蔣小妹,李 俊,王炯科,伍佩珂,鄧良偉,王文國
豬場沼液UF-MBR+RO處理工藝濃縮液回流的鹽積累模型
蔣小妹1,李俊2,王炯科1,伍佩珂1,鄧良偉1,王文國1※
(1. 農業農村部沼氣科學研究所,成都 610041; 2. 成都大學食品與生物工程學院,成都 610106)
反滲透(Reverse Osmosis, RO)膜工藝在沼液深度處理中發揮重要作用,其濃縮液回流引起的鹽積累會降低生化階段的效能。該研究模擬豬場沼液超濾(Ultrafiltration, UF)-膜生物反應器(Membrane Bioreactor, MBR)+RO處理工藝中濃縮液回流,構建鹽積累模型預測不同污泥停留時間(Sludge Retention Time, SRT)下UF-MBR中鹽積累量,分析污泥吸附作用對鹽積累模型準確度的影響。結果表明:構建的鹽積累模型可預測鹽積累量及達到鹽平衡所需的回流次數,Ca2+、Mg2+的實際值與理論值的擬合決定系數2高于0.95,RMSE小于4.00 mg/L,模型對Ca2+、Mg2+積累量預測的準確度高。SRT從60 d降低至30 d,鹽度從4.83%降低至2.63%,達到鹽平衡所需的時長從249 d降低至179 d,降低SRT可作為一種有效策略來降低MBR中鹽積累量及達到鹽平衡的時長。SRT控制在30 d以下可使MBR鹽度低于1.00%,使MBR生化階段發揮效能的高效性。此外,污泥的吸附可降低MBR中積累的K+、Na+的含量。但是,Ca2+、Mg2+累積量較高時,污泥吸附作用對模型的影響較低,該研究構建的模型可為豬場沼液UF-MBR+RO處理工藝的應用提供參考。
模型;鹽;污泥;膜濃縮液回流;污泥停留時間;污泥吸附
規模化養豬場糞污厭氧消化產生的沼液屬于高濃度有機廢棄物[1],含有大量能夠被植物吸收利用的營養物質,可以用作肥料[1-2],就近還田利用是其最為常見的處置方式[3]。但是隨著集約化生豬養殖的迅速發展,豬場沼液產生量與豬場周邊土地對沼液消納能力之間的矛盾越來越突出,就近還田壓力大[4-5]。由于遠距離運輸沼液成本較高,達標處理也成為沼液處理的一種可選途徑[6]。沼液具有高氨氮(NH4+-N)、低C/N的特點,簡單的生物處理難以達到《城鎮污水處理廠污染物排放標準GB18918-2002》一級A標準[7],需要結合其他物理或化學技術進行深度處理[4]。膜處理技術是一種常用廢水深度處理技術,相關研究與應用日益增多[8]。
膜生物反應器(Membrane Bioreactor, MBR)+反滲透(Reverse Osmosis, RO)膜工藝由于具有出水水質高、污泥產量低及占地面積小等優勢,已在垃圾滲濾液、沼液等廢水處理工程中有大量的應用[9-11]。然而,MBR+RO工藝會產生RO膜濃縮液[2,8,12],RO膜濃縮液中有機物、NH4+-N、無機鹽含量較高,直接排放可能對環境造成污染[8-9]。如何低成本、高效的處理RO濃縮液是目前工程上的難點。將RO濃縮液回流至MBR單元是目前垃圾滲濾液處理工程上常用的方法[9-10]。然而,由于RO膜對鹽離子的高效截留效率,MBR進水90%的鹽離子會隨RO濃縮液回流到生化階段[9,13-14],導致生化階段鹽度積累,進而影響生化階段的處理效率[15]。現有研究主要關注于生化階段鹽度積累與膜污染、膜處理效率的關系。而如何有效控制MBR生化階段鹽度積累這方面的研究相對較少。
調節污泥停留時間(Sludge Retention Time, SRT)是一種通過改變排出剩余污泥時間來緩解MBR中鹽度積累的可行方法,該方法已被應用于市政污水MBR+RO處理工藝[15]。研究表明,降低SRT可有效的降低正滲透(Forward Osmosis, FO)-MBR和納濾(Nanofiltration, NF)-MBR中鹽度積累量,有效保障MBR生化階段污染物的去除性能[15-16]。基于SRT的重要性,一些研究者以SRT為參數建立MBR鹽度積累模型,可通過鹽度積累模型來預測MBR中鹽度隨運行時間的變化,并且表明FO-MBR和NF-MBR中積累的鹽度會達到平衡[15-17]。但是,FO-MBR中工藝操作復雜[15],NF-MBR工藝對一價鹽離的截留率較低[18],這兩種工藝難以滿足豬場沼液處理的需求。然而,由于RO工藝的操作簡單性,對鹽離子的截留率能達到98%,出水水質更優[19-20],廣泛應用于工程上處理豬場沼液。MBR+RO工藝處理沼液產生的濃縮液回流至MBR生化階段可能會造成MBR中鹽積累,而關于這方面的研究較少。因此,本研究模擬豬場沼液超濾(Ultrafiltration, UF)-MBR+RO處理工藝中濃縮液回流,構建鹽度積累模型來預測不同SRT下UF-MBR中鹽度積累量,并分析活性污泥的吸附作用對鹽度積累模型準確度的影響,研究成果將對沼液的深度處理提供一定的參考。
本研究使用的沼液取自四川省簡陽市某豬場,其性質見表1。所用的活性污泥取自四川省簡陽市某豬場沼液生化處理工程。

表1 沼液性質
1.2 實驗室規模的UF-MBR+RO裝置與運行參數
UF-MBR+RO裝置的流程如圖1所示。UF-MBR和RO膜的性能參數見表2,UF-MBR運行條件見表3。每天UF-MBR中進30 L沼液,經過UF-MBR中生化階段處理后,再通過UF膜出水30 L,所得到的30 L UF-MBR出水轉入到RO工藝的進水池中。經過RO工藝處理后,得到25 L RO產水和5 L RO濃縮液。

表2 UF-MBR和RO的性能參數
由于RO工藝運行前后都會殘留12 L的液體,因此整個RO工藝中僅對UF-MBR出水濃縮了1.8倍。每次RO工藝結束后對RO膜進行清洗。每天測定UF-MBR體系中鹽度、總溶解性固體(TDS)、電導率(EC)、鉀離子(K+)、鈉離子(Na+)、鎂離子(Mg2+)、鈣離子(Ca2+)含量。
采用王守偉和李春華[21]方法構建鹽度積累模型,得到鹽度累積模型(1)和(2)。
UF-MBR中鹽度(C)隨運行次數()變化的鹽度積累模型(1):
通過模型(1)可得UF-MBR中鹽度平衡模型(2),即鹽度積累量最大值max:

式中、為系數;為UF-MBR中有效體積,L;C為進水沼液中鹽離子濃度,mg/L;V為進水沼液體積,L;V為活性污泥體積,L;V為UF-MBR中排出剩余污泥的體積,L;U為UF膜對鹽離子的截留率;R為RO膜對鹽離子的截留率;V為RO濃縮液回流體積,L。
采用決定系數2和均方根誤差(Root Mean Square Error, RMSE)驗證模型的準確性。將實驗室規模的豬場沼液UF-MBR+RO處理工藝進行濃縮液回流所得的UF-MBR中鹽離子的試驗值與鹽度積累模型所預測的理論值進行擬合,以RMSE來評估模型的理論值與試驗值的偏差[22]。
基于本研究構建的UF-MBR鹽度積累模型計算不同SRT下UF-MBR+RO處理工藝濃縮液回流過程中UF-MBR鹽度積累量。參照Tay等[13]研究選定三種不同SRT參數,分別為30、45、60 d。根據先前研究[16,23-24]選定UF-MBR的其他操作參數值。其他操作參數值為:運行周期時長為24 h,UF-MBR的有效體積為1 000 L,UF-MBR的進水體積為500 L,RO濃縮液回流體積為100 L,UF膜對鹽離子的截留率為0.1,RO膜對K+、Na+的截留率為0.98,RO膜對Ca2+、Mg2+的截留率為0.99,沼液中總鹽度、K+、Na+、Ca2+、Mg2+的濃度分別為0.300%、0.600 g/L、0.250 g/L、0.075 g/L、0.125 g/L。將以上參數值代入UF-MBR鹽度積累模型,可得到1 000 L UF-MBR中的鹽度積累量。
沼液中含有的鹽離子主要為K+、Na+、Ca2+、Mg2+[23-24]。參考Macedo等[25]研究選取NaCl、MgCl2及CaCl2分別作為Na+、Mg2+、Ca2+的來源,參考Zhang等[26]研究選取KCl作為K+的來源。有研究[27-28]表明Cl-對活性污泥的毒害可以忽略不計。因此,本研究中添加K+、Na+、Ca2+、Mg2+鹽離子而加入的Cl-對試驗結果的干擾性較低。根據鹽度積累模型所得的鹽度平衡量,添加鹽離子將沼液中鹽離子含量調整到與鹽平衡量相近。具體試驗操作為:從UF-MBR中取1,800 mL活性污泥,使用蒸餾水將活性污泥清洗至無殘留的NH4+-N、NO3--N、NO2--N。分裝成18份分別轉移至250 mL的錐形瓶中,分為6組,分別為對照組(CK)、添加K+組(TK)、添加Na+組(TNa)、添加Mg2+組(TMg)、添加Ca2+組(TCa)、添加K+、Na+、Mg2+、Ca2+組(TMix)。每組進水沼液中鹽含量見表4。設置水力停留時間(Hydraulic Retention Time, HRT)為24 h,每個運行周期:進水0.25 h,曝氣8 h,沉淀2 h,出水0.25 h,閑置1.5 h。取開始和結束階段的活性污泥,測定活性污泥中K+、Na+、Mg2+、Ca2+含量。

表4 試驗組設計
注:CK對照組,TK添加K+組,TNa添加Na+組,TMg添加Mg2+組,TCa添加Ca2+組,TMix添加K+、Na+、Mg2+、Ca2+組,下同。
Note: CK is control group, TK is add K+group, TNa is add Na+group, TMg is add Mg2+group, TCa is add Ca2+group, TMix is add K+, Na+, Mg2+, Ca2+group, the same below.
UF-MBR體系中的鹽度、TDS、EC采用電導率儀(雷磁;DDSJ-308A)進行測定。UF-MBR體系中K+、Na+、Mg2+、Ca2+含量采用電感耦合等離子體(ICP;PlasmaQuant PQ9000)測定。
活性污泥中K+、Na+、Mg2+、Ca2+含量的測定參照Sudmalis等[29]研究。50 mL污泥樣品使用蒸餾水清洗3遍,重懸至10 mL,移取3 mL重懸液至15 mL離心管中,烘干,記錄烘干前后離心管的質量,后續在15 mL離心管中加入10 mL 68%硝酸,沸水浴中消解10 min,使用0.45m濾膜過濾,過濾所得到的樣品使用電感耦合等離子體(ICP;PlasmaQuant PQ9000)測定K+、Na+、Mg2+、Ca2+含量。
所有的數據使用Excel 2013進行處理,運用OriginPro.2019b和Microsoft PowerPoint進行繪圖。所有試驗均重復3次進行,所有數據均以mean ± std表示。使用OringinPro.2019b對試驗值與理論值的擬合。
本研究構建的模型(2)可用于預測豬場沼液UF-MBR+RO處理工藝中RO濃縮液回流引起的MBR中鹽度積累量,模型(1)可用于預測MBR中鹽度平衡時所需的RO濃縮液回流次數(運行次數)。模型(1)不同于王守偉和李春華[21]構建的模型,王守偉和李春華[21]模型是基于電凝聚法處理電鍍混合廢水工藝的操作參數而構建的,而本研究是參考王守偉和李春華[21]構建鹽模型方法,基于UF-MBR+RO工藝中的參數而構建的鹽積累模型。
本研究構建的模型是基于RO膜濃縮液回流而建立的,而大多的鹽度積累模型是基于SRT和HRT為參數而建立的,未考慮回流的影響,較本研究相對簡單[16-17]。如Tay等[16]使用NF-MBR+RO工藝處理市政污水時,發現MBR中鹽積累與RO膜污染具有較高相關性,鹽積累降低了膜工藝的處理效果,該研究未考慮濃縮液的回流處理。本研究在模型(1)的基礎上構建了模型(2),該模型可根據工藝的操作參數而預測MBR中鹽度平衡量,以便更好的優化UF-MBR+RO工藝而降低MBR中鹽度的積累,使MBR的生化階段保持高效的有機物、污染物的去除率。
將UF-MBR中四種鹽離子含量與模型(1)計算得到的理論值進行擬合并計算RMSE,所得到的R和RMSE見圖2。本研究參照周春輝等[30]研究選用線性擬合來權衡四種鹽離子的試驗值與理論值的擬合效果,能夠直觀的表示擬合效果。從圖2可以看出,四種鹽離子的試驗值與理論值的擬合曲線決定系數R在0.910~0.986范圍,說明擬合度較好。對比這四種鹽離子的擬合效果,發現對Ca2+、Mg2+這兩種鹽離子的擬合效果相比K+、Na+較好,且Ca2+、Mg2+這兩種鹽離子的RMSE低于K+、Na+,這表明UF-MBR鹽度積累模型對二價陽離子預測的準確度較高。K+的RMSE最高,達到29.718 mg/L,表明該模型對K+預測的準確度相對較低。
Tay等[16]構建的NF-MBR鹽度積累模型預測的Ca2+、Mg2+理論值與實際值的誤差在15.00%以下,而本研究的構建的鹽度積累模型對Ca2+、Mg2+理論值與實際值的預測誤差在10.00%(RSEM低于4.0 mg/L)以下,準確度更高。不同廢水中鹽離子的組成不同,常見的鹽離子為K+、Na+、Ca2+、Mg2+等[25,27],且K+、Na+含量往往高于Ca2+、Mg2+[28]。高濃度K+、Na+對活性污泥硝化性能抑制作用更為強烈[26-27,31]。因此,本研究同時考慮了鹽度積累模型對K+、Na+預測的準確性,而先前研究則主要考慮了二價陽離子(Ca2+、Mg2+)[16]。但是由于吸附等因素的影響,模型公式(1)對MBR中K+、Na+積累量預測的準確度相對較低,需要進一步的研究。
不同SRT下,1,000 L UF-MBR中鹽度及鹽離子的積累量的變化見圖3。SRT為30 d時,UF-MBR中鹽度、K+、Na+、Mg2+、Ca2+分別于179、135、145、179 d達到平衡,鹽度、K+、Na+、Mg2+、Ca2+平衡量分別為2.63%、5.35 g/L、2.19 g/L、0.73 g/L、1.22 g/L。SRT為45 d時,UF-MBR中鹽度、K+、Na+、Mg2+、Ca2+分別于190、207、178、208、207 d達到平衡,鹽度、K+、Na+、Mg2+、Ca2+平衡量分別為3.59%、7.18 g/L、2.99 g/L、1.04 g/L、1.73 g/L。當SRT升高到60 d,UF-MBR中鹽度、K+、Na+、Mg2+、Ca2+分別于249、249、249、228、289 d才達到平衡,鹽度、K+、Na+、Mg2+、Ca2+平衡量分別為4.83%、8.77 g/L、3.65 g/L、1.31 g/L、2.18 g/L。隨SRT升高,UF-MBR中積累的鹽度含量上升,這表明降低SRT可有效的緩解UF-MBR中鹽度的積累量,有效的縮短到達鹽度平衡時的時間。此結果與其他研究的結果一致,Wang等[15]研究了SRT對內置式MBR中鹽度積累量的影響,SRT為10 d時FO-MBR中鹽積累量低于SRT為15 d,降低SRT可降低MBR中鹽累積量,從而維持了高效的NH4+-N去除率。Tay等[16]對比了兩種不同SRT下NF-MBR+RO工藝中MBR的鹽度積累量,SRT為30 d時MBR中Ca2+、Mg2+的積累量要低于SRT為60 d,且SRT為30 d時MBR中Ca2+、Mg2+達到平衡所需的時間相比SRT為60 d要短。調節SRT可作為一種有效的策略降低MBR中的鹽度積累量。
另外,SRT分別為30、45、60 d時,1000 L的UF-MBR中四種鹽離子的積累鹽度值分別合計為0.95%、1.29%、1.59%。而預測UF-MBR中鹽度分別為2.63%、3.59%、4.83%,四種鹽離子合計的鹽度低于模型預測的鹽度,可能存在兩種原因:1)沼液中還存在其他離子與這四種鹽離子共同決定鹽度;2)本模型未考慮活性污泥的吸附作用,預測的鹽度可能高于實際積累的鹽度。因此在SRT分別為30、45、60 d時,UF-MBR中積累的鹽度分別應該在0.95%~2.63%、1.29%~3.59%、1.59%~4.83%之間。
目前,關于鹽度對污泥性能的影響,主要集中在污泥生物量、胞外聚合物(Extracelluar Polymeric Substance, EPS)含量、COD/TOC去除性能、TN去除性能、TP去除性能及微生物群落等方面[13,15,32-33]。這些研究結果表明廢水中的鹽度高于1.00%,會抑制微生物的生理活性,如呼吸作用,從而會降低活性污泥污染物的去除性能[33-34]。另外,在本研究的三種SRT下,UF-MBR的鹽度平衡量都高于1.00%,可推測SRT控制在30 d以下可減緩UF-MBR中鹽度積累量對活性污泥性能的影響。
活性污泥中一價離子(K+、Na+)的變化,見圖4a~4b。從圖中可看出,TMg、TCa兩組中K+含量要低于CK組,甚至TCa組的低于初始活性污泥(InS)中K+含量。可能是活性污泥會優先吸附二價陽離子,尤其是Ca2+[26,35],因此二價陽離子(Mg2+、Ca2+)存在時活性污泥中K+的含量降低。此外,TK組的活性污泥中并未檢測到Na+。Sudmalis等[29]研究表明活性污泥中的EPS會優先運輸K+進入到污泥內部相比Na+,這可能是TK組中Na+含量較低的原因。另外,Cui等[34]研究表明大量Mg2+的存在降低活性污泥對Na+的吸附,因此TMg組的活性污泥中Na+含量低于CK組(圖4b)。以上結果表明,高濃度的Ca2+、Mg2+會降低活性污泥對K+、Na+的吸附,大量的K+會降低污泥對Na+的吸附。
活性污泥中二價離子(Mg2+、Ca2+)的變化,見圖4c~4d。從圖中可看出,CK、TK、TNa組活性污泥中Mg2+含量與InS一致。但是TCa組中的Mg2+低于CK。Cui等[34]研究表明活性污泥中會優先吸附Ca2+相比Mg2+,因此TCa組中Mg2+含量低于其他各組。另外,TK、TNa、TMg中Ca2+含量與CK組一致。以上結果表明,高濃度的K+、Na+不會影響活性污泥對Mg2+、Ca2+的吸附,高濃度Ca2+會減少污泥對Mg2+的吸附。
另外,從圖4中發現,Tmix組活性污泥中Ca2+、Mg2+含量遠遠高于K+、Na+的含量。這可能是由于兩種原因造成的:1)大量Ca2+、Mg2+會干擾活性污泥對K+、Na+的吸附;2)Ca2+、Mg2+這兩種二價離子在堿性的環境易與碳酸根離子、銨根離子、磷酸根離子等形成沉淀[35-37]。
綜上所述,不同鹽離子的組合會影響活性污泥對鹽離子的吸附能力,尤其是活性污泥對K+、Na+的吸附能力易受其他離子含量的影響。從圖4中可得知,廢水中Ca2+、Mg2+濃度較低時,污泥中K+、Na+質量分數分別可達到3.38、1.03mg/g。另外,MBR中的MLSS維持在4~5 g/L時性能最佳[38]。因此,廢水中K+、Na+在活性污泥作用下可分別降低13.52~16.9、4.12~5.15 mg/L。然而,當Ca2+、Mg2+含量較高時,污泥中K+、Na+質量分數分別達到1.54、0.27mg/g,廢水中K+、Na+在活性污泥作用下可分別降低6.16~7.70、1.08~1.35 mg/L。這表明污泥吸附作用可以使MBR中積累的K+、Na+濃度有所降低。此外,該模型(1)對K+、Na+預測的理論值與實際值的RMSE分別為29.718、15.271 mg/L,高于污泥吸附作用而導致的減少量。廢水中Ca2+、Mg2+濃度較高時,由于吸附作用而減少的K+、Na+含量較低。因此,廢水中Ca2+、Mg2+含量較高時,吸附作用并不是造成鹽度模型對K+、Na+的預測準確度較低的主要原因,除此還存在其他的原因。并且通過鹽度積累模型預測可知,SRT為30 d,1,000 L的MBR中可累積Ca2+、Mg2+濃度分別達到0.73、1.22 g/L,Ca2+、Mg2+累積量較高,污泥吸附對模型的影響較低,本研究構建的模型可用于預測MBR中積累的鹽離子。
1)本文構建的UF-MBR鹽度積累模型可預測UF-MBR中的鹽度積累量及達到鹽平衡量時RO濃縮液的回流次數,Ca2+、Mg2+的實際值與理論值的擬合決定系數R高于0.95,RMSE小于4.00 mg/L,此模型可用于預測豬場沼液UF-MBR+RO處理工藝濃縮液回流引起的MBR中Ca2+、Mg2+積累量。
2)活性污泥吸附可降低13.52~16.9 mg/L K+、4.12~5.15 mg/L Na+。但是,Ca2+、Mg2+累積量較高時,活性污泥吸附可降低6.16~7.70 mg/L K+、1.08~1.35 mg/L Na+,污泥吸附對模型的影響較低,本研究構建的模型可為豬場沼液UF-MBR+RO處理工藝的應用提供參考。
3)污泥停留時間SRT從60 d降低至30 d,鹽度從4.83%降低至2.63%,達到鹽平衡所需的時長從249 d縮短至179 d,降低SRT可降低MBR中鹽積累量及達到鹽平衡時長。此外, 將SRT控制在30 d以下可使MBR鹽度低于1.00%,使MBR生化階段發揮效能的高效性。
[1] 周文兵,靳渝鄂,肖乃東. 沼液無害化處理和資源化利用研究進展及發展建議[J]. 農業工程學報,2018,34(增刊1):115-122.
Zhou Wenbing, Jin Yu’e, Xiao Naidong. Study progress and development suggestions on harmless treatment and resource utilization of biogas slurry[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(Supp.1): 115-122. (in Chinese with English abstract)
[2] 祁步凡,王虹,李俊,等. 沼液膜濃縮液復配肥對小白菜的肥效及安全性研究[J]. 西南農業學報,2021,34(1):89-93.
Qi Bufan, Wang Hong, Li Jun, et al. Fertilizer efficiency and safety of liquid digestate membrane concentrate based fertilizer on pakchoi (L.)[J]. Southwest China Journal of Agricultural Sciences, 2021, 34(1): 89-93. (in Chinese with English abstract)
[3] 王小彬,閆湘,李秀英. 畜禽糞污厭氧發酵沼液農用之環境安全風險[J]. 中國農業科學,2021,54(1):110-139.
Wang Xiaobin, Yan Xiang, Li Xiuying. Environmental safety risk for application of anaerobic fermentation biogas slurry from livestock manure in agricultural land in China[J]. Scientia Agricultura Sinica, 2021, 54(1): 110-139. (in Chinese with English abstract)
[4] 劉向陽,張千,羅萬東,等. 菌劑掛膜3D_RBC聯合BCO工藝處理養豬沼液廢水[J]. 農業工程學報,2020,36(20):49-56.
Liu Xiangyang, Zhang Qian, Luo Wandong, et al. Treatment of pig biogas slurry wastewater by microbial inoculum 3D-RBC combined with BCO process[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(20): 49-56. (in Chinese with English abstract)
[5] 仇煥廣,井月,廖紹攀,等. 我國畜禽污染現狀與治理政策的有效性分析[J]. 中國環境科學,2013,33(12):2268-2273.
Qiu Huanguang, Jing Yue, Liao Shaopan, et al. Environmental pollution of livestock and the effectiveness of different management policies in China[J]. China Environmental Science, 2013, 33(12): 2268-2273. (in Chinese with English abstract)
[6] 鄒夢圓,董紅敏,朱志平,等. 畜禽場沼液處理及資源化利用的研究進展與展望[J]. 中國家禽,2020,42(9):103-109.
Zou Mengyuan, Dong Hongmin, Zhu Zhiping, et al. Progress and prospect of treatments and resource utilization of biogas slurry on livestock and poultry farms[J]. China Poultry, 2020, 42(9): 103-109. (in Chinese with English abstract)
[7] 何星海,馬世豪,羅孜. 北京市《城鎮污水處理廠水污染物排放標準》解讀[J]. 給水排水,2013,49(10):123-127.
He Xinghai, Ma Sihao, Luo Zi. Explanation of Beijing Local Standard of Discharge standard of water pollutants for municipal wastewater treatment plants[J]Water & Wastewater Engineering, 2013, 49(10): 123-127. (in Chinese with English abstract)
[8] Keyikoglu R, Karatas O, Rezania H, et al. A review on treatment of membrane concentrates generated from landfill leachate treatment processes[J]. Separation and Purification Technology, 2021, 259: 118182.
[9] Zhang X, Liu Y. Reverse osmosis concentrate: An essential link for closing loop of municipal wastewater reclamation towards urban sustainability[J]. Chemical Engineering Journal, 2021, 421: 127773.
[10] Joss A, Baenninger C, Foa P, et al. Water reuse: >90% water yield in MBR/RO through concentrate recycling and CO2addition as scaling control[J]. Water Research, 2011, 45(18): 6141-6151.
[11] Li X, Zhu W, Wu Y, et al. Recovery of potassium from landfill leachate concentrates using a combination of cation-exchange membrane electrolysis and magnesium potassium phosphate crystallization[J]. Separation and Purification Technology, 2015, 144: 1-7.
[12] Arola K, Van Der Bruggen B, M?ntt?ri M, et al. Treatment options for nanofiltration and reverse osmosis concentrates from municipal wastewater treatment: A review[J]. Critical Reviews in Environmental Science and Technology, 2019, 49(22): 2049-2116.
[13] Tay M F, Liu C, Cornelissen E R, et al. The feasibility of nanofiltration membrane bioreactor (NF-MBR)+reverse osmosis (RO) process for water reclamation: Comparison with ultrafiltration membrane bioreactor (UF-MBR)+RO process[J]. Water Research, 2018, 129: 180-189.
[14] Kappel C, Kemperman A J B, Temmink H, et al. Impacts of NF concentrate recirculation on membrane performance in an integrated MBR and NF membrane process for wastewater treatment[J]. Journal of Membrane Science, 2014, 453: 359-368.
[15] Wang X, Chen Y, Yuan B, et al. Impacts of sludge retention time on sludge characteristics and membrane fouling in a submerged osmotic membrane bioreactor[J]. Bioresour Technology, 2014, 161: 340-347.
[16] Tay M F, Lee S, Xu H, et al. Impact of salt accumulation in the bioreactor on the performance of Nanofiltration Membrane Bioreactor (NF-MBR)+Reverse Osmosis (RO) process for water reclamation[J]. Water Research, 2020, 170: 115352.
[17] Xiao D, Tang C Y, Zhang J, et al. Modeling salt accumulation in osmotic membrane bioreactors: Implications for FO membrane selection and system operation[J]. Journal of Membrane Science, 2011, 366(1/2): 314-324.
[18] 李蕊寧,金政偉,李瑞龍,等. 四種納濾膜對高鹽廢水分鹽效果分析[J]. 工業用水與廢水,2021,52(1):43-46.
Li Ruining, Jin Zhengwei, Li Ruilong, et al. Analysis on salt separation performance of four nanofiltration membranes in high salinity wastewater[J]. Industrial Water & Wastewater, 2021, 52(1): 43-46. (in Chinese with English abstract)
[19] Luo W, Phan H V, Xie M, et al. Osmotic versus conventional membrane bioreactors integrated with reverse osmosis for water reuse: Biological stability, membrane fouling, and contaminant removal[J]. Water Res, 2017, 109: 122-134.
[20] Qin J J, Kekre K A, Tao G, et al. New option of MBR-RO process for production of NEWater from domestic sewage[J]. Journal of Membrane Science, 2006, 272(1): 70-77.
[21] 王守偉,李春華. 廢水再生回用系統中鹽累積規律的研究[J]. 中國給水排水,1991,7(4):4-8.
Wang Shouwei, Li Chunhua. A study on the salt accumulation rule in wastewater reuse system[J]. China Water & Wastewater, 1991, 7(4): 4-8. (in Chinese with English abstract)
[22] Deng L, Yang H, Liu G, et al. Kinetics of temperature effects and its significance to the heating strategy for anaerobic digestion of swine wastewater[J]. Applied Energy, 2014, 134: 349-355.
[23] 祁步凡. 豬場沼液膜濃縮制肥及其對小白菜的肥效與安全性評價[D]. 成都:成都大學,2020.
Qi Bufan. Study on Fertilizer Efficiency and Safety of Pig Farm Liquid Digestate Membrane Concentrate Based Fertilizer on Pakchoi (L.)[D]. Chengdu: Chengdu University, 2020. (in Chinese with English abstract)
[24] 鄧良偉,王文國,鄭丹. 豬場廢水處理利用理論與技術[M]. 北京:科學出版社,2017:144-145.
[25] Macedo W V, Sakamoto I K, Azevedo E B, et al. The effect of cations Na+, Mg2+, and Ca2+on the activity and structure of nitrifying and denitrifying bacterial communities[J]. Science of the Total Environment, 2019, 679: 279-287.
[26] Zhang L, Zhang M, Guo J, et al. Effects of K+salinity on the sludge activity and the microbial community structure of an A2O process[J]. Chemosphere, 2019, 235: 805-813.
[27] Lin L, Pratt S, Rattier M, et al. Individual and combined effect of salinity and nitrite on freshwater Anammox bacteria (FAB)[J]. Water Research, 2020, 169: 114931.
[28] Lin L, Pratt S, Crick O, et al. Salinity effect on freshwater Anammox bacteria: Ionic stress and ion composition[J]. Water Research, 2020, 188: 116432.
[29] Sudmalis D, Mubita T M, Gagliano M C, et al. Cation exchange membrane behaviour of extracellular polymeric substances (EPS) in salt adapted granular sludge[J]. Water Research, 2020, 178: 115855.
[30] 周春輝,趙俊男,甘浪雄,等. 潮流場作用下的航標漂移計算方法研究[J]. 安全與環境學報,2021,21(1):217-223.
Zhou Chunhui, Zhao Junnan, Gan Langxiong, et al. On the early warning method of the navigation buoy drift under the tidal current field[J]. Journal of Safety and Environment, 2021, 21(1): 217-223. (in Chinese with English abstract)
[31] Chen Y, He H, Liu H, et al. Effect of salinity on removal performance and activated sludge characteristics in sequencing batch reactors[J]. Bioresour Technol, 2018, 249: 890-899.
[32] Tan X, Acquah I, Liu H, et al. A critical review on saline wastewater treatment by membrane bioreactor (MBR) from a microbial perspective[J]. Chemosphere, 2019, 220: 1150-1162.
[33] He H, Chen Y, Li X, et al. Influence of salinity on microorganisms in activated sludge processes: A review[J]. International Biodeterioration & Biodegradation, 2017, 119: 520-527.
[34] Cui Y W, Huang J L, Alam F. Fast granulation of halophilic activated sludge treating low-strength organic saline wastewater via addition of divalent cations[J]. Chemosphere, 2020, 264(Pt 1): 128396.
[35] Lee J J, Choi C U, Lee M J, et al. A study of NH3-N and P refixation by struvite formation in hybrid anaerobic reactor[J]. Water Sciencen and Technology, 2004, 49: 207-214.
[36] 湛含輝,羅彥偉,韋小利. 活性污泥對回用凈水中鈣離子的去除研究[J]. 環境科學與技術,2007,30(8):10-12,50,115.
Zhang Hanhui, Luo Yanwei, Wei Xiaoli. Removal of calcuim ions from treated water by activated sludge[J]. Environmental Science & Technology, 2007, 30(8): 10-12, 50, 115. (in Chinese with English abstract)
[37] 李寧. 厭氧-好氧對活性污泥吸附Ca2+的影響[D]. 蘭州:蘭州理工大學,2018.
Li Ning. The Effect of Anaerobic-Aerobic on Adsorption of Ca2+by Activated Sludge[D]. Lanzhou: Lanzhou University of Technology, 2018. (in Chinese with English abstract)
[38] 曲昆,傅金祥,琚冉,等. MBR中MLSS的變化對處理效果的影響[J]. 沈陽建筑大學學報:自然科學版,2006(5):825-828.
Qu Kun, Fu jinxiang, Ju Ran, et al. The research of change of MLSS influencing handling effect in MBR[J]. Journal of Shenyang Jianzhu University: Natural Science, 2006(5): 825-828. (in Chinese with English abstract)
Salt accumulation model for the reflux of membrane concentrate from piggery liquid digestate UF-MBR+RO treatment process
Jiang Xiaomei1, Li Jun2, Wang Jiongke1, Wu Peike1, Deng Liangwei1, Wang Wenguo1※
(1,610041;2.,,610106,)
High-concentration organic wastes are often found in the liquid digestate that is derived from anaerobic digestion of manure in large-scale swine farms. There is also a contradiction between the treatment load of liquid digestate and the available land for absorption, due mainly to the high content of ammonia nitrogen, while the C/N ratio is relatively low. Thus, it requires the integration of physical or chemical technologies with biological ones for a deep treatment, since biological treatment alone cannot meet the current requirement of large-scale liquid digestate. Reverse osmosis (RO) membrane can play an important role in the deep-treatment of piggery liquid digestate. However, the reflux of concentrate in the RO process can lead to the accumulation of salinity, leading to much lower efficiency osubsequently biological treatment. In this study, a salt accumulation model was established in the nanofiltration (UF)-membrane bioreactor (MBR) under the reflux of membrane concentrate. Four kinds of salt ions were fitted with the theoretical, where the root mean square error (RMSE) was measured to evaluate the accuracy of the model. The salinity accumulation was clarified in UF-MBR under three types of sludge retention time (SRT), considering the adsorption capacity of activated sludge. The results showed that the salinity accumulation model of UF-MBR was successfully established to predict the salinity equilibrium. The running cycles were needed to achieve the required salinity. Secondly, the fitting determination coefficient (2) of the actual values of calcium ions (Ca2+) and magnesium ions (Mg2+) in the MBR and the theoretical values predicted by the salinity accumulation model were higher than 0.95, and the RMSE was less than 4.00 mg/L. Therefore, the UF-MBR salinity model here can be expected to predict the accumulation trend of Ca2+and Mg2+with high accuracy. Thirdly, SRT decreased from 60 d to 30 d, and the salinity decreased from 4.83% to 2.63%. The required time decreased from 249 d to 179 d for reaching salt equilibrium. The reduction of SRT can effectively alleviate the salinity accumulation in UF-MBR, while reducing the time to reach the salinity equilibrium. In addition, when the SRT was 30, 45, and 60 d, the salinity accumulated in UF-MBR should be between 0.95%-2.63%, 1.29%-3.59%, and 1.59%-4.83%, respectively, indicating the salinity equilibrium values were higher than 1.00%. When setting the SRT withi30 d, there was alleviated inhibition of salinity accumulation on the removal performance of activated sludge pollutants. Fourthly, both the2of the actual values of potassium ions (K+) and sodium ions (Na+) in this process and the theoretical values predicted by the salinity accumulation model were less than 0.95, while the RMSE was higher than 15.00. The low-accuracy prediction of the UF-MBR salinity model here may be attributed to the adsorption of activated sludge, thereby reducing the content of K+and Na+in MBR. The effect of adsorption on the model was low, indicating a feasible model when the accumulation of Ca2+and Mg2+was high. This work can provide a sound reference for the future application of UF-MBR+RO treatment in piggery liquid digestates.
model; salt; sludge; membrane concentrate reflux; sludge retention time; sludge adsorption
蔣小妹,李俊,王炯科,等. 豬場沼液UF-MBR+RO處理工藝濃縮液回流的鹽積累模型[J]. 農業工程學報,2021,37(13):209-215.
10.11975/j.issn.1002-6819.2021.13.024 http://www.tcsae.org
Jiang Xiaomei, Li Jun, Wang Jiongke, et al. Salt accumulation model for the reflux of membrane concentrate from piggery liquid digestate UF-MBR+RO treatment process[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(13): 209-215. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.13.024 http://www.tcsae.org
2021-03-02
2021-05-30
四川省重點研發項目(20ZDYF0003);國家現代農業產業技術體系建設專項(CARS-35)
蔣小妹,研究方向為畜禽養殖廢水處理。Email:18483691963@163.com
王文國,博士,研究員,研究方向為畜禽糞污處理與資源化利用。Email:wangwenguo@caas.cn
10.11975/j.issn.1002-6819.2021.13.024
X713
A
1002-6819(2021)-13-0209-07