荊佳伊,劉曉佳,鄧麗莉,2,姚世響,2,曾凱芳,2
采收成熟度對晚熟W.默科特柑橘貯藏期品質的影響
荊佳伊1,劉曉佳1,鄧麗莉1,2,姚世響1,2,曾凱芳1,2※
(1. 西南大學食品科學學院,重慶 400715; 2. 西南大學食品貯藏與物流研究中心,重慶 400715)
W.默科特(Blanco)是中國重要的晚熟柑橘品種,為探究成熟度對果實品質及耐貯性的影響,以7個不同采收期(分別為11月25日,12月10日,12月24日,翌年1月7日,1月21日,2月7日以及2月19日采樣)的W. 默科特果實為試驗材料,對采收點及冷庫貯藏期間(0~150 d)的色澤、糖酸組分、抗壞血酸含量、含水率、硬度、失重率及腐爛率等進行測定。在采收點,2月7日采收的柑橘果實完全轉黃,抗壞血酸含量、可溶性固形物含量及固酸比均最高。冷庫貯藏期間,11月25日采收的果實可溶性固形物含量低,轉色較慢;12月下旬和1月上旬采收的果實在貯藏期間未發生腐敗變質,失重率均在5%左右,其中12月下旬采收的果實硬度降幅最低且抗壞血酸含量比其他采收期高。研究表明,鮮銷及冷藏的W.默科特果實的較佳采收期分別為翌年2月上旬及12月中下旬。研究結果為柑橘果實適時采收提供參考。
貯藏;品質控制;成熟度;W.默科特;采收期;品質變化
W.默科特又名W.Murcott 或Fourier,美國育成,是橘與甜橙的雜交品種,可溶性固形物含量平均為12.5%,酸含量平均為0.76%,無籽或含少量籽,易剝皮,深受消費者喜愛[1-2]。在中國柑橘市場中,中熟柑橘品種多而早熟晚熟柑橘少,晚熟柑橘W.默科特可掛果至翌年3月,可起到調節市場的作用,有利于柑橘產業的可持續發展[3]。近年來,對新引進品種W.默科特的研究多集中于保鮮方法[4],采前栽培技術[5],不同地區果實品質差異[1]等方面,而對適時采收的研究鮮有報道。
據報道,果實的成熟度與果實品質及采后耐貯性密切相關。對葡萄[6],油桃[7],獼猴桃[8],香蕉[9]等各類果實的研究表明,適時采收有利于延長果實貯藏期并提高果實品質。過早采收的果實,糖含量較低,口感酸澀,顏色偏綠,外觀品質較差;而較晚采收的果實,貯藏過程中更容易腐爛,造成較大的經濟損失。據報道,不同品種的柑橘,其采收時間也不盡相同。不知火桔橙果實在2月中旬采摘,可貯藏60 d,而3月份采摘僅可短期30 d以內貯藏[10];冷藏的紐荷爾臍橙最適采摘期為11月中旬到12月上旬[11];對成都地區的雜柑采收期相關試驗表明,愛媛21的最佳采收期為11月中旬,南香、愛媛22、愛媛30、愛蜜柑的最佳采收期為12月上旬,天草、壽柑的最佳采收期為12月下旬,春見的最佳采收期在次年1月下旬[12]。
為探究W.默科特在中國西南地區適宜鮮銷及貯藏后銷售的較佳采收時間,本研究以重慶江津地區為試驗點,以在11月中下旬到翌年2月中下旬采收的晚熟柑橘W.默科特作為試驗試材,選取了一系列理化指標作為評價標準,對不同采收期的果實品質及其低溫貯藏150 d內的品質變化規律進行了分析,探討果實掛樹期間的品質變化,分析適宜鮮銷的果實采收時間;探討采收期對采后耐貯性的影響及貯藏期間的品質變化規律,分析適宜貯藏后銷售的果實采收時間,以期為W.默科特果實在西南地區的采收時間提供參考。
1.1.1 材料
供試果實為晚熟W.默科特柑橘,采自重慶市江津區。
1.1.2 處理方法
如表1所示,果實試驗共設7個采收期,果實采收后立即運回實驗室,挑選顏色和大小一致、無機械傷、無病蟲害的果實作為試驗試材,采收當天測定果實相關指標,并對果實進行取樣用液氮速凍后置于?40 ℃冰箱保存。
用于貯藏試驗的果實,用2%次氯酸鈉溶液浸泡果實2 min進行表面消毒,隨后置于清水用紗布小心擦洗干凈果皮,再用500倍稀釋的柑橘保鮮劑真綠色和200 mg/L的2,4-D混合液浸泡果實2 min,自然晾干,最后用柑橘用PU薄膜單果包裝,包裝后的果實隨機分為3組,低溫(8~10 ℃、相對濕度80%~85%)貯藏于冷庫。果實在貯藏0,15,30,45,60,75,90,105,120,135和150 d進行取樣,測定相關指標。每個處理用果45個,重復3次。

表1 采收期與采收時間的對應關系
1.1.3 果皮色澤分級測定
果皮色澤的分級標準與測定方法如表2所示[13],其公式如下:
果皮色澤分級指數=Σ(色澤級別×該級別果實占總果實的百分比) (1)

表2 果實色澤變化分級標準
每個處理用果45個,重復3次。
1.1.4 果皮色差值測定
采用UltraScan? PRO色差儀(美國HunterLab公司)測量,分別測定果實果皮赤道部位的亮度L、紅綠度a和黃藍度b值。每個處理測15個果實,每個果實測3點,求3點平均值作為該果實色差值[14]。柑橘色差指數CCI如下式[15]:
CCI=1 000/(·)(2)
1.1.5 果實理化指標測定
果實含水率測定:果實含水率測定參考曹建康等[16]的方法,用質量分數(%)表示,重復測定3次。
果實硬度測定:采用質構儀進行,試驗所用探頭為TA/39。將果實置于質構儀探頭下方做TPA試驗,測定部位為果實赤道,在赤道部位等距離測定3次。試驗參數設置為探頭預壓速度2.00 mm/s,下壓速度1.00 mm/s,壓后上升速度2.00 mm/s,2次壓縮間停頓2.00 s,試樣受壓變形5 %,以3點的平均值作為該果實硬度,3次重復,進行統計分析。
果實抗壞血酸含量的測定參考 Mditshwa等[17]的方法,試驗重復3次。果實中抗壞血酸含量以mg/100 g表示,按式(3)計算:
抗壞血酸含量=100·(1?0) ·/(v·)(3)
式中為樣液定容體積,100 mL;1為樣液滴定消耗的染料體積,mL;0為空白滴定消耗的染料體積,mL;為1 mL染料溶液相當于抗壞血酸的質量,mg/mL;v為滴定時吸取樣品溶液的體積,mL;為稱取樣品的質量,g。
果實可溶性固形物含量測定:參照曹建康等[16]的方法,并適當改進。取8~10個果實,將果肉放入榨汁機榨汁,過濾,收集果汁。用塑料滴管吸取濾液,用數顯手持式折光儀測定樣品的可溶性固形物的含量,以質量分數(%)表示,重復3次。
果實可滴定酸含量測定:可滴定酸含量的測定參考曹建康等[16]的方法并做適當修改,用NaOH滴定法測定。重復3次。以蒸餾水代替果汁,用NaOH溶液滴定,作為試驗空白對照。可滴定酸含量用質量分數(%)表示,按式(4)計算:
可滴定酸含量=(′··(′1?′0) ·/′) ×100%(4)
式中′為樣品定容體積,mL;為氫氧化鈉標定液濃度,mol/L;1′為滴定樣液消耗的氫氧化鈉溶液的體積,mL;0′為滴定蒸餾水消耗的氫氧化鈉溶液的體積,mL;為折算系數,g/mmoL,柑橘果實以檸檬酸計,=0.064;v′為滴定時所取樣液體積,mL。
果實糖酸組分及含量測定:果實中糖酸含量的測定參考Yun等[18]方法并作適當修改。準確稱取0.3 g果實樣品,加入液氮充分研磨成粉末,加入2.7 mL?20 ℃預冷的甲醇,搖勻后加入0.3 mL(0.2 mg/mL)核糖醇內標,混勻后將樣品置于超聲波中4 ℃處理15 min,樣品再置于70 ℃水浴15 min,待樣品冷卻后置于4 ℃,5 000離心20 min,吸取上清液100L真空濃縮至干后放于?80 ℃冰箱保存。
試驗所用的色譜柱為DB-5MS(安捷倫科技(中國)有限公司)石英毛細管柱(30 m×0.25 mm ID,0.25m),載氣為氦氣(純度為99.999%),載氣流速1.0 mL/min,壓力為73 kPa,分流比10,掃描范圍45~600 m/z,離子源溫度230 ℃,進樣口溫度250 ℃,接口溫度250 ℃,進樣量1L。
升溫程序為:初始溫度100 ℃保持1 min,3 ℃/min升至175 ℃保持1 min;以2 ℃/min至184 ℃,0.5 ℃/min升到190 ℃保持1 min;7 ℃/min升至280 ℃保持5 min。
定性分析根據所得到的質譜圖與NIST08和NIST08S數據庫中的標準譜圖及NIST(http://webbook.nist.gov/chemistry/)進行比對,得到果實所含糖酸的初步定性報告,再結合劉淑楨等[19]、Yun等[20]和Zhang等[21]的試驗結果進一步對果實所含糖酸進行定性分析。采用內標物對果實各成分進行半定量分析。
果實失重率測定:采用稱重法[22],每個處理用果30個,重復3次。計算公式如下:
果實腐爛率測定:每個處理用果30個,重復3次。計算公式如下:
所有數據用Graphpad Prism 5.0軟件記錄、分析并繪圖;用SPSS17.0軟件對數據進行方差分析(ANOVA),利用Duncan’s多重比較對數據差異顯著性分析,<0.05表示差異顯著。
2.1.1 不同采收期W.默科特果實基本品質的變化
如表3所示,隨著采收期的延長,果實的色澤指數先快速上升后趨于穩定。在第III采收期及之后,果實轉色面積達到80%。*、*和*分別代表亮度,紅綠度和黃藍度,隨采收時間的延后,果皮顏色從綠色轉為黃色、橙黃色、橙紅色,這體現了果實成熟度的變化[23]。*在前5個采收期波動上升,在第V采收期達到峰值,后趨于平穩;*在I-IV采收期上升迅速,在第V采收期有所回落,而后又迅速上升至最高值;*在第V采收期達到最高值。
含水率在整個采收初期變化較明顯,采收中后期含水率變化緩慢,整體呈下降趨勢。硬度在采收初期I-II和末期VI-VII下降迅速,而在采收期II-VI期間變化不顯著。采收結束時,果實硬度由采收期I的628.50 g降為采收期VII的346.00 g,降幅為44.9%。抗壞血酸含量在采收初期I-II果實抗壞血酸含量顯著(<0.05)升高,之后降低,在采收期V之后又呈上升趨勢,采收期VI時達到最高,為21.15 mg/100 g。

表3 不同采收期W.默科特果實的品質變化
注:不同小寫字母表示在=0.05水平上差異顯著。
Note: Different lowercase letters after the data in the same column indicate the significance at=0.05 level.
可溶性固形物含量隨著采收期的延長呈先上升后降低趨勢,在采收期VI達到最高值11.60%。在采收期I-III果實可滴定酸含量顯著(<0.05)降低,采收期V后果實可滴定酸含量顯著(<0.05)降低,在采收期VI達到最低,為采收期I的73.6 %。隨著采收期的延遲,果實固酸比先快速上升,在采收期VI達到最高為17.45,之后呈顯著(<0.05)降低趨勢。
2.1.2 不同采收期W.默科特果實可溶性糖及有機酸含量的變化
由圖1所示,果實中共檢測到8種可溶性糖,分別為蔗糖、果糖、葡萄糖、半乳糖、甘露糖、吡喃葡萄糖、核糖和木糖。其中果糖、蔗糖、甘露糖、吡喃葡萄糖、核糖和木糖含量均隨著采收期的延長呈先上升后降低的趨勢。果糖、蔗糖和木糖含量在采收期VI達到最高;甘露糖、核糖含量分別在在采收期V和III達到最高;吡喃葡萄糖在采收期I未檢測出,采收期II-IV雖有上升但變化不顯著(>0.05);葡萄糖和半乳糖含量均隨著采收期的延遲呈持續上升趨勢,在采收期VI前變化顯著(<0.05),采收期VI后趨于穩定。
由圖2所示,果實中共檢測到9種有機酸,分別為檸檬酸、蘋果酸、草酸、丙酸、富馬酸、葡萄糖酸、-酮戊二酸、琥珀酸和烏頭酸。隨著采收期的延遲檸檬酸和烏頭酸含量總體上呈現降低的趨勢。果實烏頭酸含量在采收期I-IV基本無變化,之后顯著(<0.05)降低,在采收期VI達到最低。果實中的蘋果酸、草酸、丙酸、富馬酸、葡萄糖酸、-酮戊二酸和琥珀酸含量均隨著采收期的延遲呈先上升后降低趨勢。采收期VII與I相比,琥珀酸含量升高,丙酸、富馬酸、葡萄糖酸含量基本不變,蘋果酸、草酸和-酮戊二酸含量降低。
2.2.1 W.默科特果實在貯藏期間的顏色和硬度變化
圖3為低溫貯藏過程中的色澤指數和硬度的變化情況。采收期I的果實在貯藏45 d果實轉黃面積達到80.0 %以上,在貯藏120 d時,果實全部轉黃。采收期II的果實在貯藏60 d時果實全部轉黃。在低溫貯藏過程中硬度總體呈現降低趨勢,而在貯藏結束時,采收期I的果實硬度顯著高于采收期II-VII的果實,采收期VII的果實硬度最低。采收期I-IV的果實在貯藏過程硬度降幅小。
2.2.2 W.默科特果實在貯藏期間失重與相對水分含量變化
圖4為低溫貯藏過程中的失重率和腐爛率的變化情況。
隨著貯藏時間延長,果實失重率呈上升趨勢。不同采收期的果實在貯藏結束時,失重率均在5.0%左右,表明低溫貯藏的果實失重低,果實品質保持好。在貯藏150 d時采收期V的果實失重率較高,采收期I和VII次之。采收期V和VII的果實在貯藏135 d和45 d開始發生腐爛,貯藏結束時,采收期V的果實腐爛率為3.33%(<0.05),采收期VII的果實腐爛率為16.67%,二者差異顯著;其余采收期的果實在低溫貯藏過程中腐爛率均為0。
2.2.3 W.默科特果實在貯藏期間的可溶性固形物、可滴定酸和抗壞血酸含量變化
圖5為低溫貯藏過程中的可溶性固形物,可滴定酸和抗壞血酸含量的變化情況。采收期I-V的果實隨著貯藏時間的延長,可溶性固形物含量呈先上升后降低趨勢,采收期I-III的果實可溶性固形物含量低于其他采收期。不同采收期的果實隨貯藏時間延長,可滴定酸含量均降低。早采果實酸含量高于晚采果實,但是過早和過晚采收的果實在貯藏過程中酸含量容易損失。采收期III的果實在貯藏過程中保持了較高水平的可滴定酸含量。抗壞血酸含量整體呈降低趨勢,貯藏結束時,采收期I-VII的果實抗壞血酸含量分別是貯藏前的84.7%、69.9%、77.3%、64.8%、70.2%、53.5%和52.3%,其中采收期I和III的果實較其他采收期果實能更好的保持貯藏過程中的抗壞血酸含量。
W.默科特是重要的晚熟柑橘品種,果實品質優良,不粒化,易剝皮,產量高[24]。消費者較關注新鮮水果的營養、感官品質,而不同采收期的營養物質累積和植物化學物質的量不同會對其造成影響[25-26]。大多數果蔬的采后和貯藏期間的品質變化也與其采收的時間顯著相關[27]。研究表明,貯藏初期,較早采收果實的可溶性固形物、抗壞血酸、可滴定酸含量較低,而較晚采收則會導致果實貯藏過程中硬度的降幅增大以及腐爛率增加[28]。因此,需要根據不同需要確定合適的采收期。表面色澤與固酸比為柑橘成熟度指標,可為果實的無損檢測提供依據[29]。
本試驗中,剛采收的果實色澤指數隨采收期延長呈先快速上升后緩慢變化的趨勢,果實在采收期III時轉色已達到80.0%,在色澤上達到了采摘要求。色差值(*、*、*)隨采收期延長先迅速升高,后緩慢變化,表明果實在采收期I時還不成熟。*、*值在采收后期呈升高趨勢,表明晚采的果實亮度和黃度升高,其中果皮亮度的升高可能是類胡蘿卜素積累的結果[30]。低溫貯藏期間,采收期I-III的果實分別在低溫貯藏105,75,45 d完全轉黃(CI=6),在貯藏結束時,各采收期果實色澤無顯著差異(>0.05)。
隨著采收期延遲,果實硬度總體呈降低趨勢,其中采收期I-II、采收期VI-VII變化顯著(<0.05)。低溫貯藏的果實,隨著后熟,果實中的原果膠在果膠酶的作用下轉變為可溶性果膠[31],導致貯藏期間硬度降低。在貯藏結束時,采收期I-IV的果實硬度降幅較小,表明早采有利于貯藏過程中的硬度保持。
果實的可溶性固形物、可滴定酸、抗壞血酸等的含量構成了果實的內在品質。果實可溶性固形物含量隨成熟度的變化,先升高后降低,在采收期VI達到最高,這與劉洋[29]的研究結果相似。果實在11月下旬到翌年2月上旬采收,可溶性固形物含量升高或與體內淀粉轉化為可溶性糖有關,而在2月中下旬采收,可溶性固形物含量降低與果實呼吸作用消耗體內有機物有關[32]。可滴定酸含量總體呈降低趨勢;固酸比在采收過程中先升高后降低,在采收期VI最高,這一時期的抗壞血酸含量也比其他采收期更高。W.默科特果肉中含有8種糖和9種有機酸。葡萄糖在采收過程含量升高,果糖、蔗糖含量先升高在采收期VI達到最高,之后呈降低趨勢。檸檬酸含量總體降低,果實檸檬酸含量的變化直接導致果實風味的改變和可滴定酸含量的降低。
在低溫貯藏過程中,采收期I-III的果實可溶性固形物含量較低,可滴定酸含量隨著貯藏期延長呈降低趨勢,采收期III的果實在貯藏過程中很好保持了酸含量。在貯藏結束時(150 d)12月24日采收的果實抗壞血酸含量(15.27 mg/100 g)與可滴定酸含量(0.37%)最高,可溶性固形物含量(9.6%)較高,硬度保持較好(376 g),貯藏過程中可滴定酸含量的降低可能與果實呼吸消耗酸有關,也可能和酸轉變為其他物質有關。果實失重率在貯藏結束時均在5.0 %左右。采收期VII和V的果實分別在低溫貯藏第45天和135天開始出現腐爛,表明較晚采收的果實更容易在貯藏中出現病害。
1)12月下旬及之后采收的果實在顏色上達到采摘要求,其中12月下旬至翌年2月上旬采收的果實硬度較好,固酸比和抗壞血酸含量均在2月上旬達到最高,且果實的果糖、蔗糖、檸檬酸含量也相對較高,因此,7個采收期中,2月7日采收的果實在采摘時綜合品質較佳,適合鮮銷。
2)各采收期果實在低溫貯藏過程中失重率均較低,貯藏結束時果皮顏色差異不顯著(>0.05)。11月下旬采收的果實可溶性固形物含量遠低于其余采收期,1月下旬到2月下旬采收的果實在貯藏過程中出現病害,而12月上旬到翌年1月上旬采收的果實在貯藏結束時硬度保持較好且均在低溫貯藏150 d不腐敗變質,其中12月下旬采收的果實更好地保持了可滴定酸和抗壞血酸含量。因此,7個采收期中,12月24日采收的果實在貯藏過程中綜合品質較佳,適合貯藏后銷售。
[1]王武,胡佳羽,方正茂,等. 重慶3個區縣W.默科特果實品質分析[J]. 西南農業學報,2013,26(1):312-316.
Wang Wu, Hu Jiayu, Fang Zhengmao, et al. Analysis on fruit quality of W.murcott in three counties[J]. Southwest China Journal of Agricultural Sciences, 2013, 26(1): 312-316. (in Chinese with English abstract)
[2]王武,劉家紅,羅友進,等. 噴施鈣肥對貯藏期間W.默科特果實品質的影響[J]. 西南大學學報:自然科學版,2014,36(12):18-24.
Wang Wu, Liu Jiahong, Luo Youjin, et al. Effects of foliar spray of calcium fertilizers on the postharvest quality of W.Murcott fruit[J]. Journal of Southwest University: Natural Science, 2014, 36(12): 18-24. (in Chinese with English abstract)
[3]朱春釗. 長壽區淺丘橘園冬季溫度變化規律及晚熟柑橘果實防凍研究[D]. 重慶:西南大學,2015.
Zhu Chunzhao. Studies on Temperature Changes of Tree Canopy in Winter and Fruit Freeze Protection of Late-Mature Citrus in Hilly Orchards in Changshou District of Chongqing[D]. Chongqing: Southwest University, 2015. (in Chinese with English abstract)
[4]張,侯世奎,張義剛,等. 不同化學保鮮劑對W.默科特柑橘保鮮效果的研究[J]. 保鮮與加工,2010,10(6):15-17.
Zhang Yan, Hou Shikui, Zhang Yigang, et al. Effects of different chemical preservation agents on W.Murcott during storage[J]. Storage and Process, 2010, 10(6): 15-17. (in Chinese with English abstract)
[5]程昌鳳,魏召新,譚平,等. W·默科特主要性狀和栽培技術要點[J]. 中國南方果樹,2015,44(1):86-87.
[6]Garde-Cerdán T, Gutiérrez-Gamboa G, Fernández-Novales J, et al. Towards the definition of optimal grape harvest time in Grenache grapevines: Nitrogenous maturity[J]. Scientia Horticulturae, 2018, 239: 9-16.
[7]Iglesias I, Echeverría G. Differential effect of cultivar and harvest date on nectarine colour, quality and consumer acceptance[J]. Scientia Horticulturae, 2009, 120(1): 41-50.
[8]何靖柳,秦文,劉繼,等. 獼猴桃鮮果在貯藏期間生理特性變化的研究進展[J]. 分子植物育種,2017,15(11):4673-4680.
He Jingliu, Qin Wen, Liu Ji, et al. Research progress of physiological characteristic changes on kiwifruit during the storage period[J]. Molecular Plant Breeding, 2017, 15(11): 4673-4680. (in Chinese with English abstract)
[9]Li W, Shao Y Z, Chen W X, et al. The effects of harvest maturity on storage quality and sucrose-metabolizing enzymes during banana ripening[J]. Food and Bioprocess Technology, 2011, 4(7): 1273-1280.
[10]卿尚模,陳克玲,曾杰梅,等. 不同采摘期對不知火桔橙果實貯藏性及品質的影響[J]. 中國南方果樹,2010,39(2):15-18.
[11]周亮,楊文俠,鄧利珍,等. 紐荷爾臍橙冷藏的最適采收期[J]. 食品科學,2016,37(4):255-259.
Zhou Liang, Yang Wenxia, Deng Lizhen, et al. Optimal harvesting time for cold storage of Newhall navel orange[J]. Food Science, 2016, 37(4): 255-259. (in Chinese with English abstract)
[12]孫娟. 四川成都地區雜交柑引種試驗研究[D]. 成都:四川農業大學,2008.
Sun Juan. Study on the Hybrid Citrus Introduced to Cheng’du, Sichuan Province[D]. Chengdu: Sichuan Agricultural University, 2008. (in Chinese with English abstract)
[13]Berüter J, Feusi M E S, Rüedi P. Sorbitol and sucrose partitioning in the growing apple fruit[J]. Journal of Plant Physiology, 1997, 151(3): 269-276.
[14]Hasperué J H, Guardianelli L, Rodoni L M, et al. Continuous white-blue LED light exposition delays postharvest senescence of broccoli[J]. LWT-Food Science and Technology, 2016, 65(1): 495-502.
[15]Zhou J Y, Sun C D, Zhang L L, et al. Preferential accumulation of orange-colored carotenoids in Ponkan (Citrus reticulata) fruit peel following postharvest application of ethylene or ethephon[J]. Scientia Horticulturae, 2010, 126(2): 229-235.
[16]曹建康,姜微波,趙玉梅. 果蔬采后生理生化實驗指導[M]. 北京:中國輕工業出版社,2007.
[17]Mditshwa Asanda, Vries Filicity, van der Merwe Kobus, et al. Antioxidant content and phytochemical properties of apple ‘Granny Smith’ at different harvest times[J]. South African Journal of Plant and Soil, 2015, 32(4): 221-226.
[18]Yun Z, Gao H, Liu P, et al. Comparative proteomic and metabolomic profiling of citrus fruit with enhancement of disease resistance by postharvest heat treatment[J]. BMC Plant Biology, 2013, 13: 44.
[19]劉淑楨,韓靜雯,云澤,等. 國慶1號溫州蜜柑果實成熟過程中極性代謝物的變化[J]. 中國農業科學,2012,45(21):4437-4446.
Liu Shuzhen, Han Jingwen, Yun Ze, et al. Changes of polar metabolites in guoqing No.1 satsuma mandarine during fruit ripening[J]. Scientia Agricultura Sinica, 2012, 45(21): 4437-4446. (in Chinese with English abstract)
[20]Yun Z, Li W Y, Pan Z Y, et al. Comparative proteomics analysis of differentially accumulated proteins in juice sacs of ponkan () fruit during postharvest cold storage[J]. Postharvest Biology and Technology, 2010, 56(3): 189-201.
[21]Zhang J J, Wang X, Yu O, et al. Metabolic profiling of strawberry (Duch.) during fruit development and maturation[J]. Journal of Experimental Botany, 2010, 62(3): 1103-1118.
[22]Greenway F, De Jonge-Levitan L, Martin C, et al. Dietary herbal supplements with phenylephrine for weight loss[J]. Journal of Medicinal Food, 2006, 9(4): 572-578.
[23]María J Rodrigo, Berta Alquézar, Enriqueta Alós, et al. Biochemical bases and molecular regulation of pigmentation in the peel of Citrus fruit[J]. Scientia Horticulturae, 2013, 163: 46-62.
[24]Luengwilai K, Sukjamsai K, Kader A A. Responses of ‘Clemenules Clementine’ and 'W. Murcott' mandarins to low oxygen atmospheres[J]. Postharvest Biology and Technology, 2006, 44(1): 48-54.
[25]Lado J, María Jesús Rodrigo, Lorenzo Zacarías. Maturity indicators and citrus fruit quality[J]. Stewart Postharvest Review, 2014, 10(2): 1-6.
[26]Ibrahim M, Hong C O, Singh S, et al. Switchgrass biomass quality as affected by nitrogen rate, harvest time, and storage[J]. Agronomy Journal, 2017, 109(5): 86-96.
[27]Joanna Lado, Giuliana Gambetta, Lorenzo Zacarias. Key determinants of citrus fruit quality: Metabolites and main changes during maturation[J]. Scientia Horticulturae, 2018, 233: 238-248.
[28]馮芳芳,魏清江,古湘,等. 不同結果部位和采收期對南豐蜜桔果實品質的影響[J]. 現代園藝,2016(17):6-9.
[29]應義斌,饒秀勤,馬俊福. 柑橘成熟度機器視覺無損檢測方法研究[J]. 農業工程學報,2004,20(2):144-147.
Ying Yibin, Rao Xiuqin, Ma Junfu. Methodology for nondestructive inspection of citrus maturity with machine vision[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2004, 20(2): 144-147. (in Chinese with English abstract)
[30]劉洋. 采收期,貯藏方式和溫度對‘紐荷爾’臍橙貯藏果皮色澤影響的研究[D]. 南昌:江西農業大學,2015.
Liu Yang. Effect of Harvest Date, Storage Methods and Temperature on Peel Color of ‘Newhall’ Navel Orange During Storage[D]. Nanchang: Jiangxi Agricultural University, 2015. (in Chinese with English abstract)
[31]李宏建,徐貴軒,宋哲,等. 不同采收期對涼香蘋果果實貯藏品質的影響[J]. 河南農業科學,2011,40(6):106-110.
Li Hongjian, Xu Guixuan, Song Zhe, et al. Effects of different harvest times on the storage quality of Liangxiang apple[J]. Journal of Henan Agricultural Sciences, 2011, 40(6): 106-110. (in Chinese with English abstract)
[32]楊陽,唐寧,李正國,等. 5個晚熟柑橘品種果實發育期品質變化研究[J]. 西南農業學報,2014,27(1):263-267.
Yang Yang, Tang Ning, Li Zhengguo, et al. Quality changes of five late-maturing citrus varieties during fruit development and maturity[J]. Southwest China Journal of Agricultural Sciences, 2014, 27(1): 263-267. (in Chinese with English abstract)
Effects of harvesting maturity on the quality changes during storage of late maturing W.Murcott
Jing Jiayi1, Liu Xiaojia1, Deng Lili1,2, Yao Shixiang1,2, Zeng Kaifang1,2※
(1.,400715,; 2.400715,)
W. Murcott (Blanco) is a variety of late-maturing mandarin in Chongqing of China that has been imported from the United States. There are more medium ripe citrus varieties, but fewer early or late ripe ones in the market. Late ripe W. Murcott can be held until March of the next year for better sustainable development of the citrus industry. In this study, the parameters were measured, including the color, sugar and acid components, ascorbic acid content, relative water content, firmness, weight loss rate, and rot rate of the fruits in seven harvesting periods during cold storage (0 - 150 days), thereby determining the effect of ripening on fruit quality and storability. Every 45 fruits were selected as a group, and three groups were taken in parallel for the determination of relevant indexes every 15 days. Graphpad Prism 5.0 software was selected to plot all recorded data. Analysis of variance (ANOVA) was performed on a SPSS17.0 software, and Duncan's multiple comparison was used to analyze the different significance. The results showed that the citrus fruits turned yellow completely in the VI harvest period at the time of harvest (day 0 of storage), where the ascorbic acid content, soluble solid content, and solid-acid ratio were the highest. The soluble solids content of fruits in the harvest period I was low, and the color changed slowly during the storage time. The fruits in the harvest period of V-VII were rotted during storage. In the harvest period of III and IV, the fruits did not deteriorate, where the weight loss rate was less than 5%, and the ascorbic acid content was higher than that in other harvest periods at the end of storage. There were 8 kinds of soluble sugar and 9 kinds of organic acid in the fruit during the storage. The contents of fructose, sucrose, mannose, pyranose, ribose, and xylose all increased first and then decreased with the extension of the harvest period. The content of citric acid and aconite acid decreased with the delay of the harvesting period. The content of aconite acid in fruit was basically unchanged in the period of I-IV, and then decreased significantly during storage. It reached the lowest in the VI harvest period. The contents of malic acid, oxalic acid, propionic acid, fumaric acid, gluconic acid,-ketoglutaric acid, and succinic acid in fruits all increased at first and then decreased with the delay of the harvesting period. In general, the harvest time needed to be adjusted to different commercial demands. The findings herein demonstrated that the fruit of harvest period VI (Feb. 7th) had complete color transformation while the soluble solid (11.60%) and ascorbic acid content (21.15 mg/100 g) were high, and the solid acid ratio (17.45) was optimal, suitable for fresh market. The decay rate of fruits in the harvest period III (Dec. 24th) was 0 after 150 days of storage. The highest content of ascorbic acid (15.27 mg/100 g) and titratable acid (0.37%) was achieved at the end of low-temperature storage, with the high content of soluble solids (9.6%), while the firmness remained better (376 g), suitable for post-storage sales.
storage; quality control; maturity; W. Murcott; harvest period; storage time; quality changes
荊佳伊,劉曉佳,鄧麗莉,等. 采收成熟度對晚熟W.默科特柑橘貯藏期品質的影響[J]. 農業工程學報,2021,37(5):303-309.doi:10.11975/j.issn.1002-6819.2021.05.035 http://www.tcsae.org
Jing Jiayi, Liu Xiaojia, Deng Lili, et al. Effects of harvesting maturity on the quality changes during storage of late maturing W.Murcott[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(5): 303-309. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.05.035 http://www.tcsae.org
2020-09-17
2021-02-27
國家自然科學基金資助項目(31772027);重慶市技術創新與應用發展專項重點項目(cstc2019jscx-dxwtBX0027)
荊佳伊,研究方向為食品生物技術。Email:xndxjjy@163.com
曾凱芳,博士,教授,研究方向為農產品貯藏工程。Email:zengkaifang@163.com
10.11975/j.issn.1002-6819.2021.05.035
TS255.3
A
1002-6819(2021)-05-0303-07