郝志曄 盧雯平 錢偉 崔莎莎



摘要 目的:探討三陰方治療晚期三陰性乳腺癌(TNBC)的臨床療效、活性成分及作用機制。方法:選取2018年3月至2019年10月中國中醫科學院廣安門醫院收治的Ⅳ期TNBC患者52例作為研究對象,均給予三陰方,每日1劑,觀察患者的無進展生存期(PFS)和臨床療效。依托中藥系統藥理學數據庫與分析平臺(TCMSP)檢索并篩選三陰方的有效成分和作用靶標,應用GeneGards數據庫對三陰性乳腺癌靶標進行檢索進而構建成分靶點網絡、構建蛋白質-蛋白質相互作用(PPI)網絡,并對靶標進行基因本體(GO)功能富集分析、京都基因與基因組百科全書(KEGG)通路富集分析,構建靶點-通路網絡圖。結果:經三陰方治療后,患者的中位PFS為(8.64±1.87)個月,客觀緩解率為34.6%,疾病控制率為82.7%,卡氏評分和FACT-B評分均有改善,療效顯著。網絡藥理學研究共篩選出三陰方與三陰性乳腺癌重合靶標110個,GO及KEGG富集分析預測出與疾病相關的多條作用通路。結論:三陰方是治療晚期三陰性乳腺癌的有效方劑,可延長患者的PFS,提高臨床療效及生命質量。本研究預測三陰方治療晚期三陰性乳腺癌的主要活性成分為黃酮類及甾醇類化合物,主要調節靶標是AKT1、MAPK1、RELA,可能通過作用于PI3K-AKT、TNF、p53等信號通路對晚期三陰性乳腺癌起到治療作用。
關鍵詞 三陰方;治療;晚期;三陰性乳腺癌;臨床療效;藥理學研究;活性;作用機制
Clinical Research and Pharmacology Study on Sanyin Decoction in the Treatment of Triple-Negative Breast Cancer
HAO Zhiye,LU Wenping,QIAN Wei,CUI Shasha
(Guanganmen Hospital,China Academy of Chinese Medical Sciences,Beijing 100053,China)
Abstract Objective:To explore the clinical effect,active ingredients and action mechanism of Sanyin Decoction in the treatment of advanced triple-negative breast cancer.Methods:A total of 52 cases of stage IV triple-negative breast cancer patients were selected as the research objects and were given Sanyin Decoction,one dose a day.The progress-free survival(PFS) and clinical effect of the patients were observed.Based on TCMSP,we searched and screened the effective components and targets of Sanyin Decoction.The triple-negative breast cancer targets were searched in the GeneGards database and then the component target network and protein interaction(PPI) network were constructed.The target was analyzed by go function enrichment,KEGG pathway enrichment and the target pathway network map was constructed.Results:The median PFS were 8.64±1.87 months,the objective remission rate and the disease control rate were 34.6% and 82.7%,respectively after the treatment with Sanyin Decoction.Both the casabella score and the FACT-B score were improved significantly,showing significant curative effect.A total of 110 overlapping targets of Sanyin Decoction and triple-negative breast cancer were selected by network pharmacology research.Go and KEGG enrichment analysis predicted multiple disease-related pathways.Conclusion:Sanyin Decoction is an effective prescription for the treatment of advanced triple negative breast cancer,which can improve prolong PFS,the clinical efficacy,and improve quality of life in advanced triple-negative breast cancer patients.This study predicts that the main active components of Sanyin Decoction in the treatment of advanced triple-negative breast cancer are mainly flavonoids and sterols,the main regulatory targets are AKT1,MAPK1,RELA,which might be related to PI3K-AKT,TNF,p53 and so on signal pathway and plays a therapeutic role in advanced triple-negative breast cancer.
Keywords Sanyin Decoction; Treatment; Advanced; Triple-negative breast cancer; Clinical efficacy; Pharmacology research; Active ingredients; Action mechanism
中圖分類號:R289.5;R966文獻標識碼:Adoi:10.3969/j.issn.1673-7202.2021.16.023
乳腺癌是世界上女性最多發的惡性腫瘤,在全球女性惡性腫瘤中居首位,嚴重危害女性健康[1]。三陰性乳腺癌(Triple-negative Breast Cancer,TNBC)是乳腺癌分子分型中的一種特殊類型,約占所有乳腺癌的15%,確診后5年生存率明顯低于其他類型乳腺癌患者[2-3]。因其雌激素受體(Estrogen Receptor,ER),孕激素受體(Progesterone Receptor,PR),人表皮生長因子受體(Human Epidermal Growth Factor Receptor 2,HER-2)均不表達,使此類患者不能從靶向治療及內分泌治療中獲益,因此,治療仍以化療為主要手段,且通常復發轉移發生較早,TNBC一旦發生轉移,對化療的敏感度顯著降低,中位生存時間縮短至6個月以下[4],對其他類型乳腺癌治療有效的藥物通常對TNBC無效[5],尤其是對于晚期患者,臨床上仍需尋找新的治療方法。
中醫學在治療乳腺癌方面有一定療效。為進一步尋找有效的治療方劑,總結研究盧雯平教授應用三陰方(即逍遙散合理沖湯化裁方)治療晚期TNBC的臨床經驗。采用臨床療效觀察和網絡藥理學方法,驗證該方在臨床上的療效,同時構建藥物與TNBC共有的靶點,探討該湯劑治療晚期TNBC的有效成分及分子作用機制,旨在為中醫藥治療晚期TNBC的研究提供進一步科學依據。
1 資料與方法
1.1 一般資料 選取2018年3月至2019年10月中國中醫科學院廣安門醫院收治的Ⅳ期TNBC患者52例作為研究對象,年齡36~75歲,平均年齡(55±12)歲。
1.2 診斷標準 西醫診斷標準參照《NCCN乳腺癌篩查和診斷臨床實踐指南》[6];中醫辨證標準參照國家中醫藥管理局《中醫病證診斷療效標準》[7],分為肝郁痰凝、沖任失調、正虛毒熾三型。
1.3 納入標準 1)確診為Ⅳ期乳腺癌的成年女性,有證據顯示存在不可切除或不能行根治放療的局灶復發性病灶或轉移病灶,不伴內臟危象和其他快速進展性疾病。2)組織學或細胞學免疫組織化學結果ER(-),PR(-),HER-2(-);3)所有患者依據美國國家癌癥綜合網(National Comprehensive Cancer Network,NCCN)乳腺癌治療指南,接受規范治療,不伴內臟危象和其他快速進展性疾病;4)可測量病灶滿足以下條件或僅單純的骨轉移病灶:a.對于非淋巴結,至少一處病灶的最長直徑≥1.0 cm,或者對于淋巴結,至少一處病灶的短軸直徑≥1.5 cm;如果只有一處靶病灶且為非淋巴結,則其最長直徑應≥1.5 cm;b.接受過外照射放療或局部區域治療(如射頻消蝕)的病灶,必須顯示出疾病進展證據(根據實體瘤療效評價標準1.1),以作為靶病灶使用;5)ECOG評分0~2分。
1.4 排除標準 1)疾病晚期、出現癥狀、內臟擴散、在短期內有發生危及生命的并發癥者;2)妊娠、哺乳及拒絕采取避孕措施的女性患者;3)預期壽命小于3個月者。
1.5 脫落與剔除標準 已入組病例但符合以下之一者,應剔除:1)誤診;2)符合排除標準者;3)未曾用藥者;4)無任何檢測記錄者;5)由于使用某種禁用的藥物,以致無法評價藥效者。
1.6 治療方法 所有患者依據美國國家癌癥綜合網乳腺癌治療指南接受規范治療。在此基礎上患者均給予三陰方(即逍遙散合理沖湯化裁方),基礎方:黃芪30 g、白術15 g、三棱6 g、莪術9 g、柴胡12 g、白芍20 g、枸杞子15 g、青蒿15 g、黨參10 g、天花粉10 g、白花蛇舌草15 g。臨床可隨證加減,肝郁痰凝證加薄荷6 g、瓜蔞15 g;沖任失調證加淫羊藿15 g、巴戟天15 g;正虛毒熾證加蒲公英15 g。根據轉移部位不同加減,骨轉移者加威靈仙10 g、杜仲10 g;肝轉移者加茵陳6 g、八月札20 g、鱉甲6 g;肺轉移者加桔梗9 g、麥冬20 g;腦轉移者加菖蒲15 g、全蝎5 g。水煎服,每日1劑,分2次早晚服藥,治療8周。
1.7 觀察指標 1)主要觀察指標:無進展生存期(PFS)和臨床療效。無進展生存期(PFS)為從研究藥物的首次給藥時間開始至疾病進展時間。2)次要觀察指標:卡氏評分、生命質量等。對患者基線和治療4、8周后的卡氏評分、乳腺癌生命質量測定表(FACT-B)評分進行比較。FACT-B評分包括生理、情感、功能狀況、社會/家庭情況和其他問題等5個維度,評分越高說明生命質量越好。
1.8 療效判定標準 治療8周后根據實體瘤療效評價標準1.1進行療效評估,完全緩解(CR)為病變部位病灶全部消失,且腫瘤標志物為正常范圍,至少持續4周;部分緩解(PR)為病灶最大直徑與垂直橫徑面積縮小50%以上并至少維持4周,其他病灶無增大并無新病灶發生;疾病穩定(SD)為病灶的兩徑乘積縮小50%或者增大程度沒有超過25%,且周圍無新病灶出現;疾病進展(PD)為病灶直接乘積增大程度>25%,有新病灶的出現。客觀緩解率(ORR)(%)=(CR+PR)例數/總例數×100%。疾病控制率(DCR)(%)=(CR+PR+SD)例數/總例數×100%。
1.9 統計學方法 采用SPSS 23.0統計軟件對研究數據進行分析。計量資料用均數±標準差(±s)表示,多個時點間比較采用單因素方差分析,兩兩比較采用LSD檢驗。以P<0.05為差異有統計學意義。
1.10 網絡藥理學研究方法
1.10.1 方藥成分收集與篩選 三陰方中共含11味中藥材,分別以中藥名為關鍵詞在TCMSP(http://tcmspw.com/tcmspsearch.php)中通過口服生物利用度(OB)≥30%和類藥性(DL)≥0.18篩選藥物活性成分,建立藥物靶標數據庫。通過GeneCards數據庫(http://www.genecards.org/)篩選TNBC相關基因和蛋白靶標,建立數據集。再通過UniProt數據庫將所有靶標轉化為識別碼格式,并對藥物有效成分靶標與TNBC疾病靶標取交集,尋找共有靶標。
1.10.2 “成分-靶標”交互網絡與PPI網絡的構建與分析 為進一步研究三陰方中所含活性成分與TNBC靶標之間的相互關系,將搜集到的藥物有效化合物成分、作用靶標與TNBC相關靶標信息導入Cytoscape3.7.2軟件進行可視化分析,并通過蛋白質-蛋白質相互作用(PPI)網絡數據庫進行分析。
1.10.3 GO富集分析 通過R語言Clusterprofiler包對PPI網絡中的蛋白進行基因本體(GO)富集分析,分別進行生物過程(Biological Process,BP)、細胞成分(CC)及分子功能(MF)分析,對基因集合或基因簇進行功能聚類的統計分析,根據富集的相關靶標數目及統計學差異繪制GO富集分析氣泡圖。
1.10.4 KEGG通路富集分析 通過R語言Clusterprofiler包對PPI網絡中的蛋白進行京都基因與基因組百科全書(KEGG)富集分析,得出交互網絡中的直接作用靶標相關通路,對結果進行功能聚類的統計分析,繪制KEGG富集分析氣泡圖。將得到的通路條目、靶點信息導入Cytoscape 3.7.2軟件,繪制得到靶點-通路圖。
2 結果
2.1 臨床觀察結果
2.1.1 平均PFS 三陰方治療后患者總體的平均PFS為(8.64±1.87)個月。
2.1.2 臨床療效 觀察服藥8周后患者臨床療效。完全緩解2例,部分緩解16例,疾病穩定25例,客觀緩解率34.6%,疾病控制率82.7%。
2.1.3 卡氏評分 治療前及治療4周、8周后患者的卡氏評分分別為(88.6±3.1)分、(91.9±2.8)分、(93.6±2.7)分,差異有統計學意義(P<0.05)。
2.1.4 FACT-B評分 治療前及治療4周、8周后患者的FACT-B評分比較,差異均有統計學意義(均P<0.05)。見表1。
2.2 網絡藥理學研究結果
2.2.1 藥物與疾病的靶標篩選 基于數據庫構建方法,本研究利用TCMSP數據庫共篩選得到三陰方11味中藥的136個活性成分及226個不同作用靶標。見表2。通過GeneCards數據庫共篩選得到TNBC作用靶標1 550個。將226個藥物有效成分靶標與1 550個TNBC疾病作用靶標繪制韋恩圖,得到共110個重合靶標。淺藍色代表TNBC相關靶標,紅色代表三陰方作用靶標,重疊部分代表三陰方化學成分與TNBC交集作用靶標。見圖1。
2.2.2 藥物活性成分-靶標網絡分析結果 將所篩選出的有效藥物成分與靶標信息構建“成分-靶標”網絡。見圖2。藍色長方形為藥物作用靶標,橙色三角形代表白花蛇舌草成分,綠色三角形代表白芍成分,紫色三角形代表白術成分,藍色三角形代表柴胡成分,黃色三角形代表黨參成分,紅色菱形代表枸杞子成分,綠色菱形代表黃芪成分,藍色菱形代表青蒿成分,黃色菱形代表三棱成分,紅色三角形代表天花粉成分,紫色菱形為多藥共有成分。藥物活性成分中Degree≥10的分別是:槲皮素(Quercetin,MOL000098,值為78)、木犀草素(Luteolin,MOL000006,值為37)、山柰酚(Kaempferol,MOL000422,值為26)、甘氨酸(Glycitein,MOL008400,值為17)、7-甲氧基-2-甲基異黃酮(7-Methoxy-2-methyl isoflavone,MOL003896,值為15)、芒柄花黃素(Formononetin,MOL000392,值為15)、異鼠李素(Isorhamnetin,MOL000354,值為15)、7-O-甲基異戊烯醇(7-O-methylisomucronulatol,MOL000378,值為14)、卡氏菌素(Calycosin,MOL000417,值為14)、蒿黃素(Artemetin,MOL005229,值為12)、芹菜素-6,8-二-C-葡萄糖苷(6,8-di-c-glucosylapigenin_qt,MOL007423,值為11)、β-谷甾醇(Beta-sitosterol,MOL000358,值為10)、牡荊素(Vitexin_qt,MOL007404,值為10)。
2.2.3 PPI網絡的構建 利用String在線數據庫對靶標蛋白進行PPI分析,構建了三陰方和TNBC潛在靶標的PPI網絡(圖3,互作分數≥0.4),圖中含有107個靶蛋白和2 108條相互作用邊。
2.2.4 GO分析 分別對靶標蛋白進行BP、CC、MF富集分析,保留P≤0.01的結果,并分別對前20個條目進行可視化分析,得到柱狀圖。見圖4~6。縱坐標表示富集條目,橫坐標表示基因所占比例,圖中圓形面積越大代表富集基因數目越多,顏色越紅代表富集程度越顯著。圖4所示,主要BP富集條目如:氧化應激反應(Response to Oxidative Stress)、對金屬離子的反應(Response to Metal Ion)、對類固醇激素的反應(Response to Steroid Hormone)等;圖5所示,主要CC富集條目如:染色質(Chromatin)、轉錄因子復合物(Transcription Factor Complex)、膜筏(Membrane Raft)等;圖6所示,主要MF富集條目如:核受體活性(Nuclear Receptor Activity)、為近端啟動子序列特異性DNA結合(Proximal Promoter Sequence-specific DNA Binding)、蛋白質異二聚活性(Protein Heterodimerization Activity)等。
2.2.5 KEGG通路富集分析 通過網絡藥理學的KEGG_PATHWAY通路注釋分析,獲取了三陰方的主要藥理學作用通路166條(Count≥2,P-Value≤0.05)。主要涉及PI3K-AKT信號通路(PI3K-AKT Signaling Pathway)、腫瘤壞死因子信號通路(TNF Signaling Pathway)、p53信號通路(p53 Signaling Pathway)等。見圖7。縱坐標表示富集條目,橫坐標表示基因所占比例,圖中圓形面積越大代表富集基因數目越多,顏色越紅代表富集程度越顯著。
2.2.6 構建靶標-通路圖 將得到的通路條目、靶標信息導入Cytoscape3.7.2軟件,繪制得到靶標-通路圖。見圖8。紫色長方形代表靶標,橙色橢圓形代表通路,面積越大富集越顯著。其中Degree≥10的靶有AKT1、MAPK1、RELA、CCND1、CDKN1A、CHUK、IKBKB、BAX、CDK4、CASP9、CASP3、RAF1、RB1、E2F1、MAPK8、BCL2、JUN。
3 討論
中醫學關于乳腺癌的記載最早見于葛洪的《肘后備急方》:“若發腫至堅而有根者,名曰石癰。”后巢元方在《諸病源候論》中稱之為“乳石癰”,竇漢卿在《瘡瘍經驗全書》中稱之為“乳巖”,TNBC在中醫學也屬于“乳巖”范疇[8]。在病機方面,歷代醫家均強調與七情內傷密切相關,情志異常是導致乳腺癌發生發展的重要因素。情志異常,以致肝氣久郁,氣郁結聚于乳絡則可發病,加之飲食不佳,脾胃受損,運化不利,則痰濁內生,加重病情。《慎齋遺書》中曾記載:“脾胃一傷,四臟皆無生氣。”TNBC患者肝脾不合是其發病關鍵,而瘀血內停、痰濁內生為疾病演變基礎,痰瘀互結為疾病主要病機轉歸,疾病發生、發展過程中虛、外傷、痰、瘀、郁相互促進,互為影響,虛實夾雜,疾病纏綿難愈,治療則當以疏肝健脾、養血益氣之法論治[9-10]。
盧雯平教授根據多年臨床經驗,擬定三陰方(即逍遙散合理沖湯化裁方)用于臨床治療晚期TNBC患者。逍遙散出自《太平惠民和劑局方》,養血健脾,疏肝清熱;理沖湯出自《醫學衷中參西錄》,具有益氣行血,調經祛瘀之功效。方中柴胡疏肝解郁,以調達肝氣;白芍養血斂陰,柔肝緩急;黨參、黃芪、白術補脾胃之元氣,使氣旺而促血行、祛瘀而不傷正。三棱、莪術破血、行氣、消癥;枸杞子益精明目,滋補肝腎;天花粉清熱瀉火,生津止渴,排膿消腫;青蒿清熱涼血;白花蛇舌草清熱解毒、消痛散結。諸藥合用,有疏肝益腎,調理沖任之功,且攻補兼施,祛邪不傷正。
經網絡藥理學數據發掘共得到三陰方篩選的136個活性成分及226個不同作用靶標,經過與TNBC相關作用靶標取交集得到110個藥物與疾病相關活性成分與靶標,活性成分為黃酮類化合物及甾醇類化合物。以往研究證實黃酮類化合物可以抑制腫瘤細胞的上皮-間充質轉化(EMT),從而抑制腫瘤轉移[11];黃酮類植物成分不僅可以通過抑制細胞色素P4501B1酶逆轉丙二醛-MB-468TNBC細胞對順鉑的耐藥性,還可以通過抑制TNBC細胞的遷移來誘導阿霉素的抗腫瘤活性,提示黃酮類植物成分能夠提高現有化療藥物對TNBC的療效[11-12]。有報道槲皮素不僅可以通過調節Foxo3a活性誘導TNBC細胞凋亡和細胞周期阻滯,而且其可以增強電熱療誘導TNBC細胞凋亡[13-14]。槲皮素和姜黃素聯合通過調節腫瘤抑制基因協同作用誘導治療TNBC細胞株的抗癌活性[15]。同時它們可以與鈰離子形成復合物從而提高光動力療法治療TNBC的療效[16]。槲皮素聯合沒食子酸和沒食子酸酯通過下調S期激酶蛋白2的表達,誘導TNBC細胞S期阻滯和凋亡[17]。木犀草素及其苷已往研究中被證實對TNBC的MDA-MB-231細胞侵襲和凋亡有作用,而且可以通過下調β-catenin的表達,逆轉上皮向間充質的轉移抑制TNBC的轉移、細胞遷移和生存[18-20]。同時其可以通過AKT/mTOR信號通路表觀遺傳調控MMP9表達抑制雄激素受體陽性TNBC細胞增殖和轉移,所以有研究表明木犀草素作為新型YAP/TAZ抑制劑是一種治療TNBC的新藥物[21-22]。有研究表明小劑量山柰酚可以抑制TNBC細胞的遷移和侵襲,誘導細胞周期阻滯、凋亡和DNA損傷,還可以通過抑制P-21激活激酶4(PAK4)的活性改善TNBC的預后[23-25]。有研究將異鼠李素(IH)聯合氯喹(CQ)干預TNBC細胞和異種移植小鼠,可使小鼠的依賴性線粒體分裂和凋亡[26]。此外,異鼠李素與經典的自噬/有絲分裂抑制因子聯合治療TNBC是一種新的治療策略。
在進行GO富集的BP、CC與MF分析過程中,我們富集出來許多高相關性的富集條目,如氧化應激反應,有研究表明黏蛋白1(MUC1)是一種異二聚體腫瘤蛋白,其可通過氧化應激反應降低TNBC細胞的耐藥性[27];對金屬離子的響應,有研究表明抗癌和抗血管生成藥物,毛殼菌合成的真菌代謝產物Chetomin(CHET)可以通過促進鈣超載和線粒體功能障礙誘導人TNBC細胞凋亡[28];對類固醇激素的反應,有研究表明雌二醇能夠誘導TNBC BDNF/TrkB信號轉導促進腦轉移,且在雌激素受體β(ERβ)的TNBC細胞中具有抗增殖作用[29-30];對活性氧的反應,有研究表明二萜類天然化合物C4(Crassin)能夠通過活性氧途徑對TNBC細胞產生抑制作用[31];對抗生素的反應,有研究表明鹽霉素不僅對TNBC細胞成活和遷移有影響,而且對TNBC細胞生長有抑制作用[32-33];活性氧代謝過程,有研究表明楊梅素通過過氧化氫產生鐵依賴性活性氧介導誘導TNBC細胞凋亡[34];染色質,有研究表明染色質復合物可以抑制膽固醇生物合成在TNBC中發揮抑癌作用[35];轉錄因子復合物,有研究表明激活轉錄因子4通過SMAD2/3/4和mTORC2信號調節TGFβ誘導的乳腺癌侵襲性[36];膜筏,有報道證實脂筏破裂可以誘導TNBC細胞凋亡,降低TNBC細胞的成活率[37-38];主軸,有研究表明高水平的核仁紡錘體相關蛋白和低水平的BRCA1表達預示著TNBC預后不良[39];核受體活性,有研究表明孤兒核受體雌激素相關受體β(ERRβ或ESRRB)的小分子激動劑配體在TNBC細胞系中具有生長抑制和抗有絲分裂活性[40]。
通過網絡藥理學的KEGG通路分析,預測了三陰方治療TNBC可能的主要藥理學作用通路,如PI3K-AKT信號通路。PI3K-AKT信號通路是TNBC耐藥和生存的重要途徑之一[41]。有隨機試驗表明,PI3K-AKT信號通路抑制劑聯合一線化療可提高TNBC患者的無進展生存率(PFS)[42]。而雙重抑制PI3K-AKT和MEK5-ERK5信號通路比單獨抑制這2種途徑更有效地降低TNBC的增殖和成活[43]。有研究發現雷帕霉素靶點(mTOR)聯合阿霉素脂質體和貝伐單抗通過PI3K-AKT-mTOR通路治療晚期化生性TNBC的安全性和有效性,蜈蚣總提取物(CME)可能通過抑制EGFR、PI3K/AKT/mTOR、核因子κB和STAT3通路治療TNBC,MiR-193通過ING5/PI3K/AKT途徑促進TNBC細胞增殖和侵襲,IL-8過表達通過PI3K-AKT信號通路和EMT促進TNBC細胞遷移[44-47];腫瘤壞死因子信號通路,有研究證明癌基因磷酸酶PRL-3通過腫瘤壞死因子信號通路導致TNBC細胞衰老和凋亡[48];p53信號通路,有研究證明環丙沙星通過p53信號通路誘導人乳腺癌MDA-MB-231細胞凋亡[49]。
通過靶標-通路圖的繪制,我們發現AKT1、MAPK1、RELA、CCND1、CDKN1A、CHUK、IKBKB、BAX、CDK4、CASP9、CASP3、RAF1、RB1、E2F1、MAPK8、BCL2、JUN均與富集通路顯著相關。有研究表明Copine1(CPNE1)通過AKT信號通路促進TNBC的腫瘤發生和抗輻射[50];MAPK的表達與腫瘤侵襲和TNBC轉移密切相關,可作為TNBC患者預后不良的指標[51];磷酸化-Ser134-GR(pS134-GR)在TNBC中升高,通過MAPK信號轉導為侵襲性TNBC治療靶點[52];研究發現氟噻唑酰腙類化合物TSC-3C通過促進細胞凋亡、調節MAPK途徑和誘導線粒體功能障礙等途徑抑制TNBC細胞的活性[53];CRT0066101是一種蛋白激酶D(PRKD)抑制劑,其通過MAPK1/3、AKT等信號通路有效地治療TNBC[54]。另有研究表明CDKN1A基因表達水平是影響TNBC患者預后的獨立因素[55]。吲哚-3-甲醇環四聚體衍生物CTet通過TNBC細胞株中CDKN1A/p21的過度表達抑制腫瘤細胞的增殖[56]。腫瘤壞死因子通過CDKN1A/p21表達侵襲TNBC細胞[57]。
綜上所述,三陰方用于治療晚期TNBC臨床療效顯著,可延長患者的PFS,明顯改善患者的生命質量。通過網絡藥理學研究得到三陰方用于治療晚期TNBC具有多個有效成分、多作用靶標及多作用通路的特點,為該方用于治療TNBC提供了理論依據,也為進一步提取中藥有效成分,研制TNBC藥物提供了思路。
參考文獻
[1]柳雪,李慧杰,李秀榮.乳腺癌相關性抑郁中醫認識及研究進展[J].中華中醫藥雜志,2021,36(4):2219-2221.
[2]Elias AD.Triple-negative breast cancer:a short review[J].Am J Clin Oncol,2010,33(6):637-645.
[3]Bray F,Ferlay J,Soerjomataram I,et al.Global cancer statistics 2018:GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J].CA Cancer J Clin,2018,68(6):394-424.
[4]Blows FM,Driver KE,Schmidt MK,et al.Subtyping of breast cancer by immunohistochemistry to investigate a relationship between subtype and short and long term survival:a collaborative analysis of data for 10,159 cases from 12 studies[J].PLoS Med,2010,7(5):e1000279.
[5]Park JH,Ahn JH,Kim SB.How shall we treat early triple-negative breast cancer(TNBC):from the current standard to upcoming immuno-molecular strategies[J].ESMO Open,2018,3(Suppl 1):e000357.
[6]Bevers TB,Anderson BO,Bonaccio E,et al.NCCN clinical practice guidelines in oncology:breast cancer screening and diagnosis[J].J Natl Compr Canc Netw,2009,7(10):1060-1096.
[7]國家中醫藥管理局.中醫病證診斷療效標準[S].南京:南京大學出版社,1994:131.
[8]董青,董雪燕,李忠,等.基于中醫古籍探索乳腺癌認知源流[J].北京中醫藥,2019,38(4):355-359.
[9]田華琴,王艷杰,王斌,等.乳積方加減對激素受體陰性乳腺癌術后復發轉移的影響[J].中國中西醫結合雜志,2017,37(2):169-173.
[10]王賢彬,胡金輝,袁博,等.補腎活血湯聯合化療對三陰性乳腺癌骨轉移患者免疫功能及生活質量的影響[J].中醫藥導報,2018,24(2):55-57.
[11]Srinivasan A,Thangavel C,Liu Y,et al.Quercetin regulates β-catenin signaling and reduces the migration of triple negative breast cancer[J].Mol Carcinog,2016,55(5):743-756.
[12]Sharma R,Gatchie L,Williams IS,et al.Glycyrrhiza glabra extract and quercetin reverses cisplatin resistance in triple-negative MDA-MB-468 breast cancer cells via inhibition of cytochrome P450 1B1 enzyme[J].Bioorg Med Chem Lett,2017,27(24):5400-5403.
[13]Nguyen LT,Lee YH,Sharma AR,et al.Quercetin induces apoptosis and cell cycle arrest in triple-negative breast cancer cells through modulation of Foxo3a activity[J].Korean J Physiol Pharmacol,2017,21(2):205-213.
[14]Danics L,Schvarcz CA,Viana P,et al.Exhaustion of Protective Heat Shock Response Induces Significant Tumor Damage by Apoptosis after Modulated Electro-Hyperthermia Treatment of Triple Negative Breast Cancer Isografts in Mice[J].Cancers(Basel),2020,12(9):2581.
[15]Kundur S,Prayag A,Selvakumar P,et al.Synergistic anticancer action of quercetin and curcumin against triple-negative breast cancer cell lines[J].J Cell Physiol,2019,234(7):11103-11118.
[16]Hosseinzadeh R,Khorsandi K,Esfahani HS,et al.Preparation of cerium-curcumin and cerium-quercetin complexes and their LEDs irradiation assisted anticancer effects on MDA-MB-231 and A375 cancer cell lines[J].Photodiagnosis Photodyn Ther,2021,34:102326.
[17]Huang C,Lee SY,Lin CL,et al.Co-treatment with quercetin and 1,2,3,4,6-penta-O-galloyl-β-D-glucose causes cell cycle arrest and apoptosis in human breast cancer MDA-MB-231 and AU565 cells[J].J Agric Food Chem,2013,61(26):6430-6445.
[18]Lee J,Park SH,Lee J,et al.Differential effects of luteolin and its glycosides on invasion and apoptosis in MDA-MB-231 triple-negative breast cancer cells[J].EXCLI J,2019,18:750-763.
[19]Lin D,Kuang G,Wan J,et al.Luteolin suppresses the metastasis of triple-negative breast cancer by reversing epithelial-to-mesenchymal transition via downregulation of β-catenin expression[J].Oncol Rep,2017,37(2):895-902.
[20]Cook MT,Liang Y,Besch-Williford C,et al.Luteolin inhibits lung metastasis,cell migration,and viability of triple-negative breast cancer cells[J].Breast Cancer(Dove Med Press),2017,9:9-19.
[21]Wu HT,Lin J,Liu YE,et al.Luteolin suppresses androgen receptor-positive triple-negative breast cancer cell proliferation and metastasis by epigenetic regulation of MMP9 expression via the AKT/mTOR signaling pathway[J].Phytomedicine,2021,81:153437.
[22]Cao D,Zhu GY,Lu Y,et al.Luteolin suppresses epithelial-mesenchymal transition and migration of triple-negative breast cancer cells by inhibiting YAP/TAZ activity[J].Biomed Pharmacother,2020,129:110462.
[23]Li S,Yan T,Deng R,et al.Low dose of kaempferol suppresses the migration and invasion of triple-negative breast cancer cells by downregulating the activities of RhoA and Rac1[J].Onco Targets Ther,2017,10:4809-4819.
[24]Zhu L,Xue L.Kaempferol Suppresses Proliferation and Induces Cell Cycle Arrest,Apoptosis,and DNA Damage in Breast Cancer Cells[J].Oncol Res,2019,27(6):629-634.
[25]Arowosegbe MA,Amusan OT,Adeola SA,et al.Kaempferol as a Potential PAK4 Inhibitor in Triple Negative Breast Cancer:Extra Precision Glide Docking and Free Energy Calculation[J].Curr Drug Discov Technol,2020,17(5):682-695.
[26]Hu J,Zhang Y,Jiang X,et al.ROS-mediated activation and mitochondrial translocation of CaMKⅡ contributes to Drp1-dependent mitochondrial fission and apoptosis in triple-negative breast cancer cells by isorhamnetin and chloroquine[J].J Exp Clin Cancer Res,2019,38(1):225.
[27]Hiraki M,Suzuki Y,Alam M,et al.MUC1-C Stabilizes MCL-1 in the Oxidative Stress Response of Triple-Negative Breast Cancer Cells to BCL-2 Inhibitors[J].Sci Rep,2016,6:26643.
[28]Dewangan J,Srivastava S,Mishra S,et al.Chetomin induces apoptosis in human triple-negative breast cancer cells by promoting calcium overload and mitochondrial dysfunction[J].Biochem Biophys Res Commun,2018,495(2):1915-1921.
[29]Contreras-Zárate MJ,Day NL,Ormond DR,et al.Estradiol induces BDNF/TrkB signaling in triple-negative breast cancer to promote brain metastases[J].Oncogene,2019,38(24):4685-4699.
[30]Wisinski KB,Xu W,Tevaarwerk AJ,et al.Targeting Estrogen Receptor Beta in a Phase 2 Study of High-Dose Estradiol in Metastatic Triple-Negative Breast Cancer:A Wisconsin Oncology Network Study[J].Clin Breast Cancer,2016,16(4):256-61.
[31]Richards CE,Vellanki SH,Smith YE,et al.Diterpenoid natural compound C4(Crassin) exerts cytostatic effects on triple-negative breast cancer cells via a pathway involving reactive oxygen species[J].Cell Oncol(Dordr),2018,41(1):35-46.
[32]Hero T,Bühler H,Kouam PN,et al.The Triple-negative Breast Cancer Cell Line MDA-MB 231 Is Specifically Inhibited by the Ionophore Salinomycin[J].Anticancer Res,2019,39(6):2821-2827.
[33]Rai G,Suman S,Mishra S,et al.Evaluation of growth inhibitory response of Resveratrol and Salinomycin combinations against triple negative breast cancer cells[J].Biomed Pharmacother,2017,89:1142-1151.
[34]Knickle A,Fernando W,Greenshields AL,et al.Myricetin-induced apoptosis of triple-negative breast cancer cells is mediated by the iron-dependent generation of reactive oxygen species from hydrogen peroxide[J].Food Chem Toxicol,2018,118:154-167.
[35]Alexandrova E,Giurato G,Saggese P,et al.Interaction Proteomics Identifies ERbeta Association with Chromatin Repressive Complexes to Inhibit Cholesterol Biosynthesis and Exert An Oncosuppressive Role in Triple-negative Breast Cancer[J].Mol Cell Proteomics,2020,19(2):245-260.
[36]González-González A,Muoz-Muela E,Marchal JA,et al.Activating Transcription Factor 4 Modulates TGFβ-Induced Aggressiveness in Triple-Negative Breast Cancer via SMAD2/3/4 and mTORC2 Signaling[J].Clin Cancer Res,2018,24(22):5697-5709.
[37]Badana AK,Chintala M,Gavara MM,et al.Lipid rafts disruption induces apoptosis by attenuating expression of LRP6 and survivin in triple negative breast cancer[J].Biomed Pharmacother,2018,97:359-368.
[38]Badana A,Chintala M,Varikuti G,et al.Lipid Raft Integrity Is Required for Survival of Triple Negative Breast Cancer Cells[J].J Breast Cancer,2016,19(4):372-384.
[39]Chen L,Yang L,Qiao F,et al.High Levels of Nucleolar Spindle-Associated Protein and Reduced Levels of BRCA1 Expression Predict Poor Prognosis in Triple-Negative Breast Cancer[J].PLoS One,2015,10(10):e0140572.
[40]Fernandez AI,Geng X,Chaldekas K,et al.The orphan nuclear receptor estrogen-related receptor beta(ERRβ) in triple-negative breast cancer[J].Breast Cancer Res Treat,2020,179(3):585-604.
[41]Khan MA,Jain VK,Rizwanullah M,et al.PI3K/AKT/mTOR pathway inhibitors in triple-negative breast cancer:a review on drug discovery and future challenges[J].Drug Discov Today,2019,24(11):2181-2191.
[42]Pascual J,Turner NC.Targeting the PI3-kinase pathway in triple-negative breast cancer[J].Ann Oncol,2019,30(7):1051-1060.
[43]Wright TD,Raybuck C,Bhatt A,et al.Pharmacological inhibition of the MEK5/ERK5 and PI3K/Akt signaling pathways synergistically reduces viability in triple-negative breast cancer[J].J Cell Biochem,2020,121(2):1156-1168.
[44]Basho RK,Gilcrease M,Murthy RK,et al.Targeting the PI3K/AKT/mTOR Pathway for the Treatment of Mesenchymal Triple-Negative Breast Cancer:Evidence From a Phase 1 Trial of mTOR Inhibition in Combination With Liposomal Doxorubicin and Bevacizumab[J].JAMA Oncol,2017,3(4):509-515.
[45]Lee MM,Chan BD,Wong WY,et al.Anti-cancer Activity of Centipeda minima Extract in Triple Negative Breast Cancer via Inhibition of AKT,NF-κB,and STAT3 Signaling Pathways[J].Front Oncol,2020,10:491.
[46]Xu JH,Zhao JX,Jiang MY,et al.MiR-193 promotes cell proliferation and invasion by ING5/PI3K/AKT pathway of triple-negative breast cancer[J].Eur Rev Med Pharmacol Sci,2020,24(6):3122-3129.
[47]Deng F,Weng Y,Li X,et al.Overexpression of IL-8 promotes cell migration via PI3K-Akt signaling pathway and EMT in triple-negative breast cancer[J].Pathol Res Pract,2020,216(4):152902.
[48]Gari HH,DeGala GD,Lucia MS,et al.Loss of the oncogenic phosphatase PRL-3 promotes a TNF-R1 feedback loop that mediates triple-negative breast cancer growth[J].Oncogenesis,2016,5(8):e255.
[49]Beberok A,Wrze'sniok D,Rok J,et al.Ciprofloxacin triggers the apoptosis of human triple-negative breast cancer MDA-MB-231 cells via the p53/Bax/Bcl-2 signaling pathway[J].Int J Oncol,2018,52(5):1727-1737.
[50]Shao Z,Ma X,Zhang Y,et al.CPNE1 predicts poor prognosis and promotes tumorigenesis and radioresistance via the AKT singling pathway in triple-negative breast cancer[J].Mol Carcinog,2020,59(5):533-544.
[51]Jiang W,Wang X,Zhang C,et al.Expression and clinical significance of MAPK and EGFR in triple-negative breast cancer[J].Oncol Lett,2020,19(3):1842-1848.
[52]Perez Kerkvliet C,Dwyer AR,Diep CH,et al.Glucocorticoid receptors are required effectors of TGFβ1-induced p38 MAPK signaling to advanced cancer phenotypes in triple-negative breast cancer[J].Breast Cancer Res,2020,22(1):39.
[53]Zhang J,Dai J,Zheng Q,et al.The Fluoro-Thiazolylhydrazone Compound TSC-3C Inhibits Triple Negative Breast Cancer(TNBC) Cell Line Activity by Promoting Apoptosis,Regulating the MAPK Pathway and Inducing Mitochondrial Dysfunction[J].Int J Mol Sci,2020,21(3):1038.
[54]Liu Y,Wang Y,Yu S,et al.The Role and Mechanism of CRT0066101 as an Effective Drug for Treatment of Triple-Negative Breast Cancer[J].Cell Physiol Biochem,2019,52(3):382-396.
[55]Zhou ZR,Wang XY,Yu XL,et al.Building radiation-resistant model in triple-negative breast cancer to screen radioresistance-related molecular markers[J].Ann Transl Med,2020,8(4):108.
[56]De Santi M,Galluzzi L,Lucarini S,et al.The indole-3-carbinol cyclic tetrameric derivative CTet inhibits cell proliferation via overexpression of p21/CDKN1A in both estrogen receptor-positive and triple-negative breast cancer cell lines[J].Breast Cancer Res,2011,13(2):R33.
[57]Zaremba-Czogalla M,Hryniewicz-Jankowska A,Tabola R,et al.A novel regulatory function of CDKN1A/p21 in TNFα-induced matrix metalloproteinase 9-dependent migration and invasion of triple-negative breast cancer cells[J].Cell Signal,2018,47:27-36.
(2020-05-11收稿 責任編輯:楊覺雄)