999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

INTEGRABILITY AND BOUNDEDNESS OF MINIMIZERS FOR INTEGRAL FUNCTIONAL OF HRMANDER’S VECTOR FIELDS

2021-05-28 12:15:24FENGTingfuZHANGKelei
數學雜志 2021年3期

FENG Ting-fu,ZHANG Ke-lei

(1.School of Mathematics,Kunming University,Kunming,Yunnan,650214)

(2.School of Mathematics and Computating Sciences,Guilin University of Electronic Science and Technology,Guilin,Guangxi,541004)

Abstract:The integral functional of Hrmander’s vector fields is considered,by virtue of the Sobolev inequality related to Hrmander’s vector fields and the iteration formula of Stampacchia,it is proved that the minimizers of integral functional have higher integrability with the boundary data allowing the higher integrability.Moreover,the L1(?)and L∞(?)boundedness of minimizers are also given,which extends the results of Leonetti and Siepe[12]and Leonetti and Petricca[13]from Euclidean spaces to Hrmander’s vector fields.

Keywords: Hrmander’s vector fields;Integral functional;Minimizers;Integrability;Boundedness

1 Introduction

We consider the integral functional of Hormander’s vector fields

where ??n(n≥3)is a bounded open set,X={X1,···,Xm}(m≥n)areC∞vector fields in ? satisfying the Hrmander’s finite rank condition[11],rank Lie[X1,···,Xm]=n,where,···,m.Note that,whenf(x,z)in(1.1)is a Carath′eodory function and satis fies the standard growth condition|z|p≤f(x,z)≤c(1+|z|p),1

by direct method and obtained Hlder continuity by Moser’s method.Furthermore,Xu[17]obtainedC∞continuity by similar method.Afterwards,Giannetti[7]obtained higher integrability of the minimizers of(1.1)under the growth condition

In this paper we assume thatf(x,z)in(1.1)is a Carathodory function and satis fies the standard growth condition

2 Main Results and Preliminary Knowledge

De finition 2.1[3,6]For any 1

for anyt0>0 and some positive constantsc=c(f),wheremeasEdenotes thendimensional Lebesgue measure ofE?n.Iff∈(?),thenf∈Lq0(?)for any 1≤q0

In this paper,our mian results are sated as follows.

Inspired by Leonetti and Siepe[12],for a minimizeruof(1.1)with the condition(1.2),we can rewriteuasu=u?+(u?u?),our aim is to prove when the boundary datumu?has the higher integrability,u?u?also has the higher integrability.The following two lemmas are needed for the proof of Theorem 2.4.

Lemma 2.5[3,6]Let ??nbe a bounded open set.Then for anyu∈(?),1

ifβ=1,then

3 Proof of Theorem 2.4

Proof of Theorem 2.4For anyk∈(0,+∞),suppose thatTk:→is a function such that

settingψ=u?u??Tk(u?u?),it follows from(3.1)that

where 1A(x)=1 ifx∈A,1A(x)=0 ifx/∈A.Let us consider

Combining(2.2),(3.6)and ? ={|u?u?|≤k}∪{|u?u?|>k},it concludes

and then by(3.7),

It follows from(1.2),(3.3),(3.8)and Lemma 2.5 that

Sincep

Finally we insert(3.11)into(3.10),we easily obtain

For anyh>k≥k0,it follows from(3.4)that

Combining(3.12)and(3.13),it yields

In(3.14),setting

We now apply Lemma 2.6 to(3.15).We can prove,respectively.

and

Substituting(3.18)and(3.19)into(3.17),

It is easy to see that there exists a positive constantθ<τsatisfying

It follows from(3.20)and(3.21)that

which implies

主站蜘蛛池模板: 日韩精品毛片人妻AV不卡| 久久窝窝国产精品午夜看片| 米奇精品一区二区三区| 国产在线高清一级毛片| 欧美日韩精品在线播放| 伊人大杳蕉中文无码| 97se亚洲综合在线天天| 成人综合在线观看| 亚洲第一天堂无码专区| 久久免费视频6| 2020亚洲精品无码| 极品私人尤物在线精品首页| 动漫精品中文字幕无码| av在线人妻熟妇| 欧美精品伊人久久| 亚洲成网站| 亚洲嫩模喷白浆| 全免费a级毛片免费看不卡| 67194成是人免费无码| 一级毛片在线播放免费观看| 国产亚洲成AⅤ人片在线观看| 无码国产伊人| 欧美日韩中文字幕在线| 国产黄视频网站| 波多野结衣一区二区三区四区视频| 国产伦片中文免费观看| 伊人久久福利中文字幕| www.av男人.com| 波多野结衣一区二区三区88| 精品国产欧美精品v| 色天天综合| A级全黄试看30分钟小视频| 东京热av无码电影一区二区| 狠狠亚洲婷婷综合色香| 国产香蕉97碰碰视频VA碰碰看 | 成人无码一区二区三区视频在线观看| 亚洲欧美另类久久久精品播放的| 亚洲成人77777| 99re这里只有国产中文精品国产精品 | 久青草免费在线视频| 国产sm重味一区二区三区| 国产乱人伦精品一区二区| 久久99久久无码毛片一区二区| 91人妻日韩人妻无码专区精品| 在线视频精品一区| 国产麻豆精品在线观看| 九九九精品成人免费视频7| 又黄又爽视频好爽视频| 内射人妻无套中出无码| 91青青视频| 在线观看91香蕉国产免费| www.av男人.com| аⅴ资源中文在线天堂| 久久国产乱子| 中文字幕在线看视频一区二区三区| 8090午夜无码专区| 国产欧美精品一区aⅴ影院| 欧美在线精品一区二区三区| 日韩二区三区| 欧美在线精品一区二区三区| 视频二区亚洲精品| 九九精品在线观看| 伦精品一区二区三区视频| 亚洲看片网| a级毛片免费看| 国产福利拍拍拍| 在线视频一区二区三区不卡| 中国国产高清免费AV片| 亚洲aaa视频| 九色在线观看视频| 一区二区三区精品视频在线观看| 婷婷伊人五月| 欧美乱妇高清无乱码免费| 免费一级毛片在线播放傲雪网| 国产极品嫩模在线观看91| 日本高清免费不卡视频| 久久一本精品久久久ー99| 国产在线观看第二页| 国产精品久久久久久久久久久久| 久久久精品久久久久三级| 日韩精品亚洲精品第一页| 天堂成人在线|