999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

Reflection ordering in the imprimitive complex reflection group G(m,p,n)

2021-07-21 14:46:30HONGFeifeiLIJingjingWANGLi

HONG Feifei ,LI Jingjing ,WANG Li

(1.High School Affiliated to Shanghai University of Finance and Economics,Shanghai 200090,China;2.Songjiang Experiment School Affiliated to Shanghai Normal University,Shanghai 201601,China;3.Mathematies and Science College,Shanghai Normal University,Shanghai 200234,China)

Abstract:Assume that m,p and n are positive integers,and p divides m.Let G(m,p,n)be an imprimitive complex refelction group.A partial ordering is introduced in the group G(m,p,n),as following reference,which is called the reflection ordering.We will study the reflection ordering in the group G(m,p,n)with 1

Key words:imprimitive complex reflection groups;reflection length;reflection ordering

1 Introduction

Let N(respectively,Z,R,C)be the set of all positive integers(respectively,integers,real numbers,complex numbers).Let V be a Hermitian space of dimension n.A reflection in V is a linear transformation of V of finite order with exactly n?1 eigenvalues equal to 1.A reflection group G on V is a finite group generated by reflections in V.A reflection group G is called a Coxeter group if there is a G-invariant R-subspace V0of V such that the canonical map C?RV0→V is bijective.A reflection group G on V is called imprimitive if V is a direct sum of nontrivial linear subspaces V =V1⊕V2⊕···⊕Vtsuch that every element w∈G is a permutation on the set{V1,V2,···,Vt}.

2 Prelimilary

An element w=[a1,a2,···,an|σ]∈G(m,p,n)is a reflection if and only if one of the following conditions holds:

3 Main results

Theorem 1Assume y,w∈G(m,p,n),then yw if and only if one of the following conditions hold:

Otherwise,we intend to divide these numbers in to several groups such that the sum of each groupis 0(mod p).Note that these numbers can be divided into at most 4 groups.If not,we will have v(y)>2(t?2)+u+4=v(w),which is absurd.

Remember that the sum of these numbers is 0(mod p).We intend to divide these numbers into several groups such that the sum of each group is 0(mod p).Note that these numbers can at most be divided into 2 groups.If not,we will have v(y)>2t+(u?2)+2=v(w),which is absurd.

Remember that the sum of these numbers is 0(mod p).

(a) If some of these numbers add up to 0(mod m),then the remaining numbers must add up to 0(mod p).Then it comes down to the case as in(i)or(ii).

Otherwise,we intend to divide these numbers into several groups such that the sum of each group is 0 ((mod p).Note that these numbers can at most be divided into 3 groups.If not,we will have v(y)>2(t?1)+(u?1)+3=v(w),which is absurd.

(b) If these numbers can be divided into 3 groups,we do the proof as in(iii)(a)and it comes down to the case as in(ii).

(c) If these numbers can be divided into 2 groups,then v(y)=2(t?1)+(u?1)+2=v(w)?1.But we demand v(y)=v(w),so this is not the case we need.

(d) If none of(a),(b)and(c)happens,since the sum of these numbers is 0(mod p),we setThenis a semi-perfect factor.And v(y)=2(t?1)+(u?1)+1=v(w)?2.But we demand v(y)=v(w),so this is not the case we need.

Thus we have proved(2).

Case 2w?1y is a reflection of type I and r(y)=r(w)+1,then y?1w is also a reflection of type I and r(w)=r(y)?1.Now lT(y)=lT(w)?1 holds if and only if v(w)=v(y)?2.Exchange the role of w and y in case 1,we see this happens only in(iii)(d)and(v)(d).Thus case 2 holds if and only if the number of perfect factors of y is one more than that of w,and they have the same number of semi-perfect factors.Thus 1)of theorem 1 follows.

Case 3w?1y is a reflection of type II,forexample,y=ws(a;kp),then r(y)=r(w),and lT(y)=lT(w)?1 holds if and only if v(y)=v(w)+1.In this case,the action of s(a;kp)must turn a semi-perfect factor of w to a perfect factor of y.So 3)of theorem 1 follows.

主站蜘蛛池模板: 国产精品视频久| 国产乱子伦无码精品小说| 尤物国产在线| 国产视频一区二区在线观看 | 日本道中文字幕久久一区| 亚洲欧美色中文字幕| 成人福利在线观看| 午夜精品久久久久久久99热下载| 国产精品分类视频分类一区| 最新国语自产精品视频在| 中文国产成人精品久久| 成人一级免费视频| 精品人妻AV区| 国产视频你懂得| 亚洲h视频在线| 啊嗯不日本网站| 亚洲无码视频一区二区三区| 女人爽到高潮免费视频大全| 一本二本三本不卡无码| 天堂网亚洲综合在线| 日韩无码视频网站| av尤物免费在线观看| www欧美在线观看| 青草91视频免费观看| 99热这里只有成人精品国产| 日韩免费毛片| 欧美午夜网站| 精品欧美一区二区三区在线| 亚洲第一黄色网址| 国产主播福利在线观看| 特黄日韩免费一区二区三区| 麻豆精品视频在线原创| 无码视频国产精品一区二区| 国产成人a在线观看视频| 91丝袜乱伦| 日韩中文精品亚洲第三区| 亚洲精品片911| 2020亚洲精品无码| 丝袜美女被出水视频一区| 国产无码在线调教| 成人国产一区二区三区| 国产成人亚洲无吗淙合青草| 亚洲资源站av无码网址| 国产精品亚洲精品爽爽| 亚洲欧美日韩中文字幕在线一区| 婷婷成人综合| 国产91精品最新在线播放| 找国产毛片看| 国产农村妇女精品一二区| 激情乱人伦| 久久综合九色综合97婷婷| 国产打屁股免费区网站| 欧美精品在线观看视频| 麻豆精品在线播放| 欧美yw精品日本国产精品| 色综合久久久久8天国| 亚洲综合欧美在线一区在线播放| 久久免费看片| 91成人精品视频| 日韩午夜福利在线观看| 国产黄色视频综合| 久久香蕉国产线看观看式| 一级成人欧美一区在线观看| 精品久久777| 91无码国产视频| 国产精品无码一区二区桃花视频| 青青热久免费精品视频6| 国产精品页| 成人韩免费网站| 国产你懂得| 伊人天堂网| 午夜限制老子影院888| 狠狠色狠狠综合久久| 永久在线精品免费视频观看| 国产AV无码专区亚洲A∨毛片| 亚洲欧洲日产国码无码av喷潮| 亚洲色图综合在线| 日本高清有码人妻| 动漫精品中文字幕无码| 免费99精品国产自在现线| 99无码中文字幕视频| 黄色三级毛片网站|