鄭 威,周 紅,楊航波,黃 磊,2,陳玉成,2,彭 莉,楊志敏,2
海泡石添加對豬糞堆肥腐熟和水溶性有機質的影響
鄭 威1,周 紅1,楊航波1,黃 磊1,2,陳玉成1,2,彭 莉3,楊志敏1,2※
(1. 西南大學資源環境學院,重慶 400716;2. 農村清潔工程重慶市工程研究中心,重慶市生態環境農用地土壤污染風險管控重點實驗室,重慶 400716;3. 重慶市市政環衛監測中心,重慶 401121)
為明確黏土礦物的投加對畜禽糞便堆肥腐熟和穩定化的影響,該研究以豬糞和楊木木屑為原料,探究添加海泡石對堆肥基本理化性質、不同成分有機質含量以及溶解性有機質(Dissolved Organic Matter,DOM)結構的影響。結果表明,添加海泡石后堆體最高溫度比對照有所下降且電導率上升9.69%,而C/N則降低2.81%,同時種子發芽指數提高11.96%,顯示腐熟狀況更好;DOM含量降低7.84%而胡敏酸占比提高9.71%,使得堆體有機質更加穩定。熒光光譜分析表明,添加海泡石堆體DOM的熒光譜圖中,長波長的峰強在較短時間內出現了明顯增加;三維熒光光譜-平行因子分析顯示,添加海泡石增加了堆體中高芳香性組分的占比。相關性分析結果表明,添加海泡石后,高芳香性組分與總有機碳之間相關性更為顯著,說明海泡石在碳素分解的同時促進了其聚合,從而出現了胡敏酸與高芳香性熒光組分的增長。添加海泡石既能促進堆體腐熟,又可轉化調控碳素進而提高堆體穩定性,有利于堆肥的后續農田施用。
堆肥;糞;海泡石;堆肥穩定性;DOM;三維熒光-平行因子分析
畜禽糞便治理與資源化是大多數畜禽養殖場健康養殖的瓶頸之一。鑒于畜禽糞便中含有大量的植物生長所需要的營養成分,通過堆肥利用植物養分成為目前畜禽糞便資源化的主流技術[1]。好氧堆肥以其占地面積小、過程可控制、易操作、降解快、資源化效果好而備受青睞。傳統的好氧堆肥腐熟不穩定、氮素損失重,施入農田土壤容易造成作物根系局部缺氧并誘發氮素損失,甚至出現作物厭氧中毒[2],而添加劑的投加成為解決傳統好氧堆肥問題的重要途徑[3]。
常用的堆肥添加劑有:pH調節物(木灰、石灰、尿酸、木醋和竹醋等)[4-8]、化學試劑(鎂鹽和磷酸鹽等)[9-10]、菌劑[11]、生物炭[12]以及天然礦物[13-16]等。其中許多黏土礦物以其比表面積大和高離子交換量等優良的性能,在堆肥體系中已經得到應用,如膨潤土可以促進堆體腐熟和重金屬鈍化[13-14];坡縷石既能減少堆肥過程中溫室氣體排放,還具有明顯的保氮作用[15];硅藻土可減少堆體植物毒性[16]。同時,黏土礦物還與有機物之間關系密切,其通過表面羥基和內部離子交換吸附有機質到礦物內外,此過程不僅能抑制微生物對有機質的分解,還可促進有機物之間的凝聚,從而有效改變有機質的成分結構[17-18]。但黏土礦物與有機質關系雖在土壤體系中研究廣泛卻在堆肥體系中關注較少,而其中作為一種具有更高比表面積且廉價易得的黏土礦物[19]——海泡石在堆肥體系中亦鮮有研究。
在堆肥進程中有機質轉化更加活躍,水溶態作為微生物利用和轉化固相有機質的重要反應界面[20],使得溶解性有機質(Dissolve Organic Matter,DOM)成為堆肥各成分有機質中多變的中間組分。DOM的結構特征變化反應了堆肥穩定化進程,同時DOM的含量成為判斷堆肥腐熟的重要指標之一[21]。因此黏土礦物作為堆肥添加劑所引起的DOM變化值得進一步研究。
綜上,本研究擬采用海泡石(Mg8Si12O30(OH)4(H2O)4·8H2O)作為添加劑,在觀測海泡石改變堆體基本腐熟指標的基礎上,研究海泡石對堆肥產品的影響;采用激發-發散熒光光譜(Excitation-Emission Matrix Fluorescence Spectra,EEM)探討海泡石對堆體DOM結構的變化,從而明確海泡石添加對堆肥穩定化過程的影響機制。
新鮮豬糞取于重慶合川區某養豬場,楊木木屑購于江蘇連云港尚兮木質品商行公司,海泡石購于石家莊雨馨建筑材料有限公司(SiO2∶65%,MgO∶24%,Al2O3∶<5%,Fe2O3<0.15%,粒徑0.075 mm),堆肥原料的具體性質見表1。小白菜(L.)種子購于渝澳農業開發有限公司。
堆肥裝置有效體積為90 L,裝置外包裹橡塑海綿進行保溫,在反應器底部鋪設曝氣管,空氣從底部泵入(圖1),經布氣板平均氣流,曝氣設置為曝氣5 min,間隔55 min,其平均流量為1 L/min,堆肥整體周期為45 d。堆體以豬糞和木屑作為主要基質,豬糞與木屑按照質量比5∶3(w/w)的比例均勻混合,并用純水調節含水率至60%、每個堆體總質量26 kg。
試驗設2個處理,其中一個均勻添加9%(以干質量計)海泡石(記為T),另一個不添加作為對照(記為CK),重復2次。每周人工翻堆1次,每天9:00、15:00、21:00記錄堆體平均溫度。分別在第0、3、7、14、21、30、45 天采集堆體樣品,并分為兩部分:一部分作為鮮樣,存放在4 ℃中;另一部分作為風干樣,自然風干后粉碎,過0.15 mm篩。
1.3.1 堆肥理化性質測定
電導率(Electrical Conductivity,EC):用去離子水1∶10(w/v)浸提鮮樣后,用梅特勒-托利多的FE38電導率儀測定。
種子發芽指數(Seed Germination Index,GI):用去離子水1∶10(w/v)浸提鮮樣后,將8 mL浸提液加入到無菌培養皿(9 cm)的兩層濾紙上,并選取小白菜種子20粒均勻鋪在培養皿中,于恒溫培養箱中培養(溫度25 ℃,濕度80%,避光)96 h后測量發芽數和根長,按公式(1)計算GI[22]:
總有機碳(Total Organic Carbon,TOC)、總凱氏氮(Total Kjeldahl Nitrogen,TKN)、腐殖質(Humic Substance,HS)、胡敏酸(Humic Acid,HA)等使用風干樣測定,其中TOC用高溫外熱重鉻酸鉀氧化法,TKN用凱氏定氮法[23](C/N=TOC/TKN),HS、HA提取和測定采用焦磷酸鈉/氫氧化鈉浸提-TOC儀測定方法[22],胡敏酸百分比(Percentage of Humic Acid,PHA)(PHA=HA/HS)。
1.3.2 DOM測定與表征
按1∶10(w/v)浸提堆肥鮮樣,25℃下200 r/min震蕩24 h,上清液過0.45m濾膜,濾液中有機物即為DOM[24]。DOM采用GE InnovOx? Laboratory TOC分析儀測定(以有機碳計,mg/L)。
用0.1 mol/L的HCl或NaOH調節濾液pH值到7.0±0.2,為減少內濾效應,將DOM濃度稀釋到3 mg/L,使用Horiba 公司Aqualog?熒光光譜儀進行EEM熒光表征,其條件為:激發波長Ex范圍為230~450 nm,掃描間隔5 nm,發射波長Em范圍為230~550 nm,激發光源為 150 W 無臭氧氙弧燈,掃描信號積分時間為3 s,以超純水(18.2 MΩ·cm)作為空白,樣品分析中Aqualog系統自動扣除瑞利和拉曼散射[25]。
數據通過Origin 9.1作圖;采用MATLAB 2020a軟件對熒光數據矩陣進行平行因子分析;并由SPSS 22進行數據分析,對象之間相互關系采用相關性分析,并經Pearson檢驗,而對象之間的差異性分析采用One-way ANOVA(<0.05或<0.01)。
不同處理的堆體變化如圖2a所示,各個處理堆體溫度變化曲線都呈現出典型的3個時期:升溫期、高溫期和降溫期。因堆體基質中微生物活性和易分解有機物含量較高,使得在堆肥開始1~2 d內,T處理和CK堆體都分別達到最高溫62.7、67.5 ℃;隨著堆肥的繼續進行,易分解有機質消耗殆盡,微生物活性下降[26],在堆肥第14天左右堆肥進入降溫期(<50 ℃);為了減少病原菌,滿足有機肥衛生需要,一般要求堆體在55 ℃以上保持3 d[27],各處理達到了6~7 d,滿足衛生要求。雖然處理與對照的高溫期時長均為13 d,但處理高溫期溫度低于對照,可能是海泡石對碳素轉化的影響所致,這與Wang等[28]研究膨潤土對堆肥的影響結果相似。
由圖2b可見,T處理和CK的EC值整體呈現先降再升過程,而T處理的初始EC值并沒有因海泡石加入而出現明顯差異(T處理的EC值為3.68 mS/cm、CK為3.59 mS/cm);堆肥第3天,氨氮揮發和活性有機質降解導致各處理EC值明顯下降[29],而T處理EC值顯著高于CK(<0.05),其EC值下降較緩(T處理為3.36 mS/cm,CK為2.50 mS/cm),可能是海泡石的吸附作用緩解活性有機質分解所致;堆肥后期,有機物的礦化使得可溶性鹽濃縮,從而導致各處理的EC值上升[29]。堆肥結束后,T處理EC值(4.53 mS/cm)要顯著高于CK值(4.13 mS/cm)(<0.05),電導率上升9.69%,證明礦物的添加會增加堆體的EC值,Pan等[15]研究硅藻土對堆肥的影響中,也發現礦物的加入會提高堆體的EC值。
C/N綜合反應了碳素和氮素在堆肥過程中的變化,常用于判斷堆肥的穩定和腐熟[29]。海泡石稀釋作用雖使得海泡石處理的初始C、N含量有所下降(CK的C、N質量分數分別為45.49%和2.36%,而T處理的C、N質量分數分別為43.28%和2.26%),但各處理C/N并無明顯區別(>0.05);從整體來看,堆體C/N呈現先上升后下降的變化(圖2c);堆肥第3天,由于堆肥高溫期氮素損失大于碳素分解,使得C/N上升,而T處理的C/N為22.91,但與CK的23.22無顯著性差異(>0.05);隨著堆肥時間的延長,氮素上升且趨于穩定而碳素進一步分解,從而導致C/N下降;堆肥結束后,CK的TOC和TKN質量分數分別為42.05%和2.38%,T處理的TOC和TKN質量分數分別為35.76%和2.11%,CK的C、N含量皆顯著高于處理(<0.05),而其C/N(16.96)亦低于CK(17.45),降低2.81%,因此海泡石的加入對堆體的穩定有促進作用。
GI值可作為綜合評價堆體腐熟和毒性最直觀的指標[27]。圖2d可見,堆肥前期,各處理GI值均較低,且堆肥第3天出現小幅下降(T處理為24.5%,CK為12.8%),原因在于堆肥初期堆體中堆肥有機質不穩定,對種子發芽影響較大[15];而隨著堆肥的繼續進行,堆體有機物進一步的穩定,使得GI值穩定上升;堆肥結束后,T處理和CK的GI值分別為0.87和0.76,都達到了堆肥腐熟以及作物可接受程度(GI>0.5)[30],而對比CK,T處理的GI值上升11.96%,顯著提高了堆體的GI值(<0.05)。整體來說,海泡石的投加雖然增加了EC值,但也促進堆體有機質的穩定,并在一定程度上稀釋了堆體毒性,因此通過GI值可見,海泡石加入有利于減少堆肥最終產物的生物毒性。
DOM含量的變化和堆體的穩定性以及生物毒性有密切聯系[19]。從圖3a可見,T處理和CK的DOM含量(以碳計)在高溫期出現了短暫的上升,這是由于前期微生物活性強,易分解且不溶水的有機物降解所致;而高溫期后,易被微生物利用的碳源不足,從而DOM含量逐漸下降[31]。與CK相比,T處理的DOM含量變化要更平緩,雖然兩者DOM值都在第3 天分別達到最高值(T處理為11.36 g/kg,CK為13.78 g/kg),但T處理的DOM值要更低,且下降趨勢更加緩慢。有機質的極性官能團可以先通過配體交換和黏土礦物表面羥基進行簡單結合,并在礦物表面形成較為穩定的內層絡合物,從而保護有機質不被分解[32]。海泡石的加入可能通過其吸附作用保護了DOM不被分解,使得DOM的分解更加緩慢,而也可能是海泡石處理的溫度略低的原因(圖2a)。堆肥結束后,T處理和CK的DOM值分別為6.00、6.51 g/kg,海泡石加入顯著降低DOM含量(<0.05),相比CK下降了7.84%,增強了堆體的穩定性,這與Wang等[28]研究膨潤土對堆肥的影響結果相似。
胡敏酸作為腐殖質的組成成分之一,由于具有更大的分子量和芳香性結構,使得胡敏酸與腐殖質的比例(PHA)的改變不僅代表腐殖質組成的變化,也反應了堆體的腐熟情況[33]。PHA總體呈現逐漸上升的趨勢(圖3b),堿提取腐殖質中胡敏酸占比逐步提升,證明了堆體有機質腐殖化程度的增強,而堆體有機質的穩定性也隨之提高。堆肥結束后,相比CK,T處理的PHA值(60%)要高于CK(55%)(<0.05),增長9.71%,具有高分子量的胡敏酸占比的提高說明了海泡石處理中有機質穩定性的提升。同樣,Ren等[16]發現不同比例硅藻土加入堆體,可改善堆體結構,增加微生物活性,從而出現胡敏酸含量提高22.87%情況。
2.3.1 堆肥過程中的熒光峰變化
從圖4堆肥過程的三維熒光光譜可以看出,海泡石處理和CK均存在4個熒光峰,其激發波長(Ex)/發射波長(Em)分別為:275 nm/335 nm(峰A,與微生物有關的蛋白類物質)、285 nm/420 nm(峰B,類腐殖酸物質)、335 nm/420 nm(峰C,類腐殖酸物質)以及230 nm/400~450 nm(峰D,類富里酸物質)[34-36]。
堆肥開始,CK和T處理熒光圖中,均只存在明顯的峰A,其余峰并不明顯;在堆肥第7天,T處理熒光圖中峰B、峰C和峰D均出現并具有較高的熒光峰強,而CK僅峰D較為明顯;隨著堆肥繼續進行,各處理的峰A的熒光強度逐漸下降,更長波長峰B、峰C和峰D更加明顯;研究表明,由于更長波長的熒光峰與結構聚合度更高的有機質密切相關,由此峰A下降而其他峰的上升,熒光圖的變化說明堆肥過程中DOM的組成成分從易降解、低芳香性結構向著難降解、高芳香性的結構轉化[37],而此過程和堆體腐熟過程和腐殖化過程一致。另外,海泡石的加入對第7天的DOM的熒光峰影響顯著的原因可能在于其對小分子有機質的凝聚作用,使得水溶性的易降解的有機物在堆肥初期能快速的向難生物降解的物質轉化[38]。而還需指出的是,由于單純的熒光譜圖不能反應DOM中所有成分,對比圖4d可見,在同等尺度以及相同熒光峰的情況下,總的熒光強度有所差異,還需對DOM的熒光基團的具體情況進行更深入分析。
2.3.2 堆肥過程中3D-EEM的平行因子分析
根據平行因子分析將DOM分成3個組分(圖5):組分1(component 1,C1)Ex/Em為240(325) nm/410~425 nm,與富里酸物質類似[39];組分2(component 2,C2)Ex/Em為<230(275) nm/330 nm,與蛋白質物質類似[40];組分3(component 3,C3)Ex/Em為260(350) nm/460~475 nm,與腐殖酸物質類似[41]。同時,根據組分熒光峰的位置可知,DOM中各個組分的腐殖化程度順序為[42]:C3>C1>C2。
DOM樣品EEM的每個組分的最大熒光強度(maximum fluorescence intensity,max)值作為熒光組分的信號強度的得分值,其值反應堆肥不同階段樣品中組分的相對濃度。從圖6可知,3個組分總的max值大小存在差異,對比第21天的處理與CK,發現T處理的總max值(9 220)要遠低于CK(15 099),從而導致圖4d在同尺度下存在差異。因此,在固定了DOM濃度為3 mg/L后,對比各組分max值的占比情況,更能反映DOM腐殖化程度。堆肥第0天,T處理和CK主要以C2為主,C3和C1占比較低,與圖4a的出峰情況一致;隨著堆肥過程進行,C2的max值以及占比下降明顯,同時伴隨著C1和C3的上升,證明了在堆肥腐熟化進程中易降解有機物在被分解利用的同時,也存在著向難分解有機物轉化的過程;堆肥第7天,T處理的C2占比(33.18%)要明顯低于CK(39.05%),而處理的C3占比相應的提升,與圖4b的熒光強度變化相符;總體上,DOM的成分變化和堆體的穩定性相關,而海泡石的加入對DOM作用不僅在于促進了不穩定的C2含量的快速下降,同時也加速更穩定的C3含量增加,從而加速了堆體解毒,而上文中反應堆體植物毒性的GI值(圖2d)也進一步驗證了此過程。
堆肥過程中的基本參數的相關性的正負關系較為固定,海泡石的加入對堆肥的相關性影響主要在其值大小的變化。如表2表3所示,從GI來看,CK中GI值與DOM(=?0.890,<0.01)和TOC(=?0.961,<0.01)均呈極顯著負相關;而與HA(=0.859,<0.05)和熒光組分C1(=0.784,<0.05)均呈顯著正相關,這再一次證明了易降解有機質的分解和穩定有機質的生成是堆肥解毒的重要因素。同時,DOM中熒光C3組分作為芳香性更高的成分與堆肥理化指標中的HA以及TOC具有較強相關性。海泡石處理中HA與C3呈顯著正相關(=0.836,<0.05),與TOC則呈顯著負相關(=?0.963,<0.01),而CK的TOC與C3之間相關性并沒有達到顯著(?0.653,>0.05)。從而說明海泡石加入使得TOC分解與HA產生具有更強的關聯性。
注:*,**分別表示相關性系數的顯著性,<0.05,<0.01
Note: * and ** represent significant correlation coefficients at<0.05,<0.01 levels

表3 T處理熒光組分和堆肥理化指標之間的相關性分析
注:*,**分別表示相關性系數的顯著性,<0.05,<0.01
Note: * and ** represent significant correlation coefficients at<0.05,<0.01 levels
結合DOM含量、熒光成分以及相關性變化可知,海泡石的加入改變了碳素轉化過程,其變化與微生物對有機質的降解以及易降解有機物的聚合密不可分。海泡石加入在一定程度上抵御了微生物對小分子有機物的分解,從而出現DOM含量下降變緩(圖3a),同時由于高比表面的海泡石對有機質的吸附以及凝聚作用使得DOM中復雜結構的熒光組分含量得以提高(圖6)。海泡石在堆肥過程對易降解有機物的綜合作用,減少了堆體的生物毒性,提高堆體作為有機肥的利用價值。
1)海泡石添加的堆體出現了電導率提高和溫度降低的情況,但同時卻使得C/N降低2.81%,種子發芽指數上升11.96%,增加了堆體的腐熟。
2)海泡石加入堆肥降低了7.84%的溶解性有機質含量且高芳香性組分增加明顯,同時提高了9.71%的胡敏酸比例,堆體穩定性增強。
3)海泡石添加的堆體中胡敏酸與高芳香性組分呈更顯著正相關(=0.836,<0.05),且與總有機碳呈更顯著負相關(=?0.929,<0.01),從而判斷海泡石添加對堆肥碳素轉化途徑的影響在于,有機質分解同時促進了穩定性更高的有機物產生。
[1] 郭冬生,彭小蘭,龔群輝,等. 畜禽糞便污染與治理利用方法研究進展[J]. 浙江農業學報,2012,24(6):1164-1170.
Guo Dongsheng, Peng Xiaolan, Gong Qunhui, et al. Pollution of livestock and poultry feces and countermeasures[J]. Journal of Zhejiang Agriculture, 2012, 24(6): 1164-1170. (in Chinese with English abstract)
[2] 李旭,路明藝,師曉爽,等. 多孔填充劑促進牛糞秸稈高溫恒溫堆肥有機質降解減少氮損失[J]. 農業工程學報,2018,34(增刊1):132-137.
Li Xu, Lu Mingyi, Shi Xiaoshuang, et al. Accelerating organic matter degradation and reducing NH3emission during constant high temperature composting of cattle manure and corn straw with addition of porous [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(Supp.1): 132-137. (in Chinese with English abstract)
[3] Pagans Estela, Barrena Raquel, Font Xavier, et al. Ammonia emissions from the composting of different organic wastes, dependency on process temperature[J]. Chemosphere, 2006, 62(9): 1534-1542.
[4] Jonathan W-C Wong, Shun On Fung, Ammaiyappan Selvam. Coal fly ash and lime addition enhances the rate and efficiency of decomposition of food waste during composting[J]. Bioresource Technology, 2009, 100(13): 3324-3331.
[5] Bougnom B P, Mair J, Etoa F X, et al. Composts with wood ash addition: A risk or a chance for ameliorating acid tropical soils?[J]. Geoderma, 2009, 153(3): 402-407.
[6] Jukka M Kurola, Mona Arnold, Merja H Kontro, et al. Wood ash for application in municipal biowaste composting[J]. Bioresource Technology, 2011, 102(8): 5214-5220.
[7] Chen Yingxu, Huang Xiangdong, Han Zhiying, et al. Effects of bamboo charcoal and bamboo vinegar on nitrogen conservation and heavy metals immobility during pig manure composting[J]. Chemosphere, 2009, 78(9): 1177-1181.
[8] Liu Ling, Guo Xiaoping, Wang Shuqi, et al. Effects of wood vinegar on properties and mechanism of heavy metal competitive adsorption on secondary fermentation based composts[J]. Ecotoxicology and Environmental Safety, 2018, 150: 270-279.
[9] Jiang Tao, Ma Xuguang, Yang Juan, et al. Effect of different struvite crystallization methods on gaseous emission and the comprehensive comparison during the composting[J]. Bioresource Technology, 2016, 217: 219-226.
[10] Jiang Jishao, Huang Yimei, Liu Xueling, et al. The effects of apple pomace, bentonite and calcium superphosphate on swine manure aerobic composting[J]. Waste Management, 2014, 34(9): 1595-1602.
[11] Zhao Yi, Zhao Yue, Zhang Zhechao, et al. Effect of thermo-tolerant actinomycetes inoculation on cellulose degradation and the formation of humic substances during composting[J]. Waste Management, 2017, 68: 64-73.
[12] Liu Wei, Huo Rong, Xu Junxiang, et al. Effects of biochar on nitrogen transformation and heavy metals in sludge composting[J]. Bioresource Technology, 2017, 235: 43-49.
[13] 任秀娜,王權,趙軍超,等. 添加鈣基膨潤土對豬糞堆肥中水溶性有機物光譜特征的影響[J]. 光譜學與光譜分析,2018,38(6):1856-1862.
Ren Xiuna, Wang Quan, Zhao Junchao, et al. The effect of Ca-bentonite on spectra of dissolved organic matter during pig manure composting[J]. Spectroscopy and Spectral Analysis, 2018, 38(6): 1856-1862. (in Chinese with English abstract)
[14] 趙軍超,王權,任秀娜,等. 鈣基膨潤土輔助對堆肥及土壤Cu、Zn形態轉化和白菜吸收的影響[J]. 環境科學,2018,39(4):1926-1933.
Zhao Junchao, Wang Quan, Ren Xiuna, et al. Effect of Ca-bentonite on Cu and Zn forms in compost and soil, and their absorption by Chinese cabbage[J]. Environmental Science, 2018, 39(4): 1926-1933. (in Chinese with English abstract)
[15] Pan Junting, Li Ronghua, Zhai Limei, et al. Influence of palygorskite addition on biosolids composting process enhancement[J]. Journal of Cleaner Production, 2019, 217: 371-379.
[16] Ren Xiuna, Wang Quan, Awasthi Mukesh Kumar, et al. Improvement of cleaner composting production by adding Diatomite: From the nitrogen conservation and greenhouse gas emission[J]. Bioresource Technology, 2019, 286: 121377.
[17] Hsieh Yuch Ping. Soil organic carbon pools of two tropical soils inferred by carbon signatures[J]. Soil Science Society of America Journal, 1996, 60(4): 1117.
[18] Johnston Cliff T, Premachandra Gnanasiri S, Szabo Tamas, et al. Interaction of biological molecules with clay minerals: A combined spectroscopic and sorption study of lysozyme on saponite[J]. Langmuir, 2012, 28(1): 611-619.
[19] Bashir Saqid, Ali Umeed, Shaaban Muhammad, et al. Role of sepiolite for cadmium (Cd) polluted soil restoration and spinach growth in wastewater irrigated agricultural soil[J]. Journal of Environmental Management, 2020, 258: 110020.
[20] Said-Pullicino D, Gigliotti G. Oxidative biodegradation of dissolved organic matter during composting[J]. Chemosphere, 2017, 68(6): 1030-1040.
[21] Zhao Xinyu, He Xiaosong, Xi Beidou, et al. The evolution of water extractable organic matter and its association with microbial community dynamics during municipal solid waste composting[J]. Waste Management, 2016, 56: 79-87.
[22] 曹云,黃紅英,吳華山,等. 畜禽糞便超高溫堆肥產物理化性質及其對小白菜生長的影響[J]. 農業工程學報,2018,34(12):251-257.
Cao Yun, Huang Hongying, Wu Huashan, et al. Physico- chemical properties of hyperthermophilic composting from livestock manures and its effects on growth of Chinese cabbage[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(12): 251-257. (in Chinese with English abstract)
[23] 蔡函臻,寧西翠,王權,等. 堿性固體對污泥的調質堆肥影響及產品對土壤的改良潛力[J]. 環境科學,2016,37(12):4848-4856.
Cai Hanzhen, Ning Xicui, Wang Quan, et al. Effect of alkali solids amendment on sewage sludge aerobic composting and the potential of related products on infertile soil amelioration[J]. Environmental Science, 2016, 37(12): 4848-4856. (in Chinese with English abstract)
[24] 李丹,何小松,席北斗,等. 堆肥過程水溶性有機物組成和結構演化研究[J]. 環境科學,2016,37(9):3660-3669.
Li Dan, He Xiaosong, Xi Beidou, et al. Composition and evolution characteristics of dissolved organic matter during composting process[J]. Environmental Science, 2016, 37(9): 3660-3669. (in Chinese with English abstract)
[25] 陳雪霜,江韜,盧松,等. 典型水庫型湖泊中CDOM吸收及熒光光譜變化特征:基于沿岸生態系統分析[J]. 環境科學,2016,37(11):4168-4178.
Chen Xueshuang, Jiang Tao, Lu Song, et al. Spectral characteristics of chromophoric dissolved organic matter (CDOM) from a typical reservoir lake from inland of three gorges reservoir areas: In the view of riparian ecosystem analysis[J]. Environmental Science, 2016, 37(11): 4168-4178. (in Chinese with English abstract)
[26] 李季,彭生平. 堆肥工程實用手冊[M]. 北京,化學工業出版社,2011.
[27] 吳傳棟. 基于碳源調控的污泥堆肥氮素轉化及氨同化作用機制研究[D]. 哈爾濱,哈爾濱工業大學,2018.
Wu Chuandong. Study On Nitrogen Transformation and Ammonia Assimilation during Sewage Sludge Composting Based on Carbon Source Control[D]. Harbin, Harbin Institute of Technology, 2018. (in Chinese with English abstract)
[28] Wang Quan, Li Ronghua, Cai Hanzhan, et al. Improving pig manure composting efficiency employing Ca-bentonite[J]. Ecological Engineering, 2016, 87: 157-161.
[29] Li Ronghua, Wang Jim J, Zhang Zengqiang, et al. Nutrient transformations during composting of pig manure with bentonite[J]. Bioresource Technology, 2012, 121: 362-368.
[30] Paredes C, Cegarra J, Bernal M P, et al. Influence of olive mill wastewater in composting and impact of the compost on a Swiss chard crop and soil properties[J]. Environment International, 2005, 31(2): 305-312.
[31] Yang Yajun, Du Wei, Ren Xiuna, et al. Effect of bean dregs amendment on the organic matter degradation, humification, maturity and stability of pig manure composting[J]. The Science of the Total Environment, 2020, 708(15): 134623
[32] Kleber M, Sollins P, Sutton R. A conceptual model of organo- mineral interactions in soils: Self-assembly of organic molecular fragments into zonal structures on mineral surfaces[J]. Biogeochemistry, 2007, 85(1): 9-24.
[33] Jouraiphy Abdelmajid, Amir Soumia, Gharous Mohamed El, et al. Chemical and spectroscopic analysis of organic matter transformation during composting of sewage sludge and green plant waste[J]. International Biodeterioration & Biodegradation, 2005, 56(2): 101-108.
[34] Chen Wen, Westerhoff Paul, Leenheer Jerry A, et al. Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter[J]. Environmental Science & Technology, 2005, 37(24): 5701-5710.
[35] 曾鳳,霍守亮,席北斗,等. 豬場廢水厭氧消化液后處理過程中DOM變化特征[J]. 環境科學,2011,32(6):1687-1695.
Zeng Feng, Huo Shouliang, Xi Beidou, et al. Characteristics variations of dissolved organic matter from digested piggery wastewater treatment process[J]. Environmental Science, 2011, 32(6): 1687-1695. (in Chinese with English abstract)
[36] 劉曉明,余震,周普雄,等. 污泥超高溫堆肥過程中DOM結構的光譜分析[J]. 環境科學,2018,39(8):3807-3815.
Liu Xiaoming, Yu Zhen, Zhou Puxiong, et al. Spectroscopic characterization of DOM during hyperthermophilic composting of sewage sludge[J]. Environmental Science, 2018, 39(8): 3807-3815. (in Chinese with English abstract)
[37] He Xiaosong, Xi Beidou, Wei Ziming, et al. Spectroscopic characterization of water extractable organic matter during composting of municipal solid waste[J]. Chemosphere, 2011, 82(4): 541-548.
[38] He Xiaosong, Xi Beidou, Li Xiang, et al. Fluorescence excitation-emission matrix spectra coupled with parallel factor and regional integration analysis to characterize organic matter humification[J]. Chemosphere, 2013, 93(9): 2208-2215.
[39] Yu Guanghui, Luo Yihong, Wu Minjie, et al. PARAFAC modeling of fluorescence excitation-emission spectra for rapid assessment of compost maturity[J]. Bioresource Technology, 2010, 101(21): 8244-8251.
[40] Lu Fan, Chang Cheng-Hsuan, Lee Duujong , et al. Dissolved organic matter with multi-peak fluorophores in landfill leachate[J]. Chemosphere, 2009, 74(4): 575-582.
[41] Baghoth S A, Sharma S K, Amy G I. Tracking natural organic matter (NOM) in a drinking water treatment plant using fluorescence excitation-emission matrices and PARAFAC[J]. Water Research, 2011, 45(2): 797-809.
[42] Zhao Yue, Wei Yuquan, Zhang Yun, et al. Roles of composts in soil based on the assessment of humification degree of fulvic acids[J]. Ecological Indicators, 2017, 72:473-480.
Effects of sepiolite addition on pig manure compost maturity and dissolved organic matter
Zheng Wei1, Zhou Hong1, Yang Hangbo1, Huang Lei1,2, Chen Yucheng1,2, Peng Li3, Yang Zhimin1,2※
(1.,400716,;2.,,400716,;3.,401121,)
Pig manure has caused the most serious environmental pollution among various animal manure, where estimated approximately 776 million tons in each year in China. Aerobic composting can be expected as an effective technique to treat the solid organic wastes, thereby to decompose inconstant and hazardous organic matter, and futher to quickly reduce the total amount and inactivate biotoxicity of wastes. Previous reports indicated that clay minerals have observably influence on the decomposition of Organic Matter (OM) in soil system. However, the research is still lacking on the intermolecular interactions between clay minerals and OM in the composting, even though the OM was more simple and active. Taking the pig manure and poplar sawdust as raw materials, and sepiolite as a conditioner, this study aims to explore the influence of sepiolite on the stability of aerobic composting. An investigation was made on the variation in the maturity index of compost, organic matter in the different components of compost, and structure of Dissolved Organic Matter (DOM). The results showed that after sepiolite added, the maximum temperature of compost decreased obviously, and the electrical conductivity value increased by 9.69%, compared to control. However, the lower C/N (decreased by 2.81%) and higher seed germination index (increased by 11.96%) were observed with the addition of sepiolite without the negative impact of finial production, while showing better maturity. These indicators suggested that the organic fertilizers with the sepiolite addition were beneficial to the application for the farmland. Most previous studies focused on the content of DOM and humic acid, representing the stable and unstable components of OM in the compost production. Compared with the control, DOM content of compost with the addition of sepiolite was reduced by 7.84%, while the percentage of humic acid increased by 9.71%, indicating that the sepiolite can influence on the content of different components of OM, and thereby make the compost more stable. In this study, fluorescence spectra were used to represent the fluorescence characteristics of DOM, further to clarify the interactions between clay minerals and OM. An Excitation-Emission Matrices-Parallel Factor Analysis (EEM-PAFARAC) was used to quantify the proportion of DOM components. The results demonstrated that the sepiolite significantly increased the fluorescence intensity of long-wavelength peak in the fluorescence spectrum in a relatively short period, meaning that the more stable OM was produced more quickly. After the DOM components were distinguished by EEM-PAFARAC, the proportion of highly aromatic components increased significantly in the begining phase of compost with the addition of sepiolite, indicating more higher proportion in the final production. In order to explore the causes of OM transformation in composting, the correlation analysis showed that there was a more significant negative relationship between the highly aromatic component of DOM and total organic matter, compared with the control, indicating that the OM cannot decomposed, but converted into more stable OM in the sepiolite treatment. Therefore, the sepiolite as an additive can be used to reduce the biotoxicity of composting products, while to increase the degree of maturity, and the stability of compost via impacting on the structure of organic matter.
compost; manure; sepiolite; compost stability; DOM; EEM-PAFARAC
鄭威,周紅,楊航波,等. 海泡石添加對豬糞堆肥腐熟和水溶性有機質的影響[J]. 農業工程學報,2021,37(1):259-266.doi:10.11975/j.issn.1002-6819.2021.01.031 http://www.tcsae.org
Zheng Wei, Zhou Hong, Yang Hangbo, et al. Effects of sepiolite addition on pig manure compost maturity and dissolved organic matter[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(1): 259-266. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.01.031 http://www.tcsae.org
2020-10-26
2020-12-15
重慶市社會事業與民生保障科技創新專項重點研發項目(CSTC2017SHMS-ZDYFX0030);重慶市城市管理局項目(城管科字2018第05號);西南山地生態循環農業國家級培育基地項目(5330200076)
鄭威,研究方向為固體廢物處理與土壤修復。Email:471587596@qq.com.
楊志敏,副教授,主要研究方向為環境污染修復與管理。Email:bear@swu.edu.cn
10.11975/j.issn.1002-6819.2021.01.031
S141.4
A
1002-6819(2021)-01-0259-08