余薇薇,孫尉哲,杜邦昊,楊 威,蔣 暉,唐川東,楊 碩,謝明原,唐竟競
集約化奶牛場沼液沼灌區類固醇雌激素定量分析
余薇薇1,孫尉哲1,杜邦昊1,楊 威1,蔣 暉1,唐川東2,楊 碩1,謝明原1,唐竟競1
(1. 重慶交通大學河海學院水利水運工程教育部重點實驗室,重慶 400074; 2. 中國城市規劃設計研究院西部分院,重慶 401121)
隨著集約化奶牛場的發展,其產生的類固醇雌激素已成為新的環境污染源,因此建立沼液及土壤復雜組分中類固醇雌激素定量分析方法,考察不同季節類固醇雌激素含量變化十分必要。該研究對奶牛場沼灌區的沼液及土壤中5種類固醇雌激素(雌酮、17-雌二醇、17-雌二醇、雌三醇、雌酮硫酸鈉)建立了固相萃取-液相色譜串聯兩級質譜(SPE-LC-MS/MS)分析方法。針對沼液及土壤復雜基質特點,分別建立二者樣品前處理方法,處理后樣品采用電噴霧離子源負離子模式多反應監測分析。結果表明,檢測方法線性關系良好,檢出限為0.09~0.39 ng/L,定量限為0.24~1.18 ng/L,回收率范圍為74.56%~91.84%,該法可有效用于沼液及土壤中痕量雌激素的檢測。通過對沼液、沼灌區土壤樣品檢測發現,雌酮、17-雌二醇與17-雌二醇檢出頻率及濃度較高,而雌三醇與雌酮硫酸鈉檢出頻率及濃度較低。同時得到沼液出水及土壤縱深雌激素的含量分布,厭氧池出水中各物質濃度雌酮>17-雌二醇>17-雌二醇>雌酮硫酸鈉>雌三醇;好氧池出水中17-雌二醇>17-雌二醇>雌酮>雌酮硫酸鈉>雌三醇;不同縱深土壤中均為17-雌二醇>雌酮>17-雌二醇>雌酮硫酸鈉,未檢測出雌三醇;沼液中雌激素濃度隨季節溫度變化,土壤中隨季節性降低。試驗結果為研究復雜基質中雌激素檢測和分布提供一定理論依據和數據支撐。
沼液; 土壤;液質聯用;沼灌區類固醇雌激素;固相萃取;復雜基質
在肉類產品的巨大需求以及政府政策支持的推動下,中國畜牧業已從家庭經營的小型農場轉變為大型的集約化養殖場。美國農業部預測,到2025年,中國豬肉和牛肉的消費量將分別達到6 349和838萬t[1],消費的增加進一步促進了集約化養殖場的大規模發展。然而,這種大規模發展所帶來的潛在環境問題也引起了人們的關注。據報道,類固醇雌激素(Steroid Estrogens,SEs)可由包括牲畜在內的所有哺乳動物排泄,并以40~7 000 ng/L的濃度存在于養殖糞肥和廢水中,這些濃度比城市污水(1~80 ng/L)高出100倍,比野生動物內分泌系統紊亂的建議濃度高出1 000倍[2]。中國每年產生的養殖畜牧糞便更是達到40億t[3],動物糞便中因其含有大量的有機質,常常被用作農業肥料土壤灌溉[4],其中攜帶的SEs會隨之進入到土壤環境中,并不斷遷移積累,對周圍生態環境造成潛在風險,而現階段對沼液及沼液灌溉區域土壤中雌激素含量分布尚不明確。因此,建立快速、靈敏、可靠的檢測方法對沼液及沼液灌溉的土壤中雌激素含量進行測定很有必要。
在現有測定雌激素的方法中,色譜-質譜聯用法(Mass Spectrum, MS)包括氣相色譜-質譜聯用法(GC(Gas Chromatography)-MS)和液相色譜-質譜聯用法(LC (Liquid Chromatography)-MS),因其高靈敏度和高選擇性而成為應用最廣泛的方法[5-6]。但由于雌激素的低揮發性限制了GC-MS方法的應用,需要復雜的衍生化過程,相比之下LC-MS方法更加靈活和靈敏[7-10]。近年來液相色譜串聯兩級質譜法(LC-MS/MS)聯用技術日趨成熟,該法比LC-MS定性更可靠,定量更靈敏準確。然而,在通過LC-MS/MS進行復雜樣品的定量分析時,其準確性經常受到樣品基質的影響,且沼液和土壤中含有大量雜質,包括各類氨基酸、維生素、蛋白質以及各種微量元素,均可能會抑制或增強分析物的信號強度。為了減小誤差,樣品的前處理非常關鍵,固相萃取(Solid Phase Extraction,SPE)選擇性好,富集系數高,是最有效的樣品凈化和富集方法之一[11-13]。因此,通過建立類固醇雌激素的固相萃取-液相色譜串聯兩級質譜(SPE-LC-MS/MS)檢測方法,能夠消除沼液的復雜成分及土壤基質雜質對SEs檢測形成的干擾,實現對SEs的定量檢測。
當前對雌激素濃度檢測的研究多數集中于污水處理廠、自然水體中[14-16],而對濃度較高的集約化奶牛場及周邊沼液灌溉土壤研究較少。通過對雌激素濃度含量分布及季節性變化規律的研究,可深入了解SEs污染的環境行為。因此,對這種高風險地區雌激素濃度檢測及定性分析,可為今后估算農業生態系統中SEs污染的來源和風險提供理論支撐。
材料:Oasis HLB固相萃取柱(6 mL/200 mg,Waters),C18、NH2、Florisil固相萃取柱(6 mL/500 mg,Welchrom),高純度氮氣(純度≥99.999%),有機系尼龍微孔濾膜(津騰0.8m Φ50 mm)等。
試劑:甲醇、乙腈、乙酸乙酯、正己烷等均為色譜純,成都科隆;雌酮(E1)、雌二醇(17-E2)、雌二醇(17-E2)、雌三醇(E3)均為色譜純,北京百靈威(J&K)科技有限公司;雌酮硫酸鈉(E1-3S)色譜純,加拿大Toronto Research Chemicals (TRC)公司;氘代雌酮(E1-d4)、氘代雌酮硫酸鹽(E1-3S-d4)均為色譜純,加拿大CDN同位素公司。
儀器:三重四級桿液質聯用儀(Shimadzu LC-MS/MS-8060)、臺式低速離心機(JT800)、12位固相萃取裝置(Mediwax-12)、水浴氮吹儀(MTN-2800W-12)、渦旋混勻器(VORTEX-5)、純水儀(摩爾 Millipore)、電熱鼓風恒溫干燥箱(101A-6)、無油隔膜真空泵(津騰AP-9901S)。
樣品采集地點位于中國重慶市某集約化奶牛場(N29°19′16″,E106°38′37″),該養殖場占地約200 hm2,主要以飼養奶牛為主,約3 000頭。畜禽糞便及尿液主要采用全混合厭氧反應器(Continuous Stirred Tank Reactor,CSTR)工藝進行前處理,部分沼液用于土壤灌溉,部分沼液后續通過好氧池處理排放,日處理能力約480 m3。樣品采集時間為6月至12月,采集沼液樣品包括厭氧池出水和好氧池出水,選擇棕色樣品瓶(1 L)收集沼液,同時加入硝酸銅和鹽酸抑制微生物;采集土壤樣品選自周邊沼液灌溉區中性紫色土,沼液還田量為1 094 m3/hm2,還田時長15 d。采集0~2 cm表層土壤和5~10 cm中層土壤,土壤樣品放入鋁箔袋內避光保存。
1)沼液樣品處理:采用SPE法進行富集和凈化,取100 mL水樣經慢速定性濾紙過濾后,用0.8m有機尼龍濾膜進行抽濾,濾液保存在棕色玻璃瓶中,同時加入10 ng/mL的E1-d4和E1-3S-d4內標溶液。用甲醇(5 mL)、乙酸乙酯(5 mL)、超純水(5 mL)活化Oasis HLB萃取柱后對濾液進行富集,控制流速為2~3 mL/min。連接Oasis HLB柱和NH2柱,NH2柱活化選擇甲醇和超純水溶液,洗脫液選擇甲醇/乙酸乙酯(體積比:1/1,5 mL)和5%氨水甲醇溶液(5 mL)在1 mL/min流速下進行洗脫,洗脫液在氮氣下吹干并用甲醇重溶解,渦旋混勻。重溶解液利用Florisil柱進行二次洗脫,Florisil萃取柱選擇正己烷(5 mL)、正己烷/二氯甲烷(體積比:3/1,5 mL)活化,利用正己烷進行洗脫,氮吹、重溶解、渦旋混勻,1 mL甲醇渦旋混勻,富集倍數為100倍,0.22m有機系尼龍濾膜過濾,4 ℃保存待測。
2)土壤樣品處理:采用振蕩提取與SPE進行前處理,風干土壤樣品研磨后過0.125 mm(120目)篩,稱取1.0 g于聚丙烯離心管,選擇乙腈/乙酸乙酯(體積比:1/1,5 mL)和正己烷/乙酸乙酯(體積比:1/1,5 mL)作為溶解液,振蕩混勻后4 000 r/min離心30 min,上清液進行氮氣吹干,并用甲醇重溶解,渦旋混勻,加入10 ng/mL的E1-d4和E1-3S-d4內標溶液。選擇NH2柱進行洗脫,甲醇、超純水作為活化液,甲醇/乙酸乙酯(體積比:1/1,3 mL)和5%氨水甲醇溶液(5 mL)作為洗脫液。洗脫后在氮氣下吹干,甲醇重溶解,渦旋混勻,0.22m有機系尼龍濾膜過濾,4 ℃保存待測。
色譜條件:進樣量為1.0L;柱溫:30 ℃;駐留時間20 ms;流動相A為0.1%氨水,流動相B為乙腈;洗脫梯度為0~2.00 min,流動相B體積分數50%;2.00~3.00 min,流動相B體積分數90%;3.00~3.74 min保持流動相比例;3.74~4.19 min,流動相B體積分數10%;4.19~6.00 min保持流動相比例;流速為0.3 mL/min,保留時間為6 min。
質譜條件:離子源模式:電噴霧離子(ESI-);掃描范圍:50~600 m/z;霧化氣流量:3 L/min;加熱氣流量:10 L/min;脫溶劑溫度:250 ℃;接口溫度:300 ℃;加熱塊溫度:400 ℃;干燥氣流量:10 L/min;掃描方式:多反應監測(Multiple Reaction Monitoring,MRM)。
環境樣品中含有的微生物可對SEs產生一定的降解作用,會對檢測結果造成一定誤差,特別是針對痕量檢測結果[17],因此選擇合適的微生物抑制劑可使檢測結果更接近真實值。常用的微生物抑制劑有疊氮化鈉和鹽酸酸化[18-19],但疊氮化鈉具有劇毒,一些雌激素降解菌和酶具有廣泛的pH適應性[20],均會在取樣過程中產生一定的誤差。最終選擇硝酸銅(0.25 g/L)和鹽酸(4 mol/L)聯合使用作為微生物抑制劑,可使SEs的損失量小于3%[21],并在低溫環境下保存。
采用乙腈和甲醇作為流動相B的影響,發現乙腈會大大降低系統壓力并加快分析物的洗脫速度,因此被選作流動相B。流動相中的添加劑會影響色譜保留時間和信號響應。為了最大限度地提高靈敏度,在具有不同特性的若干常見的添加劑(甲酸、乙酸銨、甲酸銨、氫氧化銨)進行了選擇,使用0.1%的氨水溶液可以發現最佳的信號強度,提高化合物的電離強度獲得較高的響應值,這與趙超群[22]研究一致,因此選用0.1%氨水-乙腈作為流動相。
在LC-MS/MS電離方式中,用于雌激素分析的負模式ESI已成為電離的首選模式[23],因此,在負離子模式下,對目標物進行全Q1 MS掃描以確定母離子,對母離子進行二次掃描以確定定量子離子和定性子離子,然后選擇MRM模式對簇去電壓、碰撞能量等質譜參數進行優化。優化條件下目標物的MRM色譜圖如圖1所示。
為了獲得檢測樣品中痕量雌激素所需的靈敏度和選擇性,需要對前處理條件進行優化,優化的參數為萃取柱類型和洗脫溶劑。萃取柱通常有C18柱和Oasis HLB柱,Oasis HLB柱能吸附疏水性強的化合物也能吸附親水性強的化合物,比C18反向鍵和硅膠填料更大的容量和吸附能力[24],因此選用Oasis HLB柱作為萃取柱。考慮到樣品基質成分較復雜,采用分步凈化的方式,分別采用NH2柱和Florisil柱凈化2次,雌激素回收率更高。萃取柱根據洗脫強度,沼液樣品選擇正己烷進行洗脫,土壤樣品選擇甲醇/乙酸乙酯和5%氨水甲醇溶液進行洗脫。
2.4.1 方法線性范圍和檢出限
用乙腈配置一定濃度范圍的雌激素標準工作液,按照1.4分析條件進行測定,以待測物質的峰面積為縱坐標,雌激素質量濃度(樣品溶液:1、2、5、10、20、50、100、200g/L;內標溶液:0.1、0.2、0.5、1、2、5、10、20g/L)為橫坐標,進行線性回歸分析,分別以3倍、10倍信噪比計算得到方法檢出限(Limit of Detection,LOD)和定量限(Limit of Quantitation,LOQ),如表1所示。結果表明峰面積與濃度線性關系高,相關系數2>0.999,檢出限在0.09~0.39 ng/L之間,定量限在0.24~1.18 ng/L之間。
2.4.2 回收率
試驗中選擇E1-d4作為E1、17-E2、17-E2和E3的內標溶液,E1-3S-d4作為E1-3S的內標溶液,進行加標回收率試驗,結果表明沼液中平均加標回收率在74.56%~91.84%之間,土壤中平均加標回收率在81.37%~82.13%;沼液中相對標準偏差(Relative Standard Deviation,RDS)為16.94%~17.59%,土壤中RDS為13.23%~14.85%。證明該方法具有良好的準確性和精密度。

表1 SEs的線性方程、檢出限、定量限、線性范圍及相關系數
2.5.1 厭氧池出水SEs檢測
通過對厭氧池出水中SEs含量進行檢測,如表2、圖2所示。結果表明畜禽糞便及沼液經過厭氧處理后,5種雌激素仍然存在,其中E1和17-E2的檢出頻率均為100%,E1檢出濃度最大,達709.06 ng/L,且相對豐度均值大于50%,17-E2和17-E2濃度次之,分別為260.31 ng/L和304.92 ng/L,這主要是因為E1、17-E2和17-E2占了奶牛排出的SEs的90%以上[25]。與厭氧池進水中未經厭氧處理的原污水相比,原污水中SEs濃度大小表現為17-E2>E1>17-E2>E3>E1-3S,厭氧反應過后17-E2和17-E2濃度明顯降低,使E1在厭氧池出水中濃度最大,相應的E1的相對豐度均值也從40.15%增加至61.20%,原因是厭氧條件下,17-E2和17-E2易于向E1轉化[26]。E3和E1-3S濃度均較低,為16.31 ng/L和24.06 ng/L,檢出頻率也較低,且秋季和冬季均未檢測出E3,冬季未檢測出E1-3S,是因為E1、17-E2和17-E2是奶牛主要排放SEs之一,而E3主要來自豬和雞分泌的SEs中[27],E1-3S中的硫酸酯基又很容易被芳基硫酸酯酶分解轉化為E1。從夏季到冬季,E1和17-E2的平均濃度有所上升,可能是由于氣溫較低,厭氧菌活性下降,對雌激素的降解作用減弱。而17-E2的濃度呈下降的趨勢,說明在厭氧條件下,17-E2更容易被轉化。
2.5.2 好氧池出水SEs檢測
圖3顯示了好氧池出水中SEs濃度變化,畜禽沼液通過好氧處理后,5種雌激素仍然能全部檢出,雌激素濃度有所降低,但最大仍能檢測到600 ng/L左右的17-E2,若直接排入自然水體,仍然會對人類及動物產生潛在威脅。5種目標SEs平均濃度大小依次為17-E2>17-E2> E1>E1-3S>E3,與厭氧池出水濃度相比,E1濃度降低到80.093 ng/L,表明好氧處理可以有效降低E1的濃度。表3顯示檢出17-E2濃度最高,其相對豐度均值與好氧池相比增加47.10%,E1和17-E2相對豐度均值均有所降低,E3相對豐度均值增加,可能是由于在好氧條件下E1易于向17-E2和E3轉化,17-E2易于向17-E2轉化[28-29]。好氧條件下,好氧菌群對硫酸酯基的水解作用增強,E1-3S的去除率增加。冬季均未檢測出17-E2和E3,夏季和冬季未檢測出E1-3S。除17-E2外,其余SEs在好氧池中濃度均存在高-低-高的季節性變化,原因是秋季溫度適宜,SEs降解菌群活性高,而17-E2存在低-高-低的季節性變化,是因為SEs相互轉化的結果,也說明傳統好氧處理難以有效降解17-E2。

表3 好氧池出水SEs相對豐度均值及檢出頻率
2.5.3 表層土壤SEs檢測
表層土壤樣品檢測結果如表4、圖4所示,結果表明經厭氧池出水灌溉后的土壤中SEs濃度大小表現與沼液有所不同,這是由于SEs運輸、轉化和降解的協同作用的結果。幾種SEs濃度大小表現為17-E2>E1>17-E2> E1-3S,未檢測出E3,說明土壤對SEs存在吸附作用。其中17-E2和E1檢出最大濃度均大于10 ng/g,兩者相對豐度均值之和接近90%,檢出頻率均為100%,表明土壤中主要存在于17-E2和E1,而17-E2的檢出頻率和平均濃度較低,說明土壤對17-E2的吸附作用較弱,在土壤中的遷移能力更強。在夏季檢出各雌激素濃度均較高,逐漸隨季節性雌激素濃度降低,原因是夏季氣溫較高,農作物生長旺盛,沼液澆灌次數增多,而到冬季氣溫降低,沼液澆灌次數減少。且夏季到秋季雌激素濃度落差較大,由于夏季的雨水較多,徑流作用下表層土壤中雌激素易于流失或縱向遷移。

表4 表層土壤SEs相對豐度均值及檢出頻率
2.5.4 底層土壤SEs檢測
在5~10 cm土壤中仍然能夠檢測出一定濃度的SEs,幾種SEs濃度大小表現為17-E2>E1>17-E2>E1-3S,與表層土壤雌激素濃度大小表現相同,原因是雌激素會隨降雨淋溶[30-31],仍未檢測出E3,說明E3在土壤中易于轉化或易于被微生物分解。E1和17-E2檢出頻率與表層土壤表現相同,而17-E2和E1-3S檢出頻率和相對豐度均值與表層土壤相比有所增加,表明SEs可以進入土壤環境,甚至滲透到地下含水層。17-E2濃度在秋季表現出反常的增加,可能是由于土壤中微生物的作用使得雌激素的相互轉化的結果。底層土壤中雌激素濃度也表現出隨季節性降低。

表5 底層土壤SEs相對豐度均值及檢出頻率
1)針對沼液及土壤中復雜基質的特點,分別建立了沼液及土壤的前處理方法,通過對色譜質譜條件的優化,建立了高效、簡便的自由及結合態SEs的SPE-LC-MS/MS檢測方法,該方法檢出限為0.09~0.39 ng/L,定量限為0.24~1.18 ng/L,回收率范圍為74.56%~91.84%,相關系數2>0.999。
2)通過對沼液和沼灌土壤樣品進行測定,發現沼液和沼灌土壤樣品中主要存在于E1、17-E2與17-E2 3種SEs且濃度較高,而E3與E1-3S檢出頻率及濃度均較低,厭氧處理和好氧處理均對SEs有一定去除效果,且SEs之間存在相互轉化作用。厭氧池出水和好氧池出水中SEs濃度隨季節性變化,與溫度相關,而土壤中SEs濃度均隨季節性降低。借助該方法可對沼液及沼灌區土壤中SEs進行分析檢測,探究奶牛養殖場沼灌區SEs含量變化規律,為修復水體及土壤SEs污染提供理論依據和方法技術支撐。
[1] USDA.2016 international long-term projections to 2025 [EB/OL]. (2016-03-22)[2018-03-05].https://www.ers.usda.go/data-products/internatiional-baseline-data.
[2] Tremblay L A, Gadd J B, Northcott G L. Steroid estrogens and estrogenic activity are ubiquitous in dairy farm watersheds regardless of effluent management practices[J]. Agriculture, Ecosystems & Environment, 2018, 253: 48-54.
[3] 劉姝芳,李艷霞,張雪蓮,等. 東北三省畜禽養殖類固醇激素排放及其潛在污染風險[J]. 環境科學,2013,34(8):3180-3187.
Liu Shufang, Li Yanxia, Zhang Xuelian, et al. Steroid hormone emissions from livestock and poultry farming in the three northeastern provinces and their potential pollution risks[J]. Environmental Science, 2013, 34(8): 3180-3187. (in Chinese with English abstract)
[4] Duan M, Gu J, Wang X, et al. Factors that affect the occurrence and distribution of antibiotic resistance genes in soils from livestock and poultry farms[J]. Ecotoxicology Environmental Safety, 2019, 180: 114-122.
[5] Vitku J, Chlupacova T, Sosvorova L, et al. Development and validation of LC-MS/MS method for quantification of bisphenol A and estrogens in human plasma and seminal fluid[J]. Talanta, 2015, 140: 62-67.
[6] Kolatorova Sosvorova L, Chlupacova T, Vitku J, et al. Determination of selected bisphenols, parabens and estrogens in human plasma using LC-MS/MS[J]. Talanta, 2017, 174: 21-28.
[7] Yuan T F, Le J, Cui Y, et al. An LC-MS/MS analysis for seven sex hormones in serum[J]. Journal of Pharmaceutical and Biomedical Analysis, 2019, 162: 34-40.
[8] Kolatorova Sosvorova L, Sarek J, Vitku J, et al. Synthesis of 3alpha-deuterated 7alpha-hydroxy-DHEA and 7-oxo-DHEA and application in LC-MS/MS plasma analysis[J]. Steroids, 2016, 112: 88-94.
[9] Vitku J, Heracek J, Sosvorova L, et al. Associations of bisphenol A and polychlorinated biphenyls with spermatogenesis and steroidogenesis in two biological fluids from men attending an infertility clinic[J]. Environment International, 2016(89/90): 166-173.
[10] Sosvorova L, Vitku J, Chlupacova T, et al. Determination of seven selected neuro- and immunomodulatory steroids in human cerebrospinal fluid and plasma using LC-MS/MS[J]. Steroids, 2015, 98: 1-8.
[11] Goh S X, Duarah A, Zhang L, et al. Online solid phase extraction with liquid chromatography-tandem mass spectrometry for determination of estrogens and glucocorticoids in water[J]. Journal of Chromatography A, 2016, 1465: 9-19.
[12] Tran N H, Hu J, Ong S L. Simultaneous determination of PPCPs, EDCs, and artificial sweeteners in environmental water samples using a single-step SPE coupled with HPLC-MS/MS and isotope dilution[J]. Talanta, 2013, 113: 82-92.
[13] Vulliet E, Wiest L, Baudot R, et al. Multi-residue analysis of steroids at sub-ng/L levels in surface and ground-waters using liquid chromatography coupled to tandem mass spectrometry[J]. Journal of Chromatography A, 2008, 1210(1): 84-91.
[14] Nie M, Yan C, Dong W, et al. Occurrence, distribution and risk assessment of estrogens in surface water, suspended particulate matter, and sediments of the Yangtze Estuary[J]. Chemosphere, 2015, 127: 109-116.
[15] Ekpeghere K I, Sim W J, Lee H J, et al. Occurrence and distribution of carbamazepine, nicotine, estrogenic compounds, and their transformation products in wastewater from various treatment plants and the aquatic environment[J]. Science of the Total Environment, 2018, 640/641: 1015-1023.
[16] Zhou X, Lian Z, Wang J, et al. Distribution of estrogens along Licun River in Qingdao, China[J]. Procedia Environmental Sciences, 2011, 10: 1876-1880.
[17] 張肖,丁長青. 糞便類固醇激素檢測準確性的影響因素[J].動物學雜志,2012,47(5):143-151.
Zhang Xiao, Ding Changqing. The influence factors on the accuracy of fecal steroid hormone detection[J]. Chinese Journal of Zoology, 2012, 47(5): 143-151. (in Chinese with English abstract)
[18] Zhang H, Shi J, Liu X, et al. Occurrence and removal of free estrogens, conjugated estrogens, and bisphenol A in manure treatment facilities in East China[J]. Water Research, 2014, 58(7): 248-257.
[19] 宋曉明. 農業土壤中類固醇雌激素的潛在風險與歸趨機理研究[D]. 沈陽:沈陽大學,2018.
Song Xiaoming. Study on Potential Risk and Fate and Transport Mechanism of Steroid Estrogens in Agricultural Soil[D]. Shenyang: Shenyang University, 2018. (in Chinese with English abstract)
[20] Xiong W, Yin C, Wang Y, et al. Characterization of an efficient estrogen-degrading bacterium Stenotrophomonas maltophilia SJTH1 in saline-, alkaline-, heavy metal-contained environments or solid soil and identification of four 17-estradiol-oxidizing dehydrogenases[J]. Journal of Hazardous Materials, 2020, 385: 121616.
[21] Butwell A J, Hetheridge M, James H A. Endocrine disrupting chemicals in wastewater: A review of occurrence and removal[M]. UK Water Industry Research Limited, London, 2002.
[22] 趙超群,李櫻紅,劉柱,等. 超高效液相色譜-串聯質譜法同時測定奶粉中8種雌激素殘留[J]. 藥物分析雜志,2020,40(2):253-259.
Zhao Chaoqun, Li Jianghong, Liu Zhu, et al. Simultaneous determination of 8 estrogen residues in milk powder by ultra performance liquid chromatography-tandem mass spectrometry[J]. Journal of Pharmaceutical Analysis, 2020, 40(2): 253-259. (in Chinese with English abstract)
[23] Tso J, Aga D S. A systematic investigation to optimize simultaneous extraction and liquid chromatography tandem mass spectrometry analysis of estrogens and their conjugated metabolites in milk[J]. Journal of Chromatography A, 2010, 1217(29): 4784-4795.
[24] Zhu B, Ben W, Yuan X, et al. Simultaneous detection of endocrine disrupting chemicals including conjugates in municipal wastewater and sludge with enhanced sample pretreatment and UPLC-MS/MS[J]. Environmental Science: Processes & Impacts, 2015, 17(8): 1377-1385.
[25] Zhang H, Shi J, Liu X, et al. Occurrence and removal of free estrogens, conjugated estrogens, and bisphenol A in manure treatment facilities in East China[J]. Water Research, 2014, 58: 248-257.
[26] Noguera-Oviedo K, Aga D S. Chemical and biological assessment of endocrine disrupting chemicals in a full scale dairy manure anaerobic digester with thermal pretreatment[J]. Science of the Total Environment, 2016, 550: 827-834.
[27] Katia, Noguera-Oviedo, Diana, et al. Chemical and biological assessment of endocrine disrupting chemicals in a full scale dairy manure anaerobic digester with thermal pretreatment[J]. Science of the Total Environment, 2016.
[28] Mashtare M L, Lee L S, Nies L F, et al. Transformation of 17-Estradiol, 17-Estradiol, and estrone in sediments under nitrate- and sulfate-reducing conditions[J]. Environmental ence & Technology, 2013, 47(13): 7178-7185.
[29] Mashtare M L, Green D A, Lee L S. Biotransformation of 17- and 17-estradiol in aerobic soils[J]. Chemosphere, 2013, 90(2): 647-652.
[30] Gall H E, Sassman S A, Lee L S, et al. Hormone Discharges from a Midwest Tile-Drained Agroecosystem Receiving Animal Wastes[J]. Environmental Science & Technology, 2011, 45(20): 8755-8764.
[31] DeLaune P B, Moore Jr P A. 17-estradiol in runoff as affected by various poultry litter application strategies[J]. Science of the Total Environment, 2013, 444: 26-31.
Detection and variation of steroidal estrogens in intensive dairy farm marsh irrigation areas
Yu Weiwei1, Sun Weizhe1, Du Banghao1, Yang Wei1, Jiang Hui1, Tang Chuandong2, Yang Shuo1, Xie Mingyuan1, Tang Jingjing1
(1.,,,400074,; 2.,401121,)
Steroidal estrogen production has become an emerging source of environmental pollution, due to the huge demand for meat products as the rapid development of intensive farms. Therefore, it is necessary to establish quantitative analysis for steroidal estrogens in complex fractions of digestate and soil, in order to explore the changes of steroidal estrogens in different seasons. In this study, a solid phase extraction-liquid chromatography tandem mass spectrometry (SPE-LC-MS/MS) was developed for the analysis of five steroidal estrogens (estrone, 17-estradiol, 17-estradiol, estriol, and sodium estrone sulfate) in digestate and soil from the methane irrigation area of dairy farms. Sample pretreatments were made on the complex matrix characteristics of methane and soil. The treated samples were analyzed by multi-response monitoring in the negative ion mode with an electrospray ionization source. The results showed that there was good linearity of the assay, where the detection limits were 0.09-0.39 ng/L, the quantification limits were 0.24-1.18 ng/L, and the recoveries ranged from 74.56% to 91.84%. This technology was effectively used for the determination of trace estrogens in methane and soil. The frequency and concentration of estrone, 17-estradiol, and 17-estradiol were higher in the methane irrigation area soil samples from dairy farms, while the frequency and concentration of estriol and sodium estrone sulfate were lower. The average concentrations of estrone and 17-estradiol increased from summer to winter, indicating a weak degradation of estrogens, due to the lower temperature and lower activity of anaerobic bacteria. The concentration of 17-E2 showed a decreasing trend, indicating that 17-E2 was more easily converted under anaerobic conditions. In the anaerobic tank effluent, the concentration of each substance was ranked in order: estrone, 17-estradiol , 17-estradiol , estrone sodium sulfate > estriol in the anaerobic pond effluent, whereas, in the aerobic pond effluent: 17-estradiol ,17-estradiol ,estrone ,estrone sodium sulfate ,estriol. Soil adsorbed estrogens and the concentration of estrogens in soil was lower than that in the digestate, as a result of the synergistic effect of transport, transformation, and degradation of soil Steroid Estrogens (SEs). The surface soil and the subsoil showed the same magnitude of estrogen concentrations, where estrogens migrated with the soil and then accumulated. 17-E2 and E1 mainly presented in the surface soil, while 17-E2 was detected less frequently at a lower mean concentration, indicating a stronger migration capacity in the soil, where the soil was less adsorbed to 17-E2. The concentration of each estrogen was detected higher in summer and gradually decreased with the seasonal change. The reason was that the higher temperature and vigorous crop growth in summer contributed to the increase in the number of methane watering, while reduced, as the temperature decreased in winter. There was a large difference in estrogen concentration from summer to autumn, where the estrogen in the surface soil was easy to lose or migrate longitudinally under the runoff in summer. In the soil at different depths, the concentration of each substance was in order of: 17-estradiol, estrone, 17-estradiol, sodium estrone sulfate, but no estriol was detected. There was a seasonal trend of decline in the concentration of estrogen in the soil. The experimental findings can provide an insightful theoretical basis and data support for the estrogen detection and distribution in complex substrates.
digestate; soil; SPE; steroidal estrogens in wetland irrigation; liquid-mass coupling; complex substrates
余薇薇,孫尉哲,杜邦昊,等. 集約化奶牛場沼液沼灌區類固醇雌激素定量分析[J]. 農業工程學報,2021,37(5):241-247.doi:10.11975/j.issn.1002-6819.2021.05.028 http://www.tcsae.org
Yu Weiwei, Sun Weizhe, Du Banghao, et al. Detection and variation of steroidal estrogens in intensive dairy farm marsh irrigation areas[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(5): 241-247. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.05.028 http://www.tcsae.org
2020-12-03
2020-02-28
國家自然科學基金項目(51608079);重慶市研究生教育教學改革研究項目(yig182028);重慶市大學生創新創業訓練(S202010618007);重慶市教委科學技術研究項目(KJ1600541);重慶市基礎研究與前沿探索項目(cstc2018jcyjAX0322)
余薇薇,教授,研究方向為水處理。Email:yu11237@cqjtu.edu.cn
10.11975/j.issn.1002-6819.2021.05.028
X713
A
1002-6819(2021)-05-0241-07