999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

On Twin Domination Number of Cartesian Product of Directed Cycles

2021-08-23 06:24:26MaHongxiaZhaoJuanFengYanqiu
數學理論與應用 2021年2期

Ma HongxiaZhao Juan Feng Yanqiu

(College of Preparatory,Xinjiang Normal University,Urumqi 830017,China)

Abstract Let γ*(D)denote the twin domination number of digraph D and let Cm□Cn denote the Cartesian product of the directed cycle Cm and Cn,for m,n≥2.In this paper,we give a lower bound for γ*(Cm□Cn)and we determine the exact values of γ*(Cm□Cn)when m,n≡0(mod 3)and when m≡2(mod 3).

Key words Digraph Twin domination number Cartesian product Directed cycle

1 Introduction

LetD=(V,A)be a finite digraph without loops and multiple arcs,whereV=V(D)is the vertex set andA=A(D)is the arc set.For a vertexdenote the set of out-neighbors and in-neighbors ofv,respectively.The out-degree and in-degree ofvare defined byA digraphDis calledr-regular iffor any verticesvinV(D).Given two verticesuandvinV(D),we say thatuout-dominatesv(orvin-dominatesu)ifu=vorA vertexvout-dominates all vertices inA setS?V(D)is called an out-dominating(in-dominating)set ofDifSout-dominates(in-dominates)V(D).The out-domination number ofD,denoted byγ+(D),is the minimum cardinality of an out-dominating set ofD.The in-domination number is defined analogusly.Some results of twin domination in digraphs has been obtained in[1–3].A setis a twin dominating set ofDif for any vertexv∈V?S,there existu,w∈S(possiblyu=w)such that arcsuv,vw∈A(D).The twin domination number ofD,denoted byγ*(D),is the minimum cardinality of a twin dominating set ofD.Clearly,γ+(D)≤γ*(D).

LetD1=(V1,A1)andD2=(V2,A2)be two digraphs which have disjoint vertex setsV1={x1,x2,...,xn1}andV2={y1,y2,...,yn2}and disjoint arc setsA1andA2,respectively.The Cartesian productD=D1□D2has vertex setV=V1×V2and(xi,yj)(xi′,yj′)∈A(D)if and only if one of the following holds:

(a)xi=xi′andyjyj′∈A2?

(b)yj=yj′andxixi′∈A1.

For any fixed vertexyi∈V2,the subdigraphofDhas vertex seand arc setIt is clear thatD1yi~=D1.Similarly,for any fixed vertexxi∈V1,the subdigraphD2xiofDhas vertex setand arc setIt is clear thatTwin domination in digraph is a fundamental and interesting concept.[4–8]presented some related works of out-domination number of the Cartesian product and strong product of directed cycles and directed paths.However,to date no research about the twin domination number has been done for the Cartesian product of directed cycles.

In this paper,we study the twin domination number ofCm□Cn,obtain the lower bound ofγ*(Cm□Cn),and give the following exact values

2 Main results

We emphasize that the vertices of a directed cycleCmare always denoted by the integers{0,1,...,m?1}considering modulom.There is an arcxyfromxtoyinCmif and only ify=x+1(modm).For any vertex(i,j)∈V(Cm□Cn),

the first digit and second digit are considered modulomandn,respectively.

LetCm□Cndenote the Cartesian product ofCmandCn.Observe that the vertices ofare out-dominated by vertices ofand in-dominated by vertices of1}.Especially,the vertices ofare out-dominated by vertices ofand in-dominated by vertices of

Lemma 2.1Letm,n≥2,and

(i)Ifm≡0(mod 3),thenγ*(Cm□Cn)≥nk1?

(ii)Ifm≡1(mod 3),then

(iii)Ifm≡2(mod 3),thenγ*(Cm□Cn)≥nk1+n.

ProofLetSbe a twin domination set ofCm□CnandObserve that each of the vertices ofnot only in-dominates two vertices inbut also out-dominates one vertex inthe vertices ofare only out-dominated by vertices of

Now we turn to investigate the twin domination number ofCm□Cn.

Firstly,we consider the casem≡0(mod 3)andn≡0,2(mod 3).

Define a set as follow(see Figure 1):

Figure 1 The set S1

S1={(3j,i):i≡0(mod 3);(3j+1,i):i≡1(mod 3);(3j+2,i):i≡2(mod 3);wherej∈{0,1,...,k1?1}}.

Theorem 2.1Letm,n≥2 andthen

ProofIfn≡0(mod 3),then we can assume thatn=3k2.Based on Lemma 2.1,we can obtain thatγ*(Cm□Cn)≥3k1k2.Clearly,S1is a twin dominating set ofCm□Cn,and|S1|=3k1k2.

Ifn=3k2+2,then we deduce thatγ*(Cn□Cm)≥3k1k2+3k1from Lemma 2.1.Obviously,S1∪{(3j+2,0)|j∈{0,1,...,k1?1}}is a twin dominating set ofCm□Cnand|S1∪{(3j+2,0)|j∈{0,1,...,k1?1}}|=k1(3k2+2)+k1=3k1k2+3k1.

Secondly,we consider the casem≡2(mod 3).

Theorem 2.2Letm=3k1+2,

(i)Ifn=3k2+2 andk2≥k1,thenγ*(Cm□Cn)=3k1k2+2k1+3k2+2?(Ifk2≤k1,we can obtain an analogous conclusion).

(ii)Ifn=3k2+1 and 2k2≥k1,thenγ*(Cm□Cn)=3k1k2+k1+3k2+1.

ProofFirstly,we assumen=3k2+2.Then by Lemma 2.1,we haveγ*(Cm□Cn)≥3k1k2+2k1+3k2+2.Without loss of generality,we assume thatn≥m,in other words,k2≥k1.Define the following subsets ofV(Cm□Cn):

LetS2=Xi∪Y.We first show thatS2is an out-dominating set ofCm□Cn.

For eachi,1≤i≤m?4,note that the vertices ofare out-dominated by vertices inXiandXi?1.Clearly,all the vertices ofare out-dominated by the vertices inXm?4andY,wheni>m?3,the vertices ofare out-dominated by the vertices inY.Particularly,the vertices ofare out-dominated by vertices inX0andY.It follows thatS2is an out-dominating set ofCm□Cn.

In the following,we show thatS2is also an in-dominating set ofCm□Cn.For eachi,0≤i≤m?5,we see that all vertices ofare in-dominated by vertices inXiandXi+1.Particularly,the vertices ofare in-dominated by vertices inX0andY.ThereforeS2is an in-dominating set ofCm□Cn.

From above,we conclude thatS2is a twin dominating set ofCm□Cnwith cardinality 3k1k2+2k1+3k2+2.

As an example,Figure 2 shows a twin dominating sets ofC11□C14.

Figure 2 A twin dominating set of C11□C14

Secondly,we assumen=3k2+1.

It is evident from Lemma 2.1 thatγ*(Cm□Cn)≥3k1k2+k1+3k2+1.Assume that,that is 2k2≥k1.

Ifk1is even,thenmis even.Define some sets as follows:

Y={(3j+1,i)|j∈{0,1,...,k1},i≡1(mod 3)}∪{(0,i),(3j+2,i)|j∈{0,1,...,k1?1},i≡2(mod 3)}∪{(1,i),(3j,i)|j∈{1,2,...,k1},i≡0(mod 3)},where

It is clear that all the vertices inX0∪Xicould out-dominate the vertices fromMoreover,the vertices ofare out-dominated by the vertices inandY.Whenthe vertices inYcould dominate all the vertices ofI n particular,the vertices ofare out-dominated by the vertices inX0andY.SoS3is an out-dominating set ofCm□Cn.Similarly,we can show thatS3is also an in-dominating set ofCm□Cn.ThereforeS3is a twin dominating set ofCm□Cn,and|S3|=n(k1+1)=3k1k2+k1+3k2+1.

As an example,Figure 3 shows a twin dominating sets ofC8□C13.

Ifk1is odd,then define some sets as follows:

Y′={(3j+1,i)|j∈{0,1,...,k1},i≡1(mod 3)}∪{(0,i),(3j+2,i)|j∈{0,1,...,k1?1},i≡2(mod 3)}∪{(1,i),(3j,i)|j∈{1,2,...,k1},i≡0(mod 3)},where

Similarly,whenwe have thatX0∪Xi′is a twin dominating set ofCm□Cn,and whenis a twin dominating set ofCm□Cn.This completes the proof of the Theorem.

As an example,Figure 4 shows a twin dominating sets ofC11□C13.

Figure 3 A twin dominating set of C8□C13

Figure 4 A twin dominating set of C11□C13

主站蜘蛛池模板: 国产精品太粉嫩高中在线观看| 免费午夜无码18禁无码影院| 成人噜噜噜视频在线观看| 人妻一区二区三区无码精品一区| 一级毛片无毒不卡直接观看| 国产一区二区三区视频| 欧美亚洲第一页| 国产午夜看片| 色网在线视频| 国产成人凹凸视频在线| 日本精品视频| 日韩欧美国产另类| 一区二区午夜| 国产人成在线观看| 亚洲欧洲日本在线| 天堂成人在线视频| 成人免费网站在线观看| 国产成人免费观看在线视频| 91久久天天躁狠狠躁夜夜| 欧美亚洲香蕉| 萌白酱国产一区二区| av无码一区二区三区在线| 57pao国产成视频免费播放| 亚洲天堂网在线播放| 日本黄网在线观看| 波多野结衣爽到高潮漏水大喷| 国产三级视频网站| 日韩欧美国产中文| 无码丝袜人妻| 亚洲va在线∨a天堂va欧美va| 露脸一二三区国语对白| 精品少妇人妻一区二区| 毛片网站在线看| 国产美女视频黄a视频全免费网站| 国模私拍一区二区 | 亚洲区一区| 国产精品私拍在线爆乳| 欧美一级99在线观看国产| 麻豆精品在线视频| 亚洲欧洲日本在线| jizz在线免费播放| 无码精油按摩潮喷在线播放 | 日韩久草视频| 久久久久亚洲AV成人人电影软件| 中文字幕2区| 嫩草国产在线| 在线中文字幕日韩| 免费看av在线网站网址| 亚洲婷婷六月| 亚洲狠狠婷婷综合久久久久| 国产成人综合久久精品下载| 草草影院国产第一页| 亚洲大尺码专区影院| 免费啪啪网址| 素人激情视频福利| 国产主播一区二区三区| 亚洲中文字幕av无码区| a毛片免费在线观看| 国产手机在线ΑⅤ片无码观看| 在线观看亚洲天堂| 亚洲国产精品日韩专区AV| 伊人色在线视频| 亚洲国产精品日韩专区AV| 国产资源站| 国产又黄又硬又粗| 欧美日韩动态图| 国产正在播放| 午夜啪啪网| 欧美日韩中文字幕在线| 五月天久久综合| 亚洲最大情网站在线观看| 色久综合在线| 精品无码一区二区在线观看| 内射人妻无码色AV天堂| 国产欧美亚洲精品第3页在线| 午夜毛片免费观看视频 | 亚洲无线一二三四区男男| 在线观看视频99| 国产真实乱人视频| 影音先锋丝袜制服| 国产视频一区二区在线观看| 亚洲狼网站狼狼鲁亚洲下载|