿期和蠟熟期應變范圍分別為0.7%~2.6%和0.4%~3.5%;共出現6次加速蠕變,分別為抽穗期WI2、CI1和CI2處理加載到80%,灌漿期CI1處理加載到80%,以及蠟熟期CI1和CI2處理加載到80%。從2個生長季來看,2017-2018生長季出現加速蠕變的次數要大于2016-2017生長季,CI1處理出現的次數最多,達到了6次。從2 a不同比例荷載下蠕變極值的平均值來看,蠕變極值平均值介于0.7%~2.5%,WI2處理在抽穗期均為最大,灌漿期仍然表現較好。

表3 冬小麥生育期倒數第2節間莖稈不同比例荷載下蠕變極值
注:表中—表示出現加速蠕變情況。
Note: “—” in the table indicates the occurrence of accelerated creep behavior.
如表4所示,2016-2017年,寬幅精播模式顯著提高了冬小麥產量,WI2較WI1產量顯著提高了4.2%,且穗數和穗粒數分別顯著提高了3.0%和4.9%;2017-2018年,寬幅精播模式顯著提高了冬小麥產量,WI2較WI1產量顯著提高了8.5%,且穗數、穗粒數和千粒質量分別顯著提高了7.0%、2.2%和2.2%。從2個生長季來看,寬幅精播模式較常規種植模式顯著提高了冬小麥產量,該模式下實施拔節后10天灌水進一步顯著提高了產量。

表4 2016—2018年生育期冬小麥籽粒產量及其構成因素
有研究表明,拔節期和抽穗期各灌60 mm,寬幅精播模式會顯著提高抽穗期株高,降低抽穗期和蠟熟期鮮質量,降低各時期的抗折力,并降低蠟熟期抗倒伏指數[17-18]。本研究表明,寬幅精播模式下結合推遲灌拔節水相比于WI1處理降低了蠟熟期鮮質量,說明推遲灌溉可對寬幅精播冬小麥蠟熟期鮮質量累積起到一定的調控作用。但其對灌水量和灌溉時期的耦合響應機制尚不清晰。寬幅精播模式下推遲灌拔節水顯著提升了抽穗期抗折力和抗彎剛度,并顯著降低了蠟熟期抗折力和抗彎剛度,這可能與拔節期水分適度激發作物生長補償效應、促進碳水化合物向籽粒轉移,有效縮減倒數第1、2節間長度、外徑,提高單位長度節間比例有關[11]。寬幅精播模式下推遲灌拔節水顯著提高了抽穗期抗倒伏指數,并提升了灌漿期抗倒伏指數,灌拔節水時,寬幅精播模式較常規種植模式不具優勢。冬小麥莖稈抗倒伏特性是多因素協同作用的結果[19],主要和株高、穗質量、莖稈基部節間外徑、壁厚機械強度等密切相關,本研究表明,冬小麥抗倒伏指數主要與重心高度、莖桿抗折力和抗彎剛度密切相關,但密切相關性隨生育期的不同存在差異。
在施加不同比例極限抗折力荷載時,小麥莖桿不會瞬時折斷產生倒伏,此時風荷載的持續時間會對小麥的倒伏產生較大影響[20],恒定風荷載作用下莖桿隨時間的變形規律具有重要的研究價值。冬小麥莖稈具有黏彈性,水分作為增塑劑,在莖稈纖維素結構中發揮了軟化緊密堅硬結構的作用[15],使得莖桿能夠產生較大變形;隨著生育期推后,植株含水率的降低,彎曲強度和彈性模量增加[21],從而減小外荷載下的變形,而加載過程中莖稈內的黏性組織結構對其持續變形的黏滯阻力逐漸增大,導致莖稈折斷和小麥倒伏。研究表明,冬小麥倒數第2節間莖桿在施加小于其極限抗折力的比例荷載時具有蠕變特性,如果此時莖桿在加載過程中出現加速蠕變現象,說明其仍然會瞬間折斷產生倒伏,其抵抗持續風荷載能力最弱。寬幅精播模式下推遲灌拔節水莖桿蠕變極值平均值在抽穗期最大,灌漿期表現仍然較好,均由減速蠕變過渡到勻速穩定蠕變階段,2 a試樣的減速蠕變階段基本在50 s以內,400 s內的蠕變極值范圍介于0.6%~3.7%,蠕變極值平均值介于0.7%~2.5%,滿足彈性應變范圍[15],且加速蠕變出現次數較少,抵抗持續風荷載能力較強。
在特定風速大小和持續時間下,小麥莖桿可能在達到極限抗折力之前就會產生加速蠕變或大變形現象,從而引起倒伏,在抗倒伏評價中,除了抗倒伏指數,增加額定時間下的蠕變變形判據具有實際意義。本試驗中出現穩定蠕變階段的應變值范圍較小,莖桿不會由于產生大變形而破壞,因此結合抗倒伏指數,抽穗期和灌漿期時寬幅精播模式下推遲灌拔節水對于抵抗瞬時破壞和蠕變破壞能力最好,在蠟熟期,各處理下未顯示出一致規律,有待進一步研究。寬幅精播和推遲灌拔節水均對光合有效輻射的分布有一定促進作用[22-23],寬幅精播模式下,推遲灌拔節水提高了冠層內光合有效輻射截獲率,促進了干物質積累與轉運,提高產量[8];在未來全球變暖的氣候條件下,中國強風出現可能性會上升,華北地區干旱災害風險較大[24]。因此研究不同種植模式及灌溉處理對莖桿材料組成的影響,以及在持續風荷載作用下的蠕變特性,對于分析小麥莖桿結構在倒伏過程中的時間滯后機理,揭示冬小麥群體在風雨作用下的力學響應規律,具有重要意義。
1)寬幅精播模式下推遲灌拔節水,對抽穗期倒數第2節間莖桿抗折力有顯著提升的趨勢,顯著提高了抗彎剛度,顯著降低了蠟熟期倒數第2節間莖桿抗折力和抗彎剛度,以及植株蠟熟期鮮質量。
2)寬幅精播模式下推遲灌拔節水,顯著提高了抽穗期抗倒伏指數,并提升了灌漿期抗倒伏指數。該處理抽穗期、灌漿期和蠟熟期抗倒伏指數2 a的平均值分別為2.03、1.58和1.87 N/(m·g)。冬小麥倒數第2節間莖桿在施加小于其極限抗折力的不同比例荷載時具有蠕變特性,寬幅精播模式下推遲灌拔節水莖桿蠕變極值平均值在抽穗期最大,灌漿期表現仍然較好,均由減速蠕變過渡到勻速穩定蠕變階段,蠕變極值范圍介于0.6%~3.7%,蠕變極值平均值介于0.7%~2.5%。
3)寬幅精播模式較常規種植模式顯著提高了冬小麥產量,該模式下實施拔節后10 天灌水進一步顯著提高了產量。結合抗倒伏指數和蠕變試驗,寬幅精播模式下推遲拔節水灌溉處理抗倒伏特性最優。
[1]王學,李秀彬,談明洪,等. 華北平原2001-2011年冬小麥播種面積變化遙感監[J]. 農業工程學報,2015,31(8):190-199.
Wang Xue, Li Xiubin, Tan Minghong, et al. Remote sensing monitoring of changes in winter Wheat area in North China Plain from 2001 to 2011[J]. Transactions of the Chinese Society for Agricultural Engineering (Transactions of the CSAE), 2015, 31(8): 190-199. (in Chinese with English abstract)
[2]Gleeson T, Wada Y, Bierkens M F P, et al. Water balance of global aquifers revealed by groundwater footprint[J]. Nature, 2012, 488(7410): 197-200.
[3]余松烈,于振文,董慶裕,等. 小麥畝產789.9 kg高產栽培技術思路[J]. 山東農業科學,2010,429(4):11-12.
Yu Songlie, Yu Zhenwen, Dong Qingyu, et al. Theory of cultivation techniques for wheat with yield of 789.9 kg per mu[J]. Shandong Agricultural Science, 2010, 429(4): 11-12. (in Chinese with English abstract)
[4]劉忠陽,陳懷亮,胡程達,等. 后期倒伏對冬小麥干物質分配和產量的影響[J]. 中國農業氣象,2017,38(5):321-329.
Liu Zhongyang, Chen Huailiang, Hu Chengda et al. Effects of lodging at the late growth stage on dry matter distribution and yield of winter wheat[J]. Chinese Journal of Agrometeorology, 2017, 38(5): 321-329. (in Chinese with English abstract)
[5]Feng S, Kong D, Ding W, et al. A novel wheat lodging resistance evaluation method and device based on the thrust force of the stalks[J]. PLoS One, 2019, 14(11): e0224732.
[6]孟兆江,段愛旺,高陽,等. 調虧灌溉對冬小麥氮、磷、鉀養分吸收與利用的影響[J]. 農業機械學報,2016,47(12):203-212.
Meng Zhaojiang, Duan Aiwang, Gao Yang, et al. Effect of regulated deficit irrigation on uptake and utilization of nitrogen, phosphorus and potassium for winter wheat[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(12): 203-212. (in Chinese with English abstract)
[7]劉小飛,李彪,孟兆江,等. 隔溝調虧灌溉對冬小麥旗葉生理特性與產量形成的影響[J]. 農業機械學報,2019,50(9):320-328.
Liu Xiaofei, Li Biao, Meng Zhaojiang, et al. Effects of regulated deficit irrigation under furrow irrigation on physiological characteristics of flag leaf after anthesis and yield formation of winter wheat[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(9): 320-328. (in Chinese with English abstract)
[8]Fan Yanli, Liu Junmei, Zhao Jiatao, et al. Effects of delayed irrigation during the jointing stage on the photosynthetic characteristics and yield of winter wheat under different planting patterns[J]. Agricultural Water Management, 2019, 221: 371-376.
[9]郎坤,劉泉汝,卞城月,等. 推遲拔節水灌溉對寬幅精播麥田冠層溫度與葉片水分利用效率的影響[J]. 生態學報,2015,35(15):5262-5268.
Lang Kun, Liu Quanru, Bian Chengyue, et al. Effect of delayed irrigation at jointing stage on canopy temperature and leaf water use efficiency winter wheat in wide-precision planting pattern[J]. Acta Ecologica Sinica, 2015, 35(15): 5262-5268. (in Chinese with English abstract)
[10]Pierre C S, Trethowan R, Reynolds M. Stem solidness and its relationship to water-soluble carbohydrates: Association with wheat yield under water deficit[J]. Functional Plant Biology, 2010, 37: 166-174.
[11]Ma Shouchen, Duan Aiwang, Ma Shoutian, et al. Effect of early-stage regulated deficit irrigation on stem lodging resistance, leaf photosynthesis, root respiration and yield stability of winter wheat under pos-anthesis water stress conditions[J]. Irrigation and Drainage, 2016, 65(5): 673-681.
[12]Niklas K J. Plant Biomechanics: An Engineering Approach to Plant Form and Function[M]. Chicago & London: The University of Chicago Press, 1992.
[13]Chen Longjian, Liao Na, Xing Li, et al. Description of wheat straw relaxation behavior based on a fractional-order constitutive model[J]. Agronomy Journal, 2013, 105(1): 134-142.
[14]梁莉,李玉萍,郭玉明. 小麥莖稈粘彈性力學性質試驗研究[J]. 農機化研究,2011,33(5):174-177.
Liang Li, Li Yuping, Guo Yuming. Experimental research on the viscoelastic mechanical properties of winter wheat stalks[J]. Journal of Agricultural Mechanization Research, 2011, 33(5): 174-177. (in Chinese with English abstract)
[15]馬瑞峻,蕭金慶,鄭普峰,等. 穴盤水稻秧苗莖稈蠕變與應力松弛特性的試驗研究[J]. 農業工程學報,2018,34(13):43-53.
Ma Ruijun, Xiao Jinqing, Zheng Pufeng, et al. Experimental study on characteristics of creep and stress relaxation for rice seedling stem raised in cell tray[J]. Transactions of the Chinese Society for Agricultural Engineering (Transactions of the CSAE), 2018, 34(13): 43-53. (in Chinese with English abstract)
[16]孫訓方. 材料力學(I)[M]. 北京:高等教育出版社,2009.
[17]劉仲秋,劉馨惠,卞城月,等. 秸稈覆蓋條件下寬幅精播冬小麥莖稈抗倒性研究[J]. 灌溉排水學報,2016,35(1):6-10.
Liu Zhongqiu, Liu Xinhui, Bian Chengyue, et al. Research of stalk lodging resistance of winter wheat with wide-precision planting pattern under straw mulching[J]. Journal of Irrigation and Drainage, 2016, 35(1): 6-10. (in Chinese with English abstract)
[18]劉仲秋,卞城月,劉馨惠,等. 種植模式及灌水頻次對冬小麥抗倒性的影響[J]. 排灌機械工程學報,2015,33(4):338-345.
Liu Zhongqiu, Bian Chengyue, Liu Xinhui, et al. Effect of different planting patterns and irrigation frequency on stalk lodging resistance of winter wheat[J]. Journal of Drainage and Irrigation Machinery Engineering, 2015, 33(4): 338-345. (in Chinese with English abstract)
[19]Shah L, Yahya M, Shah S M A, et al. Improving lodging resistance: Using wheat and rice as classical examples[J]. International Journal of Molecular Sciences. 2019, 20: 4211.
[20]Joseph G M D, Mohammadi M, Sterling M, et al. Determination of crop dynamic and aerodynamic parameters for lodging prediction[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2020, 202: 104169.
[21]Esehaghbeygi A, Hoseinzadeh B, Khazaei M, et al. Bending and shearing properties of wheat stem of alvand variety[J]. World Applied Sciences Journal, 2009, 6(8): 1028-1032.
[22]卞城月,馬長健,劉馨惠,等. 灌溉頻次與種植模式對冬小麥產量及水分利用效率的影響[J]. 灌溉排水學報,2016,35(2):81-85.
Bian Chengyue Ma Changjian, Liu Xinhui, et al. Effect of irrigation frequency and planting patterns on grain yield and water use efficiency of winter wheat[J]. Journal of Irrigation and Drainage, 2016, 35(2): 81-85. (in Chinese with English abstract)
[23]Dong Hao, Xia Guangli, Ju Zhengchun, et al. Effects of irrigation quantity and term on water consumption and yield of winter wheat by wide precision sowing[J]. Agricultural Science & Technology, 2016, 17(9): 2051-2054.
[24]秦大河. 中國極端天氣氣候事件和災害風險管理與適應國家評估報告[M]. 北京:科學出版社,2015.
Effects of planting patterns on the lodging resistance characteristics and yield of winter wheat with delaying irrigation at the jointing stage
Liu Zhongqiu1, Xu Hanghang1, Zhang Haonan1,2, Wu Hao1, Li Quanqi1※
(1.,,271018,; 2.,276001,)
Winter wheat is the primary cropping system in grain production in the North China Plain. In this study, two planting patterns were applied, including the precision planting pattern (W) and conventional cultivation planting pattern (C), in order to clarify the effect of different planting pattern on lodging resistance of winter wheat with delaying irrigation at the jointing stage. In each planting pattern, the winter wheat was irrigated with 60 mm at the jointing stage (I1), and delaying irrigation 60 mm for 10 d at the jointing stage (I2). The main physical indexes of winter wheat stalk were measured, including the plant height, gravity center height, and fresh weight, as well as the diameter, fresh density, and the wall thickness of the basic secondary internode. A systematic investigation was made on the internode mechanical indexes, such as the bending resistance and bending rigidity of basic secondary internode, lodging resistance index, the creep deformation in the basic secondary internode of winter wheat at heading, filling and dough growth stage. The planting pattern and irrigation schedule were explored for comprehensive optimization on the lodging resistance of winter wheat. The results showed that there was a significant trend to improve the bending resistance strength in the basic secondary internode, and the bending rigidity significantly increased at the heading stage under the wide precision planting pattern with delaying irrigation at the jointing stage. However, the bending resistance strength and bending rigidity in the basic secondary internode, and the fresh weight were significantly reduced at the dough stage in this treatment. The wide precision planting pattern with delaying irrigation at the jointing stage significantly increased the lodging resistance index at the heading stage, and thereby improved the lodging resistance index at the dough stage, where the average lodging resistance index at the heading, filling, and waxing stage were 2.03, 1.58and 1.87 N/(m·g), respectively. The basic secondary internode of winter wheat had creep characteristics under the proportional load less than its ultimate bending resistance strength. Specifically, the average maximum of creep strain was the highest at the heading stage, and it was still large at the filling stage under the wide precision planting pattern with delaying irrigation at the jointing stage. All of mechanical behavior was in the transition from the deceleration to stable creep stage, where the maximum creep strain ranged from 0.6%-3.7%, and the average maximum of creep strain ranged from 0.7%-2.5%. Combined with the lodging resistance index and creep test, the lodging resistance of winter wheat was the best under the condition of wide precision planting pattern with delaying irrigation for 10 d at the jointing stage. The findings can provide a promising theoretical basis and technical support for water saving and high yield of winter wheat in North China Plain.
irrigation; planting pattern; winter wheat; wide precision planting pattern; lodging resistance index; creep
劉仲秋,徐杭杭,張浩男,等. 推遲灌拔節水條件下種植模式對冬小麥抗倒伏特性和產量的影響[J]. 農業工程學報,2021,37(1):101-107.doi:10.11975/j.issn.1002-6819.2021.01.013 http://www.tcsae.org
Liu Zhongqiu, Xu Hanghang, Zhang Haonan, et al. Effects of planting patterns on the lodging resistance characteristics and yield of winter wheat with delaying irrigation at the jointing stage[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(1): 101-107. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.01.013 http://www.tcsae.org
2020-07-15
2020-10-01
國家自然科學基金項目(31571603);山東省自然科學基金項目(ZR2014CQ033);山東省重點研發計劃項目(2019GSF109054)
劉仲秋,博士,副教授,碩士生導師,研究方向為水利工程力學問題。Email:zqliu08@sdau.edu.cn
李全起,博士,教授,博士生導師,研究方向為灌排理論與技術、農業水土資源與環境問題。Email:quanqili@sdau.edu.cn
10.11975/j.issn.1002-6819.2021.01.013
S318
A
1002-6819(2021)-01-0101-07