耿仕瑾,姜 嬌,曲 睿,石 侃,秦 義,劉延琳,宋育陽
戴爾有孢圓酵母調(diào)控晚采小芒森葡萄酒乙酸和香氣
耿仕瑾,姜 嬌,曲 睿,石 侃,秦 義,劉延琳,宋育陽※
(西北農(nóng)林科技大學(xué)葡萄酒學(xué)院,楊凌 712100)
為降低甜型葡萄酒中的揮發(fā)酸,進(jìn)一步增加其香氣復(fù)雜度,該研究利用本土戴爾有孢圓酵母R12與釀酒酵母NX11424同時接種和順序接種發(fā)酵,研究其對賀蘭山東麓產(chǎn)區(qū)晚采小芒森葡萄酒乙酸及香氣成分的調(diào)控。與釀酒酵母單菌發(fā)酵相比,本土戴爾有孢圓酵母與釀酒酵母按照5:1、20:1、50:1的不同菌體數(shù)量比例同時接種和間隔5 d順序接種發(fā)酵,均可以顯著降低晚采小芒森葡萄酒的乙酸含量,其乙酸產(chǎn)率分別降低19.1%、21.2%、38.2%和48.9%。此外,按20:1比例同時接種發(fā)酵,可顯著提高晚采小芒森葡萄酒中萜烯類和降異戊二烯類等品種香氣物質(zhì)含量,和乙酸異戊酯、丁酸乙酯及苯乙醇等發(fā)酵香氣物質(zhì)的含量。該研究表明合理的釀酒酵母接種發(fā)酵能有效降低高糖原料釀造葡萄酒揮發(fā)酸含量,為賀蘭山東麓產(chǎn)區(qū)葡萄酒新產(chǎn)品的開發(fā)提供了的技術(shù)參考。
酵母;揮發(fā)酸;葡萄酒;同時接種發(fā)酵;順序接種發(fā)酵;香氣
用高糖葡萄,如冰葡萄、貴腐葡萄、晚采葡萄等釀造而成的葡萄酒常存在揮發(fā)酸偏高的問題,而乙酸是葡萄酒揮發(fā)酸的主要成分,是酵母代謝產(chǎn)物之一。干型葡萄酒中揮發(fā)酸的質(zhì)量濃度在0.3~0.8 g/L之間,而高糖葡萄汁釀造的甜型葡萄酒、冰酒等揮發(fā)酸的質(zhì)量濃度一般大于0.8 g/L[1]。高糖帶來的過多的碳源和過高的滲透壓,迫使釀酒酵母()在發(fā)酵過程代謝出更多的乙酸和其他不良代謝副產(chǎn)物[2]。裴廣仁等研究結(jié)果表明,以作為發(fā)酵劑,當(dāng)原料糖的質(zhì)量濃度從230 g/L增加到450 g/L,發(fā)酵酒中的揮發(fā)酸含量可從0.25 g/L激增到1.60 g/L[3]。過高的乙酸含量會嚴(yán)重破壞葡萄酒品質(zhì),此外,GB 15037-2006葡萄酒[4]和GB/T 25504-2010冰葡萄酒[5]規(guī)定,葡萄酒(不含冰葡萄酒)和冰葡萄酒的揮發(fā)酸(以乙酸計,g/L)質(zhì)量濃度分別不能超過1.2和2.4 g/L。因此,有效控制葡萄酒的乙酸含量具有重要的現(xiàn)實意義。
近年來,越來越多的研究表明部分非釀酒酵母(non-)在葡萄酒釀造過程中,具有低產(chǎn)乙醇、高產(chǎn)甘油、酯、甘露糖蛋白等特征[6],以及可以分泌更多胞外酶進(jìn)而改善葡萄酒的香氣、口感和色澤等品質(zhì)的特點[7-10]。有研究表明,發(fā)酵菌株[2]、發(fā)酵溫度[11]和葡萄原料含糖量[3]都會影響葡萄酒中乙酸含量,控制低溫發(fā)酵難度較大,并且容易導(dǎo)致葡萄酒發(fā)酵停滯,而利用低產(chǎn)乙酸的酵母作為發(fā)酵劑是更為簡單和經(jīng)濟(jì)的方式。戴爾有孢圓酵母(),具有較高的酒精發(fā)酵能力,是目前商業(yè)化程度最高的非釀酒酵母之一[12]。Bely等[13]利用與混合發(fā)酵高糖葡萄汁(含糖量360 g/L)可以顯著降低高糖葡萄汁發(fā)酵葡萄酒中乙酸的含量。此外,發(fā)酵葡萄酒產(chǎn)生的某些物質(zhì)對于葡萄酒的香氣具有重要影響。有研究指出,與順序接種發(fā)酵可以增加葡萄酒中丙酸乙酯、異丁酸乙酯和二氫肉桂酸乙酯等酯類香氣物質(zhì)含量,發(fā)酵結(jié)束后的酒樣中果香馥郁[14];Sadoudi等[15]利用與混合發(fā)酵來探索其在長相思葡萄酒中的應(yīng)用潛力,混合發(fā)酵可提高葡萄酒中C6化合物、萜烯類和苯乙醇的含量。
本研究以來源于賀蘭山東麓具有自主知識產(chǎn)權(quán)的本土NX11424和來源于甘肅祁連的具有耐受高糖、低產(chǎn)揮發(fā)酸的R12[16]為發(fā)酵菌株,以賀蘭山東麓產(chǎn)區(qū)的晚采小芒森()葡萄為原料釀造晚采小芒森甜白葡萄酒,探究NX11424和R12不同接種發(fā)酵方式(不同比例同時接種、順序接種)對晚采小芒森甜白葡萄酒乙酸產(chǎn)量和香氣的調(diào)控,以期獲得基于本土酵母的可以有效降低晚采小芒森甜白葡萄酒揮發(fā)酸含量和增加其香氣復(fù)雜度的發(fā)酵模式,為高糖葡萄原料葡萄酒的釀造和為賀蘭山東麓產(chǎn)區(qū)葡萄酒新產(chǎn)品的開發(fā)提供技術(shù)支持。
葡萄原料:2019年寧夏賀蘭山東麓晚采小芒森葡萄,還原糖含量302.1 g/L,總酸含量4.9 g/L(以酒石酸計),可同化氮含量154.1 mg/L。
菌株:分離自甘肅祁連葡萄酒廠冰酒酒窖中的本土戴爾有孢圓酵母()R12;本土商業(yè)釀酒酵母()NX11424。
接種方式:1)單菌發(fā)酵:將在YPD中活化48 h的和分別接種發(fā)酵,接種量為1×106cells/mL,文中分別以“Td”和“Sc”表示。2)混合發(fā)酵:同時接種的總接種量為1×106cells/mL,接種比例設(shè)置與菌數(shù)比例分別為5:1、20:1和50:1,文中分別以“5:1”、“20:1”和“50:1”表示;順序接種先接種1×106cells/mL的,間隔5 d后接種1×106cells/mL的,文中以“順序接種”表示。
發(fā)酵試驗:將晚采的新鮮小芒森葡萄,除梗破碎,壓榨取汁,取汁過程中及時添加60 mg/L的SO2(以亞硫酸計)。將葡萄汁放置于4 ℃冷庫進(jìn)行低溫澄清24 h,分離清汁后進(jìn)行離心(8 000 r/min, 30 min),將離心后的上清葡萄汁進(jìn)行0.22m濾膜過濾除菌,分裝150 mL葡萄汁于250 mL已滅菌錐形瓶中。接種酵母啟動發(fā)酵,發(fā)酵溫度20 ℃,發(fā)酵過程中每48 h取一次樣,發(fā)酵至20 d時添加60 mg/L的SO2(以亞硫酸計)停止發(fā)酵,將成品酒樣保存在?20 ℃下備用。
采用平板菌落計數(shù)監(jiān)測兩種酵母在發(fā)酵過程中的菌落數(shù)量并繪制各處理的生長動力學(xué)曲線。發(fā)酵過程中每隔48 h測定一次酵母數(shù)(從接種0 h起至發(fā)酵結(jié)束)。用無菌水對發(fā)酵樣品進(jìn)行梯度稀釋,并在WL固體培養(yǎng)基上涂板培養(yǎng)三天后根據(jù)顏色和形態(tài)不同進(jìn)行菌落計數(shù)[17]。形成圓形綠色菌落,形成乳白色至淺綠色的乳頭狀菌落。
部分理化指標(biāo)使用Y15全自動分析儀(Biosystems, Barcelona, Spain)進(jìn)行測定。使用Biosystems(http://www.biosystems.es)試劑盒對發(fā)酵過程中的還原糖和乙酸進(jìn)行監(jiān)測,對發(fā)酵結(jié)束后的可同化氮、總酸、甘油和乙醛進(jìn)行測定。其余常規(guī)理化指標(biāo)測定的具體研究和分析方法參考《葡萄酒分析檢測》[18]進(jìn)行。
頂空固相微萃取:量取5.0 mL待測酒樣置于15 mL樣品瓶中,加入1.0 g NaCl、10L內(nèi)標(biāo)(4-甲基-2-戊醇,2 000 mg/L)和磁力攪拌轉(zhuǎn)子,置于磁力攪拌臺上40 ℃下攪拌30 min,隨后插入萃取頭,40 ℃下攪拌加熱頂空萃取30 min,然后將萃取頭插入GC進(jìn)樣口在250 ℃下熱解析8 min。
GC-MS分析:氣相色譜為Agilent 7890B GC,質(zhì)譜為Agilent 5975B MS(Agilent, USA),配備HP-INNOWAX(60 m×0.25 mm×0.25m)色譜柱,不分流自動進(jìn)樣,載氣為高純氦氣,流速1 mL/min。進(jìn)樣口溫度250 ℃,質(zhì)譜接口溫度280 ℃,離子源溫度230 ℃。升溫程序為初始溫度50 ℃保持1 min,然后以3 ℃/min升至220 ℃保持5 min。質(zhì)譜電離方式EI,離子能量70 eV,全掃描質(zhì)譜范圍25~350 m/z。
定性定量分析:采用NIST14譜庫查詢及與NIST Chemical webbook保留指數(shù)(Retention Index, RI)對比定性化合物。采用標(biāo)準(zhǔn)曲線定量法對化合物進(jìn)行定量,對沒有標(biāo)樣的化合物采用內(nèi)標(biāo)法進(jìn)行半定量,內(nèi)標(biāo)物為4-甲基-2-戊醇。
采用Microsoft Excel 2017(Microsoft, USA)對試驗數(shù)據(jù)進(jìn)行基本統(tǒng)計分析,采用SPSS 18.0(SPSS Inc., Chicago, IL, USA)進(jìn)行ANOVA單因素分析(Duncan,<0.05)和主成分分析(Principal Component Analysis, PCA)。
相比于單菌發(fā)酵(Sc)和同時接種,單菌發(fā)酵(Td)和順序接種發(fā)酵速度相對較慢,在第14天發(fā)酵停滯。同時接種的葡萄汁前6 d發(fā)酵速率較慢,尤其是和按照50:1比例同時接種混合發(fā)酵,在啟酵6 d之后還原糖消耗速度與Sc差異不明顯(圖1)。
所有接種方式中酵母都在接種后第1天迅速增長,第4~6天活菌數(shù)達(dá)到最大值,之后進(jìn)入穩(wěn)定期。由圖1a和圖1b可知,Sc和Td初期菌體增長速度基本相同,在發(fā)酵第4天進(jìn)入穩(wěn)定期,在第12天后進(jìn)入迅速衰亡期,第18天已檢測不到活菌,然而在18 d后仍有7.2 lg CFU/mL活菌存在。圖1c、1d和1e分別顯示混合發(fā)酵下不同接種比例同時接種和的菌株生長情況。隨著發(fā)酵的進(jìn)行,菌體量在第8天后都會呈現(xiàn)迅速下降的趨勢,接種比例越低其菌體下降速率越快,菌體存活時間越短。和在5:1、20:1和50:1的接種比例下,釀酒酵母最大菌體數(shù)量分別在7.8、7.7和7.65lg CFU/mL。在間隔5 d順序接種發(fā)酵中(圖1a~圖1f),在第4天達(dá)到最大值7.75 lg CFU/mL,但第5天接種的生長受到明顯抑制,在發(fā)酵過程中菌體數(shù)量始終維持較低水平(約6.5 lg CFU/mL),顯著小于Sc發(fā)酵的最大菌體數(shù)量。
注:Td、Sc、5:1、20:1、50:1和順序接種分別表示單菌發(fā)酵、單菌發(fā)酵、與菌數(shù)比例5:1、20:1、50:1同時接種和與間隔5 d順序接種。
Note: Td, Sc, 5:1, 20:1, 50:1 and sequential inoculation represent single fermentation with, single fermentationwith, co-inoculation ofandat the rate of 5:1, 20:1 and 50:1, and sequential inoculation withandat 5 d intervals, respectively.
圖1 不同接種方式酒精發(fā)酵過程中酵母菌生長及發(fā)酵曲線
Fig.1 Viable cell numbers of yeasts and consumption of sugar during fermentation with different inoculation strategies
混合發(fā)酵過程中的乙酸產(chǎn)量顯著低于Sc(圖2),同時接種酒樣的乙酸含量對比Sc酒樣顯著降低17.6%~41.7%,減少0.2~0.5 g/L,并隨接種比例的增加,乙酸含量降低得越顯著。
從圖2可以看出,在整個發(fā)酵過程中,Sc的乙酸產(chǎn)率顯著高于其余接種方式,按5:1、20:1、50:1比例同時接種和間隔5 d順序接種的酒樣乙酸產(chǎn)率分別降低19.1%、21.2%、38.2%和48.9%。值得注意的是,Sc酒樣在整個發(fā)酵過程中前4 d乙酸產(chǎn)率最高(4.7 mg/g 還原糖),5:1和20:1酒樣也具有相同特征,而Td在發(fā)酵初期乙酸產(chǎn)率最低(2.3 mg/g 還原糖)。
所有發(fā)酵在第20天時結(jié)束,對不同接種方式發(fā)酵結(jié)束后的甜白葡萄酒基本理化指標(biāo)進(jìn)行了檢測(表1)。殘?zhí)琴|(zhì)量濃度均高于45 g/L,Sc和同時接種酒樣的殘?zhí)秋@著低于Td和順序接種酒樣。混合發(fā)酵成品酒樣中乙酸和乙醛的含量顯著低于Sc酒樣,并且隨著接種比例的增大降低更顯著,其中50:1成品酒樣的乙酸和乙醛含量僅為Sc成品酒樣含量的41.7%和50.0%。
通過對不同接種方式發(fā)酵的成品酒樣進(jìn)行香氣成分定性定量分析,共鑒定出42種揮發(fā)性香氣物質(zhì)(表2),包括10種品種香氣和32種發(fā)酵香氣。
由表2可以看出,隨著接種比例的增加,C6化合物的總含量也隨之增加,其中1-己醇的含量在不同處理的酒樣中具有顯著性差異,混合發(fā)酵酒樣的1-己醇含量是Sc成品酒樣的2倍左右。順序發(fā)酵酒樣中萜烯類和C13-降異戊二烯類香氣含量最高,相比Sc酒樣,混合發(fā)酵顯著增加了檸檬烯、里那醇、香葉醇和-紫羅蘭酮,為葡萄酒帶來果香和花香等良好品種香氣。供試酒樣中共檢出3種苯乙基類化合物,其中只有苯乙醇的OAV>1。苯乙醇賦予葡萄酒玫瑰花香,在供試酒樣中的含量為42.1~82.6 mg/L,苯乙醇在混合發(fā)酵酒樣中的含量顯著高于Sc,且相比Sc順序接種增加了96.2%。

表1 不同接種方式發(fā)酵的成品酒樣中主要理化指標(biāo)
注:表中同一列中不同字母表示處理間具有顯著性差異(Duncan檢驗,<0.05)。
Note: Different letters in the same column indicate significant differences between treatments (Duncan's test,<0.05).

表2 不同接種方式‘小芒森’酒樣中揮發(fā)性香氣物質(zhì)
注:RI為該物質(zhì)在HP-innowax毛細(xì)管柱上的保留指數(shù);表中同一行中不同字母表示處理間具有顯著性差異(Duncan檢驗,<0.05)。
Note: RI is the retention index of the substance on the HP-innowax capillary column; Different letters in the same roe indicate significant differences between treatments (Duncan’s test,<0.05).
對于高級醇,與Sc酒樣相比,Td中的高級醇含量下降了大約30 mg/L,混合發(fā)酵酒樣中高級醇含量也不同程度的下降。酯類物質(zhì)的含量在葡萄酒中僅次于高級醇,其對葡萄酒的感官品質(zhì)有重要影響,通過表2可以看出不同接種方式成品酒樣的酯類物質(zhì)含量差異較大。相比于Sc,同時接種酒樣中一些酯類物質(zhì),如乙酸異丁酯、乙酸異戊酯、乙酸己酯和丁酸乙酯顯著增加,其中乙酸異戊酯和丁酸乙酯OVA值大于1,而乙酸苯乙酯、辛酸乙酯、癸酸乙酯和月桂酸乙酯則顯著降低。同時接種5:1成品酒樣的脂肪酸含量在所有供試酒樣中最高,同時接種中隨著接種比例的增加,脂肪酸含量減少。供試酒樣共檢出4種羰基化合物,分別為壬醛、癸醛、糠醛和乙偶姻,含量均較低,混合發(fā)酵可以顯著降低甜白葡萄酒中乙偶姻的含量,其中同時接種50:1成品酒樣中乙偶姻含量最低,相比Sc降低了47.2%。
為了分析品種香氣和發(fā)酵香氣在不同酒樣間的差異,本試驗對OAV>0.1的香氣成分進(jìn)行主成分分析,前兩個主成分分別占了總方差的59.56%和16.66%,兩個方差累計貢獻(xiàn)76.22%,香氣成分和供試酒樣在前兩個主成分上的載荷見圖3。該圖反映出不同接種方式發(fā)酵的成品酒樣間香氣的差異,其中Td和順序接種處理聚集在品種香氣周圍,而5:1、20:1和50:1則聚集在發(fā)酵香氣周圍,Sc周圍沒有香氣分布。值得注意的是,品種香氣和發(fā)酵香氣均環(huán)繞在同時接種20:1處理附近,說明同時接種20:1的接種方式可同時顯著提高小芒森甜白葡萄酒中品種香氣和發(fā)酵香氣的物質(zhì)含量。
本研究采用與按照5:1、20:1、50:1同時接種和順序接種方式進(jìn)行混合發(fā)酵,均能有效調(diào)控晚采小芒森葡萄酒中乙酸的含量,乙酸產(chǎn)率分別降低19.1%、21.2%、38.2%和48.9%(表1)。與本研究類似,Azzolini等[27]也發(fā)現(xiàn)利用與混合發(fā)酵Vino Santo甜型葡萄酒乙酸含量顯著降低,乙酸含量降低了0.29~0.37 g/L。Bely等[13]使用和以不同接種方式在賽美容貴腐酒中進(jìn)行混合發(fā)酵,其中同時接種比例為20:1時乙酸降低最顯著降低了53%。Tondini等[28]認(rèn)為缺失(ALD3),并且的乙醇脫氫酶(ADH1~7)表達(dá)量高于(ALD2~6),是能夠顯著降低葡萄酒中乙酸含量的主要原因。
值得關(guān)注的是,接種能夠顯著降低發(fā)酵初期乙酸產(chǎn)率(圖2),該特征十分有利于混合發(fā)酵在生產(chǎn)中的應(yīng)用,因為在發(fā)酵中后期,隨著的快速增殖和酒種乙醇含量的增加,非釀酒酵母的生長會受到顯著抑制(圖1)。Tondini等[29]認(rèn)為在發(fā)酵初期顯著降低乙酸產(chǎn)率是其高滲脅迫適應(yīng)性反應(yīng)的結(jié)果,而在接種到高糖環(huán)境初期,乙醛脫氫酶(ALD3和ALD6)等基因的應(yīng)激瞬時高表達(dá)導(dǎo)致短時間內(nèi)乙酸產(chǎn)量顯著增加[30-32]。
除了揮發(fā)酸的顯著降低外,和混合發(fā)酵也顯著提高了晚采小芒森葡萄酒中一類香氣物質(zhì)萜烯類和-紫羅蘭酮的含量,和二類香氣物質(zhì)乙酸異戊酯、丁酸乙酯及苯乙醇的含量。來源于葡萄品種的香氣成分為葡萄酒提供典型香氣特征,非釀酒酵母在發(fā)酵過程中可以分泌大量胞外酶,通過水解糖苷結(jié)合態(tài)香氣物質(zhì)釋放游離態(tài)品種香氣成分[33]。Cus等[34]使用混合發(fā)酵芳香葡萄品種‘瓊瑤漿’會釋放出更多的萜烯類香氣物質(zhì),尤其是-萜品醇和里那醇,提高了葡萄酒整體品質(zhì)。本研究發(fā)現(xiàn),與混合發(fā)酵小芒森葡萄汁,會顯著增加葡萄酒中的品種香氣,尤其是萜烯類化合物(檸檬烯、里那醇、香葉醇)和C13-去甲類異戊二烯(-紫羅蘭酮),并且隨著接種比例的增加而增強(qiáng)(表2),這可能與分泌更多的胞外酶以及單萜類化合物生物轉(zhuǎn)化能力較強(qiáng)[35]有關(guān)。此外,混合發(fā)酵可以顯著提高苯乙醇的含量,這可能是酵母中-葡萄糖苷酶與-苯丙氨酸的代謝共同作用的結(jié)果[36]。葡萄酒中的酯類物質(zhì)在甜酒中具有很高的香氣活性[37],賦予葡萄酒‘果香’的特性[38]。Renault等[14]報道了順序接種可以顯著提高酯類香氣,其中乙酸異丁酯和乙酸異戊酯的濃度分別增加約50g/L和2 mg/L,Belda等[39]也報道了在順序接種中乙酸異戊酯顯著增加1 mg/L。本研究中,同時接種中乙酸異丁酯、乙酸異戊酯、乙酸己酯和丁酸乙酯顯著增加,其中乙酸異戊酯和丁酸乙酯OVA值大于1,分別增加約60和70g/L,為葡萄酒提供更濃郁的‘香蕉’香氣。乙偶姻是酒精發(fā)酵的副產(chǎn)物,含量過高會使葡萄酒出現(xiàn)酸敗的味道,并且在甜型葡萄酒中含量相對較高[40],雖然在本研究中乙偶姻的OVA值小于1,但混菌發(fā)酵可以顯著降低甜白葡萄酒中乙偶姻的含量,這與之前文獻(xiàn)報道相同[41]。
本研究利用優(yōu)選本土R12與源于賀蘭山東麓的本土NX11424,以不同比例同時接種和間隔5 d順序接種,釀造晚采‘小芒森’葡萄酒,發(fā)現(xiàn)接種本土可以顯著降低晚采‘小芒森’葡萄酒的乙酸含量,還能夠顯著降低乙醛和乙偶姻等不良產(chǎn)物含量。同時接種彌補(bǔ)了發(fā)酵能力較弱的缺點,且當(dāng)接種比例為20:1時,能夠最大限度地發(fā)揮的產(chǎn)香特性,既顯著提高晚采‘小芒森’葡萄酒中萜烯類(檸檬烯、里那醇、香葉醇等)和降異戊二烯(-紫羅蘭酮)等品種香氣物質(zhì)含量,又增強(qiáng)了乙酸異戊酯、丁酸乙酯及苯乙醇等發(fā)酵香氣物質(zhì)的含量。因此,本研究認(rèn)為R12具有有效降低高糖原料釀造葡萄酒揮發(fā)酸含量及增香釀造葡萄酒的應(yīng)用潛力,研究結(jié)果為賀蘭山東麓產(chǎn)區(qū)葡萄酒新產(chǎn)品的開發(fā)提供了全新的技術(shù)方案。
[1] Chidi B S, Bauer F F, Rossouw D. Organic acid metabolism and the impact of fermentation practices on wine acidity: A review[J]. South African Journal of Enology and Viticulture, 2018, 39(2): 315-329.
[2] Kontkanen D, Inglis D L, Pickering G J, et al. Effect of yeast inoculation rate, acclimatization, and nutrient addition on ice wine fermentation[J]. American Journal of Enology and Viticulture, 2004, 55(4): 363-370.
[3] 裴廣仁,李記明,于英,等. 冰葡萄酒中高含量揮發(fā)酸的影響因素分析[J]. 食品與發(fā)酵工業(yè),2014,40(3):58-62.
Pei Guangren, Li Jiming, Yu Ying, et al. Influencing factors of high content volatile acid in icewine[J]. Food and Fermentation Industries, 2014, 40(3): 58-62. (in Chinese with English abstract)
[4] 中華人民共和國國家質(zhì)量監(jiān)督檢驗檢疫總局和中國國家標(biāo)準(zhǔn)化管理委員會. 葡萄酒: GB/T 15037-2006[S]. 北京:中國標(biāo)準(zhǔn)出版社,2006.
[5] 中華人民共和國國家質(zhì)量監(jiān)督檢驗檢疫總局和中國國家標(biāo)準(zhǔn)化管理委員會. 冰葡萄酒: GB/T 25504-2010[S]. 北京:中國標(biāo)準(zhǔn)出版社,2010.
[6] 戰(zhàn)吉宬,曹夢竹,游義琳,等. 非釀酒酵母在葡萄酒釀造中的應(yīng)用[J].中國農(nóng)業(yè)科學(xué),2020,53(19):4055-4069.
Zhan Jicheng, Cao Mengzhu, You Yilin, et al. Research advance on the application of non-in winemaking[J]. Scientia Agricultura Sinica, 2020, 53(19): 4055-4069. (in Chinese with English abstract)
[7] 覃秋杏,韓小雨,黃衛(wèi)東,等. 非釀酒酵母產(chǎn)生的-葡萄糖苷酶在發(fā)酵酒中的應(yīng)用[J/OL]. (2020-12-04) [2021-01-21].http://kns.cnki.net/kcms/detail/11.2206.TS.20201211.1614.008.html.
Qin Qiuxing, Han Xiaoyu, Huang Weidong, et al. Application of-glucosidase produced by non-in fermented wine[J/OL]. (2020-12-04) [2021-01-21]. http://kns.cnki.net/kcms/detail/11.2206.TS.20201211.1614.008.html. (in Chinese with English abstract)
[8] Rainieri S, Pretorius I S. Selection and improvement of wine yeasts[J]. Annals of Microbiology, 2000, 50(1): 15-31.
[9] Lee P R, Kho S H C, Yu B, et al. Yeast ratio is a critical factor for sequential fermentation of papaya wine byand[J]. Microbial Biotechnology, 2013, 6(4): 385-393.
[10] Erasmus D J, Cliff M, Vuuren H J J V. Impact of yeast strain on the production of acetic acid, glycerol, and the sensory attributes of icewine[J]. American Journal of Enology and Viticulture, 2004, 55(12): 883-883.
[11] Beltran G, Novo M, José M G, et al. Effect of fermentation temperature and culture media on the yeast lipid composition and wine volatile compounds[J]. International Journal of Food Microbiology, 2008, 121(2): 169-177.
[12] Varela C, Borneman A R. Yeasts found in vineyards and wineries[J]. Yeast, 2016, 34(3): 111-128.
[13] Bely M, Stoeckle P, Isabelle M, et al. Impact of mixed-culture on high-sugar fermentation[J]. International Journal of Food Microbiology, 2008, 122(3): 312-320.
[14] Renault P, Coulon J, de Revel G, et al. Increase of fruity aroma during mixed/wine fermentation is linked to specific esters enhancement[J]. International Journal of Food Microbiology, 2015, 207: 40-48.
[15] Sadoudi M, Tourdot-Marechal R, Rousseaux S, et al. Yeast-yeast interactions revealed by aromatic profile analysis of Sauvignon Blanc wine fermented by single or co-culture of nonandyeasts[J]. Food Microbiology, 2012, 32(2): 243-253.
[16] 楊詩妮,葉冬青,賈紅帥,等. 本土戴爾有孢圓酵母在葡萄酒釀造中的應(yīng)用潛力[J]. 食品科學(xué),2019,40(18):108-115.
Yang Shini, Ye Dongqing, Jia Hongshuai, et al. Oenological potential of indigenousfor winemaking[J]. Food Science, 2019, 40(18): 108-115. (in Chinese with English abstract)
[17] Pallmann C L, Brown J A, Olineka T L, et al. Use of WL medium to profile native flora fermentations[J]. American Journal of Enology and Viticulture, 2016, 52(3): 198-203.
[18] 王華. 葡萄酒分析檢驗[M]. 北京:中國農(nóng)業(yè)出版社,2010.
[19] Guth H. Quantitation and sensory studies of character impact odorants of different white wine varieties[J]. Journal of Agricultural and Food Chemistry, 1997, 45(8): 3027-3032.
[20] Crandles M, Reynolds A G, Khairallah R, et al. The effect of yeast strain on odor active compounds in Riesling and Vidal blanc icewines[J]. LWT-Food Science and Technology, 2015, 64(1): 243-258.
[21] Coelho E, Coimbra M A, Nogueira J M F, et al. Quantification approach for assessment of sparkling wine volatiles from different soils, ripening stages, and varieties by stir bar sorptive extraction with liquid desorption[J]. Analytica Chimica Acta, 2009, 635(2): 214-221.
[22] Tao Y S, Liu Y Q, Li H. Sensory characters of Cabernet Sauvignon dry red wine from Changli County (China)[J]. Food Chemistry, 2009, 114(2): 565-569.
[23] Ferreira V, López R, Cacho J F. Quantitative determination of the odorants of young red wines from different grape varieties[J]. Journal of Science of Food Agriculture, 2000, 80(11): 1659-1667.
[24] Mayr C M, Geue J P, Holt H E, et al. Characterization of the key aroma compounds in Shiraz wine by quantitation, aroma reconstitution, and omission studies[J]. Journal of Agricultural and Food Chemistry, 2014, 62(20): 4528-4536.
[25] Laura F, Valeria V, Gaston A, et al. Volatile composition and aroma profile of Uruguayan Tannat wines[J]. Food Research International, 2015, 69: 244-255.
[26] Lerma N L D, Bellincontro A, Mencarelli F, et al. Use of electronic nose, validated by GC-MS, to establish the optimum off-vine dehydration time of wine grapes[J]. Food Chemistry, 2012, 130(2): 447-452.
[27] Azzolini M, Tosi E, Lorenzini M, et al. Contribution to the aroma of white wines by controlledcultures in association with[J]. World Journal of Microbiology and Biotechnology, 2015, 31(2): 277-293.
[28] Tondini F, Lang T, Chen L, et al. Linking gene expression and oenological traits: Comparison betweenandstrains[J]. International Journal of Food Microbiology, 2019, 294: 42-49.
[29] Tondini F, Onetto C A, Jiranek V. Early adaptation strategies ofandto co-inoculation in high sugar grape must-like media[J]. Food Microbiology, 2020, 90: 1-9.
[30] Heit C, Martin S J, Yang F, et al. Osmoadaptation of wine yeast () during icewine fermentation leads to high levels of acetic acid[J]. Journal of Applied Microbiology, 2018, 124(6): 1506-1520.
[31] Noti O, Vaudano E, Pessione E, et al. Short-term response of differentstrains to hyperosmotic stress caused by inoculation in grape must: RT-qPCR study and metabolite analysis[J]. Food Microbiology, 2015, 52: 49-58.
[32] Zuzuarregui A, Delolmo M. Expression of stress response genes in wine strains with different fermentative behavior[J]. Fems Yeast Research, 2004, 4(7): 699-710.
[33] Azzolini M, Fedrizzi B, Tosi E, et al. Effects ofandmixed cultures on fermentation and aroma of Amarone wine[J]. European Food Research and Technology, 2012, 235(2): 303-313.
[34] Cus F, Jenko M. The influence of yeast strains on the composition and sensory quality of Gewürztraminer wine[J]. Food Technology and Biotechnology, 2013, 51(4): 547-553.
[35] King A. Biotransformation of monoterpene alcohols by,and[J]. Yeast, 2010, 16(6): 499-506.
[36] 原苗苗,姜凱凱,孫玉霞,等. 戴爾有孢圓酵母對葡萄酒香氣的影響[J]. 食品科學(xué),2018,39(4): 99-105.
Yuan Miaomiao, Jiang Kaikai, Sun Yuxia, et al. Effects ofon wine aroma[J]. Food Science, 2018, 39(4): 99-105. (in Chinese with English abstract)
[37] Plata C, Millan C, Mauricio J C, et al. Formation of ethyl acetate and isoamyl acetate by various species of wine yeasts[J]. Food Microbiology, 2003, 20(2): 217-224.
[38] Hu K, Jin G J, Mei W C, et al. Increase of medium-chain fatty acid ethyl ester content in mixed/Sfermentation leads to wine fruity aroma enhancement[J]. Food Chemistry, 2018, 239(15): 495-501.
[39] Belda I, Ruiz J, Beisert B, et al. Influence ofin varietal thiol (3-SH and 4-MSP) release in wine sequential fermentations[J]. International Journal of Food Microbiology, 2017, 257: 183-191.
[40] 陳乃用. 葡萄酒釀酒酵母產(chǎn)生的乙偶姻[J]. 工業(yè)微生物,1994(1):44-45.
[41] Escribano R, González-Arenzana L,Portu J. et al. Wine aromatic compound production and fermentative behaviour within different non-species and clones[J]. Journal of Applied Microbiology, 2018, 124(6): 1521-1531.
Managing volatile acidity and aroma of Petit Manseng wine using
Geng Shijin, Jiang Jiao, Qu Rui, Shi Kan, Qin Yi, Liu Yanlin, Song Yuyang※
(,,712100,)
Volatile acids are usually associated with undesirable “sour” and “bitter” descriptors. The fermentation of high sugar grape juice/must using chilled, botrytised or late harvested grapes often leads to the production of higher amounts of volatile acidity, which adversely impacts the overall wine quality. This work aims to minimize the formation of volatile acidity, and further improve aroma complexity during high sugar fermentation. The potential application of indigenousR12 was evaluated using late harvested Petit Manseng from east foot hill of the Helan Mountain.Petit Manseng juice with 300 g/L of sugar was filter sterilized prior to inoculation. Three inoculation strategies were used: 1) single fermentation with either pure R12 or indigenousNX11424 at 1×106cells/mL; 2) co-inoculation of R12 and NX11424 at the rate of 5:1, 20:1, and 50:1, among which the inoculum of R12 was 1×106cells/mL; 3) 1×106cells/mL of R12 was inoculated prior to the inoculation of NX11424 after 5 d at the same rate. Fermentation samples were collected every 48 h to measure the residual sugar and the formation of acetic acid using enzymatic analysis. Yeast viability was also determined via serial dilution and plating on WLN agar medium. Fermentation was terminated with the addition of 60 mg/L SO2on the day of the 20th. Final ferments were centrifuged and stored for subsequent analysis on volatile compounds via head-space-solid phase micro extraction–gas chromatography coupled with mass spectrometry (HS-SPME-GC-MS). NX11424 monoculture fermentation was rapid, when utilizing 255 g/L of sugar in 20 d, whereas, the sugar consumption of R12 fermentations was relatively slower, almost halted at 20 d. Nevertheless, the fermentation power was much stronger in all the co-inoculated fermentations than that in both the R12 monoculture fermentations and the sequentially inoculated fermentations. Correspondingly, the viability of both yeast strains in each fermentation was inversely related to sugar consumption. In terms of acetic acid(the major component responsible for volatile acidity), NX11424 monoculture fermentation produced 1.2 g/L acetic acids, which fell just around the legal threshold. By contrast, there was a significant decrease in the amount of acetic acid for both co-inoculation with R12 at the ratio of 5:1, 20:1, and 50:1, and sequential inoculation. The reduction of acetic acid was in line with the increased proportion of R12 in the mixed inoculum, with the highest decrease being 48.9% at 50:1 co-fermentation, compared with the single fermentation with NX11424. Another noticeable effect was that significantly less abundant acetaldehyde related to oxidative descriptors appeared in wines produced with the combined R12 and NX11424. The reduction of this compound was up to 50% in the mixed culture fermentation, compared with the NX11424 monoculture fermentation. Further, the impact of R12 on aroma profiles of wine was evaluated, where 42 volatile compounds were detected by HS-SPME-GC-MS in Petit Manseng wines. It was found that the application of R12 was significantly correlated with the decrease of higher alcohols up to 30 mg/L, compared with thecontrol. Significant differences were also observed in the concentration of esters. Specifically, the presence of R12 increased the level of isobutyl aetate, isoamyl acetate, hexyl acetate, and hexyl butyrate, whereas, remarkably reduced the production of phenethyl acetate, ethyl octanoate, ethyl decanoate, and ethyl dodecanoate. Lower concentrations of acetoin were also found in the wine samples involving R12. Additionally, a principal component analysis was utilized to clearly separate volatile compounds, where R12 inoculation strategies displayed a distinctive impact on wine aroma profile. In particular, the co-inoculation at the ratio of 20:1 behaved with the greatest potential to enhance both the varietal and the fermentative aromas of the wine. In this scenario, the amount of varietal volatile compounds was remarkably improved, such as terpenes, and C13 demethyl isoprene, whereas, a noticeable increase was also observed in the typical volatile compounds (eg., isoamyl acetate, ethyl butanoate, and phenyl ethanol)derived from fermentation. Therefore, the indigenousR12 was expected to serve in conjunction with, thereby reducing acetic acid for better aroma quality during fermentation with high sugar in grape juice/must. The findings expand current knowledge on the solutions to efficiently minimizing volatile acidity during high sugar fermentations.
yeast; volatile acid; wine; simultaneous inoculation fermentation; sequential inoculation fermentation; aroma
2020-01-21
2021-03-10
國家重點研發(fā)計劃資助項目(2019YFD1002500);國家現(xiàn)代農(nóng)業(yè)(葡萄)產(chǎn)業(yè)技術(shù)體系建設(shè)專項(CARS-29-jg-03);寧夏回族自治區(qū)重大研發(fā)計劃項目(2020BCF01003);西北農(nóng)林科技大學(xué)試驗示范站(基地)科技成果推廣項目(TGZX2019-27)
耿仕瑾,研究方向為葡萄酒微生物。Email:gengshijinj@163.com
宋育陽,博士,副教授,研究方向為釀酒微生物。Email:yuyangsong@nwsuaf.edu.cn
10.11975/j.issn.1002-6819.2021.07.036
TS262.6
A
1002-6819(2021)-07-0293-08
耿仕瑾,姜嬌,曲睿,等. 戴爾有孢圓酵母調(diào)控晚采小芒森葡萄酒乙酸和香氣[J]. 農(nóng)業(yè)工程學(xué)報,2021,37(7):293-300. doi:10.11975/j.issn.1002-6819.2021.07.036 http://www.tcsae.org
Geng Shijin, Jiang Jiao, Qu Rui, et al.Managing volatile acidity and aroma of Petit Manseng wine using[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(7): 293-300. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.07.036 http://www.tcsae.org