999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

Crossed products for Hopf group-algebras

2021-10-21 11:26:28YouMimanLuDaoweiWangShuanhong

You Miman Lu Daowei Wang Shuanhong

(1School of Mathematics and Information Science, North China University of Water Resources and Electric Power, Zhengzhou 450045, China)(2Department of Mathematics, Jining University, Qufu 273155, China)(3School of Mathematics, Southeast University, Nanjing 211189, China)

Abstract:First, the group crossed product over the Hopf group-algebras is defined, and the necessary and sufficient conditions for the group crossed product to be a group algebra are given. The cleft extension theory of the Hopf group algebra is introduced, and it is proved that the crossed product of the Hopf group algebra is equivalent to the cleft extension. The necessary and sufficient conditions for the crossed product equivalence of two Hopf groups are then given. Finally, combined with the equivalence theory of the Hopf group crossed product and cleft extension, the group crossed product constructed by the general 2-cocycle as algebra is determined to be isomorphic to the group crossed product of the 2-cocycle with a convolutional invertible map of the 2-cocycle. The unit property of a general 2-cocycle is equivalent to the convolutional invertible map of the 2-cocycle, and the combination condition of the weak action is equivalent to the convolutional invertible map of the 2-cocycle and the combination condition of the weak action. Similarly, crossed product algebra constructed by the general 2-cocycle is isomorphic to the Hopf π-crossed product algebra constructed by the 2-cocycle with a convolutional invertible map.

Key words:Hopf π-algebra; cleft extension theorem; π-comodule-like algebra; group crossed products

Hopf crossed products were introduced independently by Yukio et al.[1]and Blattner et al.[2]as a Hopf algebraic generalization of group crossed products. In particular, a Hopf crossed product is, in fact, always a Hopf cleft extension, provided that the cocycle that appeared in a Hopf crossed product is convolution-invertible[3-5].

Hopf group-algebras were related to homotopy quantum field theories, which are generalizations of ordinary topological quantum field theories[3,6-8]. In 2007, Wang et al.[9-11]introduced group smash products of Hopf group-algebras. Group crossed products of Hopf group-coalgebras were introduced[12-13]. Other related works can be found in Refs.[14-17].

In this article, we introduce and study the notions of a group crossed product and a group cleft extension. We then characterize group crossed products by the group cleft extension. Finally, we prove the equivalences of the group crossed products for the Hopf group-algebras.

1 Group Cleft Extensions and Existence of Group Crossed Products

Definition1LetA=({Aα}α∈π,Δ,ε) be a Hopfπ-algebra with the bijective antipodeSandJas algebra. We say thatAacts weakly onJif there exists a family of maps:

a?xa?αx, ?α∈π,a∈Aα,x∈J, such that

1) 1α?x=x, ?x∈J;α∈π;

2)a?α(xy)=(a(1,α)?αx)(a(2,α)?αy), ?a∈Aα,x,y∈J;

3)a?α1J=εα(a)1J, ?x∈J.

Furthermore, ifJis anAαmodule for eachα∈πand satisfies 2) and 3), we callJa leftπ-A-module-like algebra.

Definition2LetA=({Aα}α∈π,Δ,ε) be a Hopfπ-algebra andJa leftπ-A-module-like algebra. Letχα,β:Aα#Aβ→Jbe a family ofk-linear maps and suppose thatχis an invertible map. Suppose thatJacts weakly on eachAαwithα∈π. For anyα∈π, there is aπ-crossed productJ#χAαwith the multiplication given by (x#αa)(y#βb)=x(a(1,α)?αy)χα,β(a(2,α),b(1,β))#αβa(3,α)b(2,β), for alla,b∈Aα,Aβ,x,y∈J,α,β∈π, and the unit is 1J#1α.

Proposition1With the above notations,J#χAαis a Hopfπ-crossed product if and only if the following conditions hold: ?a∈Aα,b∈Aβ,c∈Aγ,?α,β∈π, andx,y∈J.

χα,β(a,1β)=χα,γ(a,1γ)=εα(a)1J

(1)

χα,β(a(1,α),b(1,β))χαβ,γ(a(2,α)b(2,β),c)=

(a(1,α)?αχβ,γ(b(1,β),c(1,γ)))χα,βγ(a(2,α),b(2,β)c(2,γ))

(2)

χα,β(a(1,α),b(1,β))(a(2,α)b(2,β)?αβx)=

a(1,α)?α(b(1,β)?βy)χα,β(a(2,α),b(2,β))

(3)

Remark11) Ifπ=1, the Hopfπ-crossed product is then the ordinary Hopf crossed product.

2) If we takeχα,β(a,b)=εα(a)εβ(b)1J, ?α,β∈π,a∈Aα,b∈Aβ, the Hopfπ-crossed product becomes the Hopfπ-smash product.

LetAbe a Hopf algebra. For anyα∈π, denoteδαas the one-dimensional linear space generated byα. Then we have a Hopf group algebraH={Hα=A?δα}α∈πwith the structure (a?α)(1,α)?(a?α)(2,α)=a1?α?a2?α,εα(a?α)=ε(a),Sα(a?α)=S(a)?α-1.

IfJ#σAis a crossed product withσ:A?A→J. Define

Definition3LetJbe a leftπ-Aα-module-like algebra.

1) We say thatH?Jis aπ-Aα-extension ifJis a rightπ-Aα-comodule algebra with a family ofk-linear mapsρ={ρα:J→J?Aα},

JcoAα={x∈J|ρα(x)=x?1α∈J?Aα, ?x∈J, ?α∈π}

which is called aπ-subalgebra of the rightπ-co-invariants.

εα(a)1J?a∈Aα,α∈π

Lemma1LetH?Jbe aπ-Aα-cleft extension with a rightπ-Aα-comodule structure map:ρ={ρα:J→J?Aα} viaxx(0,0)?x(0,α)forα∈πand aπ-Aα-cleft structure map:γ={γα:Aα→J}α∈πsuch thatγα(1Aα)=1Jwith We then have

Proposition3LetH?Jbe aπ-Aα-cleft viaγ={γα:Aα→J}α∈πsuch thatγα(1Aα)=1Jwithα∈π. Then, there is a Hopfπ-crossed product with a weak action ofAαonJgiven by

and a family of convolution-invertible mapsχ={χα,β:Aα?Aβ→J}α,β∈πgiven by

?a∈Aα, ?b∈Aβ

ProofFirst, we compute forx∈J,a∈Aα,

?Sα-1(a(3,α-1)))=a?αx?1Aα∈J?Aα

and thus,a?αx∈H=JcoAα. Furthermore, it is easy to see that Definition 1 2) and 3) hold.

Similarly, we can prove thatχ={χα}α∈πhas values inA. In fact, ?a,b∈Aα,Aβ,

ρα(χα,β(a,b))=ραγα(a(1,α))ραγβ(b(1,β))·

Finally, it is easy to check thatΦ={Φα}α∈πis a leftπ-J-module-like map and is a rightπ-Aα-comodule map.

To check thatνis a right inverse forγis more complicated. By a computation similar to the above, we have

a(5,α))]χα(α(2,α),S(a(3,α)))#1Aα

(4)

and hence,νis a right inverse forγif and only if

(5)

Sinceχ={χα,β:Aα?Aβ→J} is invertible, Eq. (2) gives

(a(3,α),b(3,β)c(3,γ))=a?αχβ,γ(b,c)

(6)

for anya∈Aα,b∈Aβ,c∈Aγ.

εα(a)εβ(b)εγ(c)1J

(7)

Hence, from Eq. (7), we obtain

(8)

We may now verify Eq. (6) using Eq. (8):

By Proposition 3 and Proposition 4, we can now get the main result of this section as follows.

2 Equivalences of Group Crossed Products

The proof is clear.

Theorem2LetJbe a Hopfπ-algebra,Aαa family of coalgebrasA={Aα,mα,1Aα}α∈π, andγ={γα:Aα→J}α∈πa family of convolution-invertible linear maps. Ifχ={χα:Aα?Aα→J}α∈πis a family ofk-linear maps, we then have the following assertions with the above notationsχγαfor anyα,β∈π:

2)χsatisfies Eq. (1) if and only ifχγsatisfies Eq. (1);

3) (χ,?) satisfies Eq. (2) if and only if (χγ,?γ) satisfies Eq. (2);

4) If(χ,?) satisfies Eq. (2), (χ,?) satisfies Eq. (3) if and only if (χγ,?γ) satisfies Eq. (3);

3) If (χ,?) satisfies Eq. (3), then

(a(1,α))?γα(b(1,β)?γβx))χγαα,β(a(2,α),b(2,β))=

γα(a(1,α))(a(2,α)?γβ(b(1,β)))χα,β(a(3,α),b(2,β))

Conversely, we get it from Lemma 2.

4) If (χ,?) satisfies Eq. (2) and Eq. (3), then, fora∈Aα,b∈Aβ,c∈Aγ,

γα(a(1,α))(a(2,α)?[γβ(b(1,β))(b(2,β)?γγ(c(1,γ)))·

γα(a(4,α))(a(5,α)?γβγ(b(5,β)c(4,γ)))χα,βγ(a(5,α),b(6,β)c(5,γ))·

2) and 5) of Theorem 2 are clearly proved.

主站蜘蛛池模板: 亚洲熟女偷拍| 午夜视频www| 国产欧美日韩在线在线不卡视频| 日韩精品久久无码中文字幕色欲| 日韩国产高清无码| 国产福利一区视频| 农村乱人伦一区二区| 亚洲欧美成aⅴ人在线观看| 国产成人精品在线1区| 久久亚洲高清国产| 日韩中文字幕亚洲无线码| 国产aⅴ无码专区亚洲av综合网| 香蕉99国内自产自拍视频| 久青草网站| 经典三级久久| 国产91av在线| 亚洲人成网址| 999在线免费视频| a天堂视频| AV老司机AV天堂| hezyo加勒比一区二区三区| 久久久久人妻一区精品| 日韩午夜福利在线观看| 国产成年女人特黄特色大片免费| 中国精品自拍| 四虎永久免费在线| 2020极品精品国产| 一本大道无码高清| 亚洲日本中文字幕天堂网| 黄色一级视频欧美| 狠狠色综合网| 又爽又黄又无遮挡网站| 亚洲人成成无码网WWW| 青青久久91| 天天干天天色综合网| 99热这里只有精品5| 亚洲精品国产成人7777| 欧美性精品不卡在线观看| 亚洲成肉网| 国产综合精品日本亚洲777| 日韩乱码免费一区二区三区| 欧美三级日韩三级| 免费毛片在线| 国产毛片不卡| 国产免费精彩视频| 任我操在线视频| 国产一区亚洲一区| 日韩av手机在线| 97国产在线观看| 日韩高清欧美| 91精品小视频| 91人妻在线视频| 欧美色综合久久| 三级国产在线观看| 亚洲精品无码在线播放网站| 精品日韩亚洲欧美高清a | 免费无码又爽又黄又刺激网站| 成人午夜精品一级毛片| 国产女人喷水视频| 国产女人18毛片水真多1| 伊人久久大香线蕉成人综合网| 国产主播福利在线观看| h网站在线播放| 午夜不卡视频| 亚洲经典在线中文字幕| 亚洲小视频网站| 美女免费黄网站| 久久人妻xunleige无码| 91欧美亚洲国产五月天| 欧美a在线视频| 亚洲日本在线免费观看| 亚洲欧美日韩中文字幕一区二区三区| 国产亚洲高清在线精品99| 国产精品亚洲精品爽爽| 亚洲精品卡2卡3卡4卡5卡区| 1级黄色毛片| 91精品国产情侣高潮露脸| 不卡午夜视频| 欧美一区二区三区国产精品| 亚洲综合激情另类专区| 成人字幕网视频在线观看| 精品无码一区二区三区电影 |