999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

相對濕度對胡蘿卜熱風干燥過程中熱質傳遞特性的影響

2021-05-12 07:22:54巨浩羽趙海燕張衛鵬高振江肖紅偉
農業工程學報 2021年5期

巨浩羽,趙海燕,張衛鵬,高振江,肖紅偉

·農產品加工工程·

相對濕度對胡蘿卜熱風干燥過程中熱質傳遞特性的影響

巨浩羽1,趙海燕2,張衛鵬3,高振江4,肖紅偉4※

(1. 河北經貿大學生物科學與工程學院,石家莊 050061;2. 河北經貿大學工商管理學院,石家莊 050061; 3. 北京工商大學人工智能學院,北京 100048;4. 中國農業大學工學院,北京 100083)

為了揭示胡蘿卜熱風干燥過程中階段降濕的促干機制,該研究在干燥溫度60 ℃、風速3.0 m/s 條件下,研究了相對濕度(20%、30%、40%、50%)及第一階段相對濕度50%保持不同時間(10、30、60、90 min),然后第二階段相對濕度恒定為20%至干燥結束,干燥過程中對流傳熱系數、對流傳質系數和物料表面微觀孔隙結構的變化規律。研究結果表明:20%、30%、40%和50%相對濕度下,干燥初始時刻對流傳熱系數分別為42.9、64.7、135.1和178.9 W/(m2·℃),提高相對濕度能夠顯著提高預熱階段的對流傳熱系數(<0.05),相對濕度越高,物料升溫速率越快。物料吸收總熱量、水分蒸發消耗熱量占比均隨著相對濕度的升高而逐漸降低;物料升溫消耗熱量占比隨著相對濕度的升高而逐漸增大。相對濕度為20%時,對流傳質系數為1.01×10-6~2.54×10-6m/s;相對濕度為50%時,對流傳質系數為0.26×10-6~1.12×10-6m/s;降低相對濕度,能夠顯著的提高對流傳質系數。相對濕度50%保持30 min后降為20%干燥條件下,當干燥時間大于1.5 h后,對流傳質系數大于相對濕度50%分別保持10、60和90 min干燥條件下的對流傳質系數,此條件下干燥時間也最短。相對濕度50%干燥條件下有利于保持胡蘿卜表面的多孔結構,而相對濕度20%干燥條件下,胡蘿卜表面因干燥速率過快而導致水分遷移孔道發生收縮堵塞的現象。階段降濕提高胡蘿卜干燥效率的機制在于:干燥升速階段,高相對濕度提高了對流傳熱系數,使得物料迅速升至較高溫度;且利于維持物料表面多孔結構,有助于內部水分的擴散遷移;干燥恒速和降速階段,低相對濕度提高了對流傳質系數。研究結果可為求解干燥過程中的對流傳熱系數和對流傳質系數提供理論依據,揭示階段降濕的促干機理,并為階段降濕干燥方式在農產品的干燥加工應用提供技術支持。

干燥;相對濕度;對流傳熱系數;對流傳質系數;微觀孔隙結構

0 引 言

濕度作為熱風干燥介質的重要參數之一,對干燥熱質傳遞過程具有顯著影響。當干燥溫度和總壓一定時,在干燥研究中通常以相對濕度來反映干燥介質濕度或濕含量的大小。研究表明,降低相對濕度增大了干燥介質和物料表面的水蒸氣分壓差,使得干燥推動力加大,故能縮短干燥時間,提高干燥效率[1-5]。此外,針對表面易結殼的多孔農產品物料,階段降濕干燥方式,即為使用高濕空氣對物料進行預熱處理,待物料升高至較高溫度后降低相對濕度,有助于加快干燥速率并減少結殼現象發生,并應用于山藥片、杏子等物料的干燥加工中[6-9]。例如,陸學中等[10]研究發現,當山藥片厚度為4 mm、干燥溫度60 ℃,相對濕度40%預處理30 min而后熱風干燥相對比直接熱風干燥,其干燥時間縮短了將近50%;巨浩羽等[5]在胡蘿卜的熱風干燥研究中發現,第一階段相對濕度50%保持30 min而后降為相對濕度20%條件下的干燥時間比恒定相對濕度20%條件下縮短了18.5%;王慶惠等[11]和Yu等[12]同樣發現,階段降濕干燥方式有利于提高干燥速率。雖然階段降濕已被證實可提高干燥效率,但關于階段降濕的促干機理尚未充分揭示:高濕空氣預處理及降濕干燥過程中,物料能夠迅速升溫及快速脫水的發生機制尚不明確。而對流傳熱和傳質系數能夠體現相對濕度對于熱質傳遞的影響特性,物料表面微觀孔隙結構可反映相對濕度對于結殼作用的影響。因此本文擬從對流傳熱傳質系數和物料表面微觀孔隙結構2個方面來揭示階段降濕的促干機理。

對流傳熱系數(convective heat-transfer coefficient,h)和傳質系數(mass transfer coefficient,h)通常由努塞爾準數()和舍伍德準數()關聯式計算得出,一般用于分析物料與干燥介質的傳熱傳質過程或模擬物料的溫度水分空間分布[13-15]。Khan等[16]基于準數關聯式求解了hh,并模擬了蘋果塊微波熱風干燥過程中的溫度水分空間分布。Yuan等[17]同樣使用準數關聯式求解了蘋果塊熱風干燥過程中的hh,并模擬了溫度、水分和應力的空間分布。此外,hh還可由干燥過程中熱量平衡關系確定。Onwude等[18]采用集總熱容法求解了紅薯片紅外熱風組合干燥過程中的h。Lemus-Mondaca等[19]基于干燥過程中的熱量平衡關系,求解了長20 mm、寬30 mm、高10 mm的木瓜片在干燥溫度40~80℃、風速1.5 m/s的熱風干燥過程中的hh,其中h為0.25~4.50 W/(m2·K),h為3.10×10-7~6.05×10-6m/s。再者,張衛鵬等[20]和巨浩羽等[21]基于Dincer模型同樣求解得到h。然而,基于準數關聯式或模型計算得出的對流傳熱傳質系數為一常數,無法反映相對濕度對干燥過程中對流傳熱和傳質系數變化趨勢的影響規律。因此,本研究基于熱量平衡關系求解hh

綜上所述,為揭示階段降濕干燥方式的促干機理,基于作者前期得出的階段降濕干燥方式提高胡蘿卜干燥效率的結論[5],選用胡蘿卜為代表性試驗原料,進一步探究胡蘿卜在恒定相對濕度和階段降濕干燥過程中對流傳熱系數和傳質系數的變化規律,物料表面微觀孔隙結構,以揭示階段降濕提高干燥效率的機理,為階段降濕干燥方式在農產品干燥加工的應用及求解對流傳熱傳質系數提供理論依據和技術支持。

1 材料與方法

1.1 試驗原料、方法及試驗裝置

關于干燥介質相對濕度對胡蘿卜片熱風干燥特性的影響具體見巨浩羽等[5]中的描述。其中試驗條件簡介如下:試驗原料為長(2.0±0.1)cm,寬(2.0±0.1)cm,厚度為(1.0±0.1)cm的胡蘿卜片。干燥溫度為60 ℃、風速為3.0 m/s,相對濕度分為恒定相對濕度和階段降濕2種控濕方式(表1)。試驗裝置為基于溫濕度控制的箱式熱風干燥實驗裝置(中國農業大學工學院農產品加工技術與裝備實驗室自制,圖1)。內部擾流風機保障了內部溫濕度的均勻性,將溫濕度傳感器布置于干燥室的中心位置進行溫度和相對濕度的監測,傳感器型號為SHT15溫濕度傳感器(瑞士盛世瑞恩傳感器公司,溫度±0.3 ℃,相對濕度±2.0%)[22]。

表1 試驗設計與試驗參數

巨浩羽等[5]前期的研究主要結論為:恒定相對干燥條件下,干燥速率先上升后下降,且相對濕度越低干燥速率越大,相對濕度越高物料升溫速率越快,相對濕度20%比50%條件下干燥時間縮短了27.6%;階段降濕干燥條件下,熱風相對濕度50%保持30 min后降低為20%,其干燥時間比相對濕度恒定為20%條件下縮短了18.5%,干燥過程出現2個升速階段。

1.2 對流傳熱系數求解

干燥過程中,干燥介質以熱對流形式將熱量傳遞至物料表面,并假設胡蘿卜體積收縮可忽略,表面積大小不變[12]。物料表面從干燥介質中所吸收的熱量用于物料升溫和表面水分蒸發,熱量平衡關系為[23]。

其中Q為物料所吸收的總熱量,J;Q為物料升溫所消耗的熱量,J;Q為物料中水分蒸發所消耗的熱量,J。將式(1)分別寫為式(2)~(4):

式(1)改寫為式(5):

其中為物料的干基含水率,kg/kg,干燥時刻的計算公式如式(9)所示:

式中m為物料中絕干物質的質量,kg。

由式(5)和(7)得出對流傳熱系數h

1.3 對流傳質系數求解

干燥過程中對流傳質系數h由式(11)計算[25]:

式中M為干燥終了干基含水率,0.119 3 kg/kg;0為物料初始干基含水率,10.764 7 kg/kg;為物料體積,m3。

1.4 物料微觀孔隙結構的觀測

采用掃描電鏡觀察胡蘿卜的微觀組織結構。將干燥過程中的胡蘿卜中央部位的表皮部分切分成3 mm×3 mm×3 mm的立方體小樣品,樣品首先被安裝在磁控濺射儀(英國Quorum科技有限公司,SC7640)上,進行5 min噴金處理以固定組織結構,并在10 kV加速電壓下對其表面組織微觀結構用掃描電鏡(日本東京日立集團,S3400)進行觀察。重復觀看不同區域的組織結構,并選擇具有代表性圖片進行保存與進一步分析。

2 結果與分析

2.1 恒定相對濕度干燥條件下對流傳熱系數ht

恒定相對濕度和階段降濕干燥條件下胡蘿卜的熱風干燥特性曲線如圖2所示。干燥溫度60 ℃,相對濕度為20%、30%、40%、50%條件下,干燥時間分別為8.1、8.6、10.6和11.2 h;前期相對濕度50% 保持時間為10、30、60、90 min時,干燥時間分別為8.1、6.6、8.6、10.1 h。當相對濕度50%保持30 min而后采取恒定相對濕度20%的干燥時間比恒定20%相對濕度干燥條件下縮短了18.5%;保持10 min時干燥時間無顯著性差異(>0.05);保持60或90 min時,干燥時間延長。由圖2可知,相對濕度越大,干燥速率越低;階段降低相對濕度有助于提高干燥效率。

階段降濕干燥條件下,前期較高相對濕度對物料進行預熱處理,目的為使物料迅速升至較高溫度。故選取干燥過程中0~15 min內胡蘿卜溫度變化規律作為研究對象。不同恒定相對濕度20%、30%、40%和50%干燥條件下,0~15 min內胡蘿卜的溫度變化規律如圖3所示。由圖3可知,不同相對濕度下,0~4 min為物料升溫階段,4 min以后物料溫度緩慢上升。相對濕度越大,物料升溫速率越快,且能達到的溫度越高。當相對濕度為50%時,物料在4 min時迅速升至48.9 ℃,而當相對濕度為20%時,物料在4 min時升至34.9 ℃。此相對濕度對物料溫度的影響規律與Curcio等[26]和李長友等[27]的研究結論一致。

由式(5)計算得出不同恒定相對濕度下的對流傳熱系數h(圖4)。不同相對濕度下h整體上呈現出先下降后緩慢上升的趨勢,其中20%和30%相對濕度下h出現短暫的上升趨勢。20%、30%、40%和50%相對濕度下,在干燥初始時刻h具有顯著性區別(<0.05),大小分別為42.9、64.7、135.1和178.9 W/(m2·℃)。相對濕度50%時相對于20%干燥條件下h提高了3.17倍。因此,提高相對濕度可顯著的提高h,使物料升溫速率加快,這與Yu等[12]在研究多階段調控相對濕度提高胡蘿卜干燥效率的研究中所得結論一致。在干燥4 min以后,不同相對濕度干燥條件下h緩慢上升,從大到小依次為75.9、65.1、60.2和54.8 W/(m2·℃),此時物料溫度升溫至該干燥溫度和相對濕度所確定的濕球溫度,且胡蘿卜所吸收的熱量主要用于水分蒸發,對應于干燥過程逐漸進入恒速干燥階段[28]。

不同相對濕度下,在干燥前期0~15 min,胡蘿卜在每分鐘內所吸收的熱量Q,及物料升溫消耗熱量Q和水分蒸發所消耗熱量Q的求解結果如圖5所示。由圖5可知,不同相對濕度下,物料所吸收的總熱量變化規律與h相類似。相對濕度為50%時,物料升溫幅度最大,故在0~1 min內所吸收的熱量最多為543.2 J,且物料升溫消耗熱量所占百分比越大;相對濕度為20%時,物料升溫幅度最小,所吸收的總熱量最少為130.4 J。這說明相對濕度越大,物料所吸收的熱量熱多,且主要用于物料升溫,故升溫速率越快。在4 min以后,吸收熱量多用于水分蒸發,說明干燥逐漸進入恒速干燥階段。

不同相對濕度下,在干燥前期0~15 min,胡蘿卜吸收的總熱量Q,及各部分占比如圖6所示。由式(6)和(8)可知,在0~15 min內,C為3 914.3~3 926.1 J/(kg·℃);為240 606~2 463 631 J/kg。>>C,故物料每蒸發1 kg水分所消耗的熱量遠大于1 kg物料每升高1 ℃所消耗的熱量。當相對濕度為20%時,干燥速率最快,蒸發水分量最多,故物料吸收總熱量最多為1 387.9 J,總熱量中64.5%部分用于水分蒸發。而當相對濕度為50%時,干燥速率減小,水分蒸發量較少,故物料吸收的總熱量最少為1 159.3 J,總熱量中33.0%部分用于水分蒸發。物料吸收總熱量、水分蒸發消耗熱量占比均隨著相對濕度的升高而逐漸降低;物料升溫消耗熱量占比隨著相對濕度的升高而逐漸增大。

相對濕度對h影響機理分析。干燥溫度一定時,干燥介質的相對濕度越大,則單位質量的干燥空氣所攜帶的熱量,即焓值也越大,故單位時間內物料所吸收的熱量則越多。此外,高相對濕度抑制了表面水分蒸發,大部分熱量用于物料升溫,升溫速率加快。例如,當相對濕度為50%和20%時,干燥介質的焓值分別為237.8和127.1 kJ/kg;在0~15 min內分別共計775.8、492.2 J的熱量用于胡蘿卜片升溫。故提高相對濕度能夠提高h

2.2 恒定相對濕度干燥條件下的對流傳質系數hm

不同恒定相對濕度下,對流傳質系數h如圖7所示。由圖7可知,h隨干燥時間呈現出先上升后下降的變化趨勢;相對濕度為20%時,h為1.01×10-6~2.54×10-6m/s;相對濕度為50%時,h為0.26×10-6~1.12×10-6m/s。降低相對濕度,能夠顯著的提高h(<0.05)。物料干燥脫水過程由內而外分為:內部水分擴散遷移至表面和表面水分的蒸發兩個步驟[29-31]。相對濕度對表面水分的蒸發影響作用體現為,相對濕度越低,干燥介質和物料表面的水蒸氣分壓差越大,干燥推動力越大,故h越大[1,22,32]。相對濕度無法直接影響物料內部水分的擴散遷移,但是可以通過影響物料的升溫而間接影響內部水分擴散遷移。相對濕度升高時,物料升溫速率越快,加劇物料內部水分向外遷移;相對濕度降低時,表面水分蒸發加快,但不利于物料升溫和內部水分遷移[33-34]。相對濕度對傳熱和傳質均有影響,且高相對濕度主要體現為對物料溫度的影響,而低相對濕度體現為對表面水分蒸發的影響。

2.3 階段降濕干燥條件下的對流傳質系數hm

相對濕度50%分別保持10、30、60和90 min時,胡蘿卜干燥過程中的h變化趨勢如圖8所示。由圖8可知,不同保持時間干燥條件下,h均呈現出隨干燥時間先上升后下降的變化規律。當相對濕度保持10 min時,在0~1.5 h干燥速率大于其余3種情況,1.5 h后逐漸降低。這可能因為胡蘿卜沒有充分預熱,仍然存在著由內向外的溫度梯度。在降低相對濕度后干燥速率加快,內部水分不能及時擴散遷移至表面而導致胡蘿卜表面發生結殼,阻礙內部水分遷移,在1.5 h后干燥速率逐漸降低。當相對濕度50%保持30 min時,在1.5 h后h顯著大于其余三者(<0.05),此條件下干燥時間也最短。相對濕度保持30 min時,物料充分預熱,物料溫度空間分布趨于一致,降低濕度后干燥速率加快。

胡蘿卜的熱風干燥過程可分為升速、恒速和降速3個干燥階段。在升速干燥階段,物料需要充分預熱,因此需要利用高相對濕度能夠迅速加熱物料的優勢,即高相對濕度保持一定時間;在恒速干燥階段,干燥由表面水分蒸發所控制,因此此時需利用低相對濕度能夠加快水分蒸發的優勢,即相對濕度控制為較低值;在降速干燥階段,此時物料已逐漸趨于干燥介質的溫度,干燥由內部水分擴散遷移所控制,需使內部擴散遷移至表面的水分及時在表面蒸發,故同樣需要調控相對濕度為較低值[35-36]。結合胡蘿卜的熱風干燥特性及相對濕度對熱質傳遞的影響,故階段降濕干燥方式能夠提高胡蘿卜的干燥效率。

相同干燥溫度下,相對濕度越低時,干燥介質的水蒸氣分壓越低,則物料表面和干燥介質的水蒸氣分壓差則越大。根據費克第二定律及其邊界條件,干燥推動力越大,單位時間內脫除的水分愈多,故h越大。反之則h越小。在胡蘿卜預熱階段高相對濕度提高了h的值,縮短了預熱時間;在胡蘿卜恒速和降速干燥階段,胡蘿卜已具有較高溫度,內部水分擴散遷移速率加劇,此時降低相對濕度以提高h值,故階段降低相對濕度有助于提高干燥效率。

2.4 相對濕度對胡蘿卜表面微觀孔隙結構的影響

選取高相對濕度50%在干燥10、30、60 min,以及低相對濕度20%在干燥10、30、60 min時刻的胡蘿卜表面微觀結構作為分析研究對象(圖9)。

由圖9可知,相對濕度50%干燥30 min時,胡蘿卜表面呈蜂窩狀的孔隙結構,干燥60 min后,水分遷移孔道結構愈加凸顯;相對濕度20%干燥條件下,胡蘿卜表面因干燥速率過快而水分遷移孔道發生收縮堵塞的現象,且隨著干燥時間的延長,結殼硬化現象愈明顯。因此高相對濕度有利于保持物料表面的多孔結構,從而有助于內部水分向表面的擴散遷移,這與Liu等[37]的研究結論一致。

結合相對濕度對h、h以及物料微觀孔隙結構的影響,得出階段降濕干燥方式中50%相對濕度保持30 min,物料表面具有多孔結構且升至較高溫度,此時降低相對濕度,促進表面水分蒸發,有助于提高干燥效率。

3 結 論

1)提高相對濕度越能夠顯著提高干燥預熱階段的對流傳熱系數h(<0.05),物料升溫速率越快。干燥初始時刻,相對濕度50%時相對于20%干燥條件下h提高了3.17倍。在0~15 min內,物料吸收總熱量、水分蒸發消耗熱量占比均隨著相對濕度的升高而逐漸降低;物料升溫消耗熱量占比隨著相對濕度的升高而逐漸增大。

2)降低相對濕度,能夠顯著的提高對流傳質系數h(<0.05)。當相對濕度50%保持30 min 后降為20%時,在1.5 h后h大于相對濕度50%分別保持10、60和90 min時的h,干燥時間也最短。此外,相對濕度50%干燥條件下有利于保持物料的表面的多孔結構,而相對濕度20%干燥條件下,胡蘿卜表面因干燥速率過快而水分遷移孔道發生收縮堵塞的現象。

綜上所述,階段降濕提高胡蘿卜干燥效率的機制在于:①干燥升速階段,高相對濕度提高了h,使得物料迅速升至較高溫度;②干燥升速階段高相對濕度有助于維持物料表面多孔的水分遷移孔道,有助于內部水分的擴散遷移;③干燥恒速和降速階段,低相對濕度提高了h。本研究結果可為求解干燥過程中的hh提供理論依據,揭示階段降濕的促干機理,并為階段降濕干燥方式在農產品的干燥加工應用提供技術支持。

[1]Phitakwinai S, Thepa S, Nilnont W. Thin‐layer drying of parchment Arabica coffee by controlling temperature and relative humidity[J]. Food Science and Nutrition, 2019, 7(9): 2921-2931.

[2]Ogawa T, Chuma A, Aimoto U, et al. Effects of drying temperature and relative humidity on spaghetti characteristics[J]. Drying Technology. 2017, 35(10): 1214-1224.

[3]Sabudin S, Hakimi Remlee M Z, Mohideen B, et al. Effect of relative humidity on drying kinetics of agricultural products[J]. Applied Mechanics and Materials. 2014, 699: 257-262.

[4]吳中華,李文麗,趙麗娟,等. 枸杞分段式變溫熱風干燥特性及干燥品質[J]. 農業工程學報,2015,31(11):287-293.

Wu Zhonghua, Li Wenli, Zhao Lijuan, et al. Drying characteristics and product quality of Lycium barbarum under stages-varying temperatures drying process[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(11): 287-293. (in Chinese with English abstract)

[5]巨浩羽,肖紅偉,鄭霞,等. 干燥介質相對濕度對胡蘿卜片熱風干燥特性的影響[J]. 農業工程學報,2015,31(16):296-304.

Ju Haoyu, Xiao Hongwei, Zheng Xia, et al. Effect of hot air relative humidity on drying characteristics of carrot slabs[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(16): 296-304. (in Chinese with English abstract)

[6]Ju H Y, Zhao S H, Mujumdar A S, et al. Energy efficient improvements in hot air drying by controlling relative humidity based on Weibull and Bi-Di models[J]. Food and Bioprod Process, 2018, 111: 20-29.

[7]Ju H Y, El-Mashad H M, Fang X M, et al. Drying characteristics and modeling of yam slices under different relative humidity conditions[J]. Drying Technology, 2016, 34(3): 296-306.

[8]Ju H Y, Zhao S H, Mujumdar A S, et al. Step-down relative humidity convective air drying strategy to enhance drying kinetics, efficiency, and quality of American ginseng root (Panax quinquefolium)[J]. Drying Technology, 2020, 38(7): 903-916.

[9]Dai J W, Rao J Q, Wang D, et al. Process-based drying temperature and humidity integration control enhances drying kinetics of apricot halves[J]. Drying Technology, 2015, 33(12): 365-376.

[10]陸學中,劉亞男,張德榜,等. 高濕預處理對懷山藥熱風干燥特性及復水性的影響[J]. 食品與機械,2017,33(11):147-151,183.

Lu Xuezhong, Liu Yanan, Zhang Debang, et al. Effect of high humidity preconditioning on hot air dyring and its rehydration of Chinese yam[J]. Food and Machinery, 2017, 33(11): 147-151, 183. (in Chinese with English abstract)

[11]王慶惠,李忠新,楊勁松,等. 圣女果分段式變溫變濕熱風干燥特性[J]. 農業工程學報,2014,30(3):271-276.

Wang Qinghui, Li Zhongxin, Yang Jinsong, et al. Dried characteristics of cherry tomatoes using temperature and humidityby stages changed hot-air drying method[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(3): 271-276. (in Chinese with English abstract)

[12]Yu X L, Zielinska M, Ju H Y, et al. Multistage relative humidity control strategy enhances energy and exergy efficiency of convective drying of carrot cubes[J]. International Journal of Heat and Mass Transfer, 2020, 149, doi: 10.1016/j.ijheatmasstransfer.2019.119231.

[13]程裕東,易正凱,金銀哲. 微波干燥過程中南極磷蝦肉糜的傳熱傳質及形變參數模型[J]. 農業工程學報,2020,36(3):302-312.

Cheng Yudong, Yi Zhengkai, Jin Yinzhe. Heat and mass transfer and deformation parameter model of minced Antarctic krill during microwave drying[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(3): 302-312. (in Chinese with English abstract)

[14]魏碩,陳鵬梟,謝為俊,等. 基于三維濕熱傳遞的玉米籽粒干燥應力裂紋預測[J]. 農業工程學報,2019,35(23):296-304.

Wei Shuo, Chen Pengxiao, Xie Weijun, et al. Prediction of stress cracks in corn kernels drying based on three-dimensional heat and mass transfer[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(23): 296-304. (in Chinese with English abstract)

[15]Ju H Y, Law C L, Fang X M, et al. Drying kinetics and evolution of sample’s core temperature and moisture distribution of yam slices () during convective hot air drying[J]. Drying Technology, 2016, 34(11): 1297-1306.

[16]Khan M I H, Welsh Z, Gu Y, et al. Modelling of simultaneous heat and mass transfer considering the spatia distribution of air velocity during intermittent microwave convective drying[J]. International Journal of Heat and Mass Transfer, 2020, 153, 119668.

[17]Yuan Y J, Tian L B, Xu Y Y, et al. Numerical and experimental study on drying shrinkage-deformation of apple slices during process of heat-mass transfer[J]. International Journal of Thermal Sciences, 2019, 136: 539-548.

[18]Onwude D I, Hashim N, Abdan K, et al. Modelling of coupled heat and mass transfer for combined infrared and hot-air drying of sweet potato[J]. Journal of Food Engineering, 2018, 228: 12-24.

[19]Lemus-Mondaca R A, Zambra C E, Vega-Gálvez A, et al. Coupled 3D heat and mass transfer model for numerical analysis of drying process in papaya slices[J]. Journal of Food Engineering, 2013, 116: 109-117.

[20]張衛鵬,肖紅偉,高振江,等. 中短波紅外聯合氣體射流干燥提高茯苓品質[J]. 農業工程學報,2015,31(10):269-276.

Zhang Weipeng, Xiao Hongwei, Gao Zhenjiang, et al. Improving quality of Poria cocos using infrared radiation combined with air impingement drying[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(10): 269-276. (in Chinese with English abstract)

[21]巨浩羽,趙海燕,張菊,等. 基于Dincer模型不同干燥方式下光皮木瓜干燥特性研究[J]. 中草藥,2020,51(15):3911-3921.

Ju Haoyu, Zhao Haiyan, Zhang Ju. et al. Drying characteristics of Chaenomeles sinensis with different drying methods based on Dincer model[J]. Chinese Traditional and Herbal Drags, 2020, 51(15): 3911-3921. (in Chinese with English abstract)

[22]巨浩羽,趙海燕,于賢龍,等. 基于溫濕度控制的箱式果蔬熱風干燥機設計[J]. 食品與機械,2020,36(7):97-103.

Ju Haoyu, Zhao Haiyan, Yu Xianlong, et al. Design and experiment of box type fruit and vegetable hot air dryer based on being controlled temperature and humidity[J]. Food and Machinery, 2020, 36(7): 97-103. (in Chinese with English abstract)

[23]Rahman N, Kumar S. Influence of sample size and shape on transport parameters during drying of shrinking bodies[J]. Journal of Food Process Engineering, 2010, 30(2): 186-203.

[24]Aversa M, Curcio S, Calabro V, et al. An analysis of the transport phenomena occurring during food drying process[J]. Journal of Food Engineering, 2007, 78(3): 922-932.

[25]Kaya A, Aydin O, Cevdet D. Cconcentration boundary conditions in the theoretical analysis of convective drying process[J]. Journal of Food Process Engineering, 2010, 30(5): 564-577.

[26]Curcio S, Aversa M, Calabrò V, et al. Simulation of food drying: FEM analysis and experimental validation[J]. Journal of Food Engineering, 2008, 87(4): 541-553.

[27]李長友,趙懿琨,馬興灶. 荔枝干燥熱濕特性模型解析與驗證[J]. 農業工程學報,2014,30(15):289-298.

Li Changyou, Zhao Yikun, Ma Xingzao. Model analytical and verification of heat and moisture characteristics in litchi drying[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(15): 289-298. (in Chinese with English abstract)

[28]Aversa M, Curcio S, Calabrò V, et al. An analysis of the transport phenomena occurring during food drying process[J]. Journal of Food Engineering, 2007, 78(3): 922-932.

[29]Pasban A, Sadrnia H, Mohebbi M , et al. Spectral method for simulating 3D heat and mass transfer during drying of apple slices[J]. Journal of Food Engineering, 2017, 212: 201-212.

[30]Castro A M, Mayorga E Y, Moreno F L. Mathematical modelling of convective drying of fruits: A review[J]. Journal of Food Engineering, 2018, 223: 152-167.

[31]朱文學. 食品干燥原理與原理與技術[M]. 北京:科學出版社,2009.

[32]巨浩羽,趙士豪,趙海燕,等. 干燥介質相對濕度對西洋參根干燥特性和品質的影響[J]. 中草藥,2020,51(3):631-638.

Ju Haoyu, Zhao Shihao, Zhao Haiyan, et al. Effect of relative humidity on drying characteristic and quality of Panacis Quinquefolii Radix[J]. Chinese Traditional and Herbal Drags, 2020, 51(3): 631-638. (in Chinese with English abstract)

[33]鄭霞,肖紅偉,王麗紅,等. 紅外聯合氣體射流沖擊方法縮短哈密瓜片的干燥時間[J]. 農業工程學報,2014,30(1):262-269.

Zheng Xia, Xiao Hongwei, Wang Lihong, et al. Shorting drying time of Hami-melon slice using infrared radiation combined with air impingement drying[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(1): 262-269. (in Chinese with English abstract)

[34]巨浩羽,張茜,郭秀良,等. 基于監測物料溫度的胡蘿卜熱風干燥相對濕度控制方式[J]. 農業工程學報,2016,32(4):269-276.

Ju Haoyu, Zhang Qian, Guo Xiuliang, et al. Control method of relative humidity of carrot hot air drying based on detecting material’s temperature[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(4): 269-276. (in Chinese with English abstract)

[35]張衛鵬,高振江,肖紅偉,等. 基于Weibull 函數不同干燥方式下的茯苓干燥特性[J]. 農業工程學報,2015,31(5):317-324.

Zhang Weipeng, Gao Zhenjiang, Xiao Hongwei, et al. Drying characteristics of poria cocos with different drying methods based on Weibull distribution[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(5): 317-324. (in Chinese with English abstract)

[36]Wang J, Bai T Y, Wang D, et al. Pulsed vacuum drying of Chinese ginger (Zingiber officinale Roscoe) slices: Effects on drying characteristics, rehydration ratio, water holding capacity, and microstructure[J]. Drying Technology, 2019, 37(3): 301-311.

[37]Liu L, Wang X C, Chen H C, et al. Numerical modeling of drying shrinkage deformation of cement-based composites by coupling multiscale structure model with 3D lattice analyses[J]. Computers and Structures, 2017, 178: 88-104.

Effects of relative humidity on heat and mass transfer characteristics of carrot during hot air drying

Ju Haoyu1, Zhao Haiyan2, Zhang Weipeng3, Gao Zhenjiang4, Xiao Hongwei4※

(1.,,050061,; 2.,,050061,; 3.,,100048,;4.,,100083,)

Humidity, as an important drying medium parameter, has significant influence on heat and mass transfer during drying process. It has the most significant influence on the heat and mass transfer during the drying process. Relative Humidity (RH) is often used to describe the humidity content of the drying medium under constant drying temperature and atmospheric pressure. The available research reported that the pressure difference of moisture vapor can be enlarged as RH decreased so that the drying force was enhanced for better drying efficiency. Additionally, step-down RH can accelerate the drying rate to prevent surface casehardening in the porous agriculture products whose surfaces were easily crusted during drying. Step-down RH drying means that a high RH is selected to pretreat the material until the temperature increases to a high level, and afterwards a decreased RH with a low value is obtained to increase surface moisture evaporation. Now, step-down RH has been successfully applied into the drying processing of yam slices, and American ginseng root. This study aims to reveal the mechanism for improved drying efficiency with step-down RH drying. Carrot slabs were selected to explore the convective heat transfer (h), convective mass transfer (h), and surface micro-pore structure under the drying condition of constant RH and step-down RH with constant drying temperature 60 ℃ and constant air velocity 3.0 m/s. The results showed that the increase of RH significantly enhancedh, so that the material temperature increased quickly to a high value. With 20%, 30%, 40%, and 50% RH,hwas 42.9, 64.7, 135.1, and 178.9 W/(m·℃), respectively. Thehvalue of 50% RH was 3.17 times that of 20% RH. During 0-15 min with 50% RH, the drying rate was small and little moisture was evaporated. The carrot obtained the least amount of heat of 1 159.3 J, of which 33.0% was used for water evaporation. During 0-15 min with 20% RH, the drying rate was high and more moisture was evaporated. The carrot obtained the most amount of heat of 1 387.9 J, of which 64.5% was used for water evaporation. Both absorbed energy and percentage of moisture evaporating decreased as RH increased. The percentage of energy consumption at material temperature increased as RH increased. When the RH was 20%,hwas 1.01×10-6-2.54×10-6m/s, whereas, when the RH was 50%,hwas 0.26×10-6-1.12×10-6m/s, indicating that the decreasing RH significantly increased thehcoefficient. When 50% RH was kept 30 min and then decreased to 20%, thehvalue was the maximum, compared with the other three holding time with high RH. With 50% RH drying condition, it was beneficial for keeping the material surface porous structure. However, when the RH was 20%, the moisture diffusion duct was easily shrunken and blocked, due to a high drying rate. Therefore, the mechanism of improved drying efficiency with step-down RH drying can be expressed as follows. Firstly, thehvalue was improved with the high RH in an increasing stage of drying rate. Secondly, the surface of the porous structure was also well kept with the high RH in the increasing stage of drying rate. Thirdly, thehincreased with the low RH in constant and falling drying rate. Such investigation can be expected to serve as a theoretical foundation to calculate thehandhduring the drying process. Meanwhile, the specific mechanism of improved drying efficiency can provide technical support for the wide use of step-down RH drying into agriculture products.

drying, relative humidity, convective heat transfer coefficient, convective mass transfer coefficient, micro-pore structure

巨浩羽,趙海燕,張衛鵬,等. 相對濕度對胡蘿卜熱風干燥過程中熱質傳遞特性的影響[J]. 農業工程學報,2021,37(5):295-302.doi:10.11975/j.issn.1002-6819.2021.05.034 http://www.tcsae.org

Ju Haoyu, Zhao Haiyan, Zhang Weipeng, et al. Effects of relative humidity on heat and mass transfer characteristics of carrot during hot air drying[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(5): 295-302. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.05.034 http://www.tcsae.org

2020-10-09

2020-12-06

河北省自然科學基金資助項目(C2020207004);河北省高等學??茖W研究項目(QN2021054);北京市自然科學基金(6204035);北京市教委組織部優秀人才項目(2018000020124G034)

巨浩羽,博士,講師,研究方向為農產品干燥技術和裝備。Email:ju56238@163.com

肖紅偉,博士,副教授,博士生導師,研究方向為農產品干燥技術與裝備。Email: xhwcaugxy@163.com

10.11975/j.issn.1002-6819.2021.05.034

TS255.1

A

1002-6819(2021)-05-0295-08

主站蜘蛛池模板: 日韩成人在线一区二区| 粉嫩国产白浆在线观看| 久久国产精品娇妻素人| 女人18毛片水真多国产| 国产迷奸在线看| 久久天天躁狠狠躁夜夜2020一| 国产一级毛片网站| 国产区精品高清在线观看| 又爽又黄又无遮挡网站| 97超碰精品成人国产| 暴力调教一区二区三区| 亚洲人妖在线| 性欧美精品xxxx| 久久久久国产精品嫩草影院| AV色爱天堂网| 亚洲最大综合网| 国产成人一区免费观看 | 一本无码在线观看| 99视频全部免费| 国产亚洲精品精品精品| 久久成人国产精品免费软件| 欧美色图久久| 免费一看一级毛片| 国产无人区一区二区三区| 国产男人的天堂| 亚洲男人的天堂在线观看| 亚洲成人精品| 国产一在线观看| 日本爱爱精品一区二区| 国产又黄又硬又粗| 欧美性精品| 国产精品手机在线观看你懂的| 天天色综合4| 国产麻豆精品在线观看| 日韩区欧美区| 欧美一区二区人人喊爽| 国产91熟女高潮一区二区| 国产日韩精品欧美一区喷| 欧美午夜网站| 另类欧美日韩| 国产成人精品免费av| 色老头综合网| 亚洲熟妇AV日韩熟妇在线| 欧美人人干| 思思热精品在线8| 最新精品久久精品| 亚洲AV色香蕉一区二区| 国产高潮流白浆视频| 青青久久91| 亚洲第一天堂无码专区| 精品人妻无码区在线视频| 四虎成人精品| 91小视频版在线观看www| 美女内射视频WWW网站午夜 | 日韩精品一区二区三区swag| 人妻出轨无码中文一区二区| 欧美午夜精品| 欧美日本中文| 亚洲午夜福利精品无码| 亚洲水蜜桃久久综合网站| 精品视频在线观看你懂的一区| 亚洲无码精品在线播放| 欧美精品啪啪| 国产啪在线91| 国产精品漂亮美女在线观看| 在线观看国产精品第一区免费| 日本精品视频一区二区| 亚洲欧美天堂网| 久久77777| 欧美亚洲国产精品第一页| 色哟哟精品无码网站在线播放视频| 日韩精品毛片人妻AV不卡| 第一区免费在线观看| 喷潮白浆直流在线播放| 亚洲精品无码成人片在线观看| 亚洲Aⅴ无码专区在线观看q| 亚洲国产成人麻豆精品| 久久午夜夜伦鲁鲁片不卡| 成人亚洲天堂| 97狠狠操| 亚洲福利视频一区二区| 亚洲成a人在线观看|