999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

Band offsets and electronic properties of the Ga2O3/FTO heterojunction via transfer of free-standing Ga2O3 onto FTO/glass*

2021-11-23 07:28:10XiaWang王霞WeiFangGu古衛芳YongFengQiao喬永鳳ZhiYongFeng馮志永YueHuaAn安躍華ShaoHuiZhang張少輝andZengLiu劉增
Chinese Physics B 2021年11期

Xia Wang(王霞) Wei-Fang Gu(古衛芳) Yong-Feng Qiao(喬永鳳) Zhi-Yong Feng(馮志永)Yue-Hua An(安躍華) Shao-Hui Zhang(張少輝) and Zeng Liu(劉增)

1Department of Electrical Engineering and Automation,Shanxi Institute of Technology,Yangquan 045000,China

2School of Optoelectronic Engineering,Guangdong Polytechnic Normal University,Guangzhou 510665,China

3Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics,International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education,College of Optoelectronic Engineering,Shenzhen University,Shenzhen 518060,China

4College of Electronic and Optical Engineering&College of Microelectronics,Nanjing University of Posts and Telecommunications,Nanjing 210023,China

5National and Local Joint Engineering Laboratory for RF Integration and Micro-Packing Technologies,Nanjing University of Posts and Telecommunications,Nanjing 210023,China

Keywords: Ga2O3/FTO heterojunction,band alignment,magnetron sputtering,free-standing

1. Introduction

Oxide semiconductors are always regarded as important materials due to their optical transparency, high mobility and mature preparation technologies, catering for many applications,and have been developed in scientific and technological fields of photonic and optoelectronic devices.[1]In an oxide system, the band alignment of the oxide heterojunction plays a very important role in governing the functional electronic devices,since the device performances are seriously affected by the carrier transport at the heterogeneous interfaces.[2,3]

Over the last two decades, Ga2O3, a very important and promising oxide semiconductor material, has become a candidate in the fabrication of solar-blind UV photodetectors,high-power electronics, and radiation-resistant optoelectronics, which are benefited by its ultra-wide bandgap (Eg~5 eV) and high breakdown critical electrical field (Ebr~8 MV/cm).[4-6]The band offsets at conduction and valence band edges are very important to guide the design of heterogeneous devices. To date, there are a few studies on the band alignments of Ga2O3-based heterojunctions,[7]and they have increased significantly in the last 2-3 years.For instance,Raoet al.researched the band offsets of p-type oxide (SnO or NiO)/Ga2O3heterojunctions.[8]Zhiet al.studied the band offsets of the In2O3/Ga2O3heterointerface.[9]The band alignments of the ZnO/Ga2O3and Ta2O5/Ga2O3heterointerface were studied by Liuet al.[10]The various alignments lead to different functional operations on the basis of the alignment results. In brief,the fabrication of oxide heterojunctions based on Ga2O3at the interface can provide new possibilities to develop oxide heterostructured(opto)electronics.[3,7,11,12]

F-doped SnO2(FTO)has inspired interest for use in transparent conductive electrodes (TCEs), transparent optoelectronic devices and flexible display technologies,due to its low cost and strong stability.[13]In comparison, Sn-doped In2O3(ITO)conducts electricity well;[14]however,the ITO films exhibit brittleness, poor stability at high temperature and high costs due to the presence of indium.[15]Therefore, as a replacement for ITO, FTO has a wide range of applications in constructing electrodes,and sensing and switching devices.[16]

Considering the applications of Ga2O3in flexible and transparent optoelectronic devices[17]and the meanings of band alignment for the development of Ga2O3based heterogeneous electronic and optoelectronic devices,[11,18,19]it is necessary to study the band calibration of the Ga2O3/FTO heterojunction. The band alignment of the Ga2O3/FTO heterojunction can provide a reference for the application of Ga2O3/FTO heterojunctions in transparent optoelectronic devices and flexible devices.

In this paper,we construct the Ga2O3/FTO heterojunction using radio-frequency (r.f.) magnetron sputtering and freestanding film transfer techniques. Then,the band alignment of the Ga2O3/FTO heterojunction is determined using x-ray photoelectron spectroscopy(XPS)and an ultraviolet-visible(UVVis)absorbance spectrum. Finally,the electronic properties of the Ga2O3/FTO heterojunction are shown and discussed.

2. Experimental details

To obtain the band alignment of the Ga2O3/FTO heterojunction, three samples were prepared. The detailed experimental processes are given as follows.

Firstly,three commercially available FTO substrates were cleaned with acetone,ethyl alcohol and deionized water in the appropriate order using an ultrasonic cleaning machine, then dried with a N2flow gun.

Secondly,two FTO substrates were used as substrates to deposit Ga2O3by r.f.magnetron sputtering for about 100 min and 1 min,respectively.Thus,three samples,i.e.,(i)FTO substrate,(ii)~300 nm Ga2O3on FTO substrate and(iii)<5 nm Ga2O3on FTO substrate,were finished by fabrication. During deposition,the basic pressure is~2×10?4Pa,and the Ga2O3thin film is deposited at argon pressure of 0.8 Pa and r.f.power of 70 W.

Thirdly, according to Kraut’s method,[20,21]the bonding states of Ga2O3and FTO can be determined by XPS scanning data. The charge-shift spectra were calibrated with the adventitious C 1s peak at 284.9 eV.The optical bandgap of FTO was determined by the UV-Vis absorption spectrum and the optical bandgap values of Ga2O3have been reported in our previous works.[22,23]

Finally,the Ga2O3/FTO heterojunction on the FTO/glass substrate was fabricated by transferring free-standing Ga2O3film (the detailed experimental descriptions can be seen in Ref.[22]),since high-quality Ga2O3films need to be prepared at 750°C, which will change the existence of the FTO film(destroy over 550°C).[23]The current-voltage (I-V) characteristic curves were tested by a Keithley 2450 semiconductor analysis meter. The photocurrent measurement was performed under 254 nm UV light illumination with intensity of 300μW/cm2.

3. Results and discussion

Figure 1(a) shows the UV-Vis absorbance spectrum of the FTO thin film and the plot of [(αhv)2versushv] is displayed in Fig. 1(a) inset. The bandgap (Eg) of FTO is estimated to be 4.0 eV according to the results in Fig.1(a)inset,which is comparable to the reported values. TheEgof Ga2O3is about 4.75 eV, which has been described in our previous reports.[22]As the FTO substrate is commercially available,it is necessary to verify the quality of the transferred Ga2O3. As shown in Fig. 1(b), the high-resolution transmission electron microscopy(HR-TEM)image suggests that the free-standing Ga2O3film is polycrystalline.[22]

Fig.1. (a)The UV-Vis absorbance spectrum of FTO;the inset is the plots of[(αhv)2 versus hv],hv is the incident photon energy and α is the absorbance coefficient. (b)The HR-TEM image of the free-standing Ga2O3 film.

Figures 2(a) and 2(c) show the valence band minimums(VBMs)for the FTO and Ga2O3,respectively. And the highresolution XPS spectra of the core energy levels for the FTO and Ga2O3are shown in Figs. 2(b) and 2(d), from which we can see that the VBMs of the FTO and Ga2O3are 2.3 eV and 1.9 eV, respectively; the core energy levels of the FTO and Ga2O3are provided with the values of 494.95 eV and 1118.63 eV. Figures 2(e) and 2(f) show the core energy levels of the Ga2O3/FTO heterojunction in the XPS spectra. The values of the core energy levels of the Ga2O3and the FTO are 1118.34 eV and 491.85 eV at the Ga2O3/FTO heterointerface,respectively. Based on these binding energy values, the ?ECand ?EVof the Ga2O3/FTO (GAO/FTO) heterojunction can be calculated using the following equations.[10,20,21]

Table 1. Values of core energy levels,VBMs and band offsets in this experiment(eV).

Fig. 2. XPS spectra of (a) VBM of FTO, and (b) the Sn 3d3/2 core energy level. XPS spectra of(c)VBM of Ga2O3,and(d)the Ga 2p3/2 core energy level. (e)Ga 2p3/2 core energy levels,and(f)XPS spectra of Sr 3d3/2 at the Sr3Al2O6/Ga2O3 interface.

Figure 3(a)shows the diagram of the energy band alignment of the Ga2O3/FTO heterojunction. The ?EVof the heterojunction is?2.41±0.02 eV and ?ECis 1.66±0.02 eV in the operating hetero-structured devices,[25-27]allowed with deviations from measurement and calculation. Figure 3(a) suggests a staggered type-II energy band alignment of the Ga2O3/FTO heterojunction. The staggered type-II Ga2O3/FTO heterojunction misses the hole confinement.[10]The valence band offset and the conduction band offset are both greater than 1 eV, suggesting a large enough band offset for the successful fabrication of the heterojunction with rectification properties.[28]The obtained band offsets of the Ga2O3/FTO heterojunction are helpful for theoretical correction. Furthermore, it is worth noting that the heterojunction prepared here, unlike the high-temperature deposited heterojunction, does not have dense bonding, and may have space charge and/or an air insulating layer across the heterogeneous interface.

To explore the volt-ampere characteristics of the Ga2O3/FTO heterojunction, indium (In) electrodes are mechanically transferred onto the surfaces of FTO and Ga2O3,respectively. Figures 4(a) and 4(b) show a schematic diagram and a photograph of the Ga2O3/FTO heterojunction. In Fig. 4(c), the linear scaleI-Vcurves of the Ga2O3/FTO heterojunction in the dark and under 254 nm UV light illumination are shown. It can be seen that the Ga2O3/FTO heterojunction presents rectified behavior, due to the discrete conduction band edges along with the large ?ECof 1.66 eV, as displayed in Fig.3(b).Moreover,compared with the dark conditions,the rectification characteristics are increased under the ultraviolet light illumination of 254 nm; during this step the photo-generated electron-hole pairs are excited,the electrons move to the conduction band,while the holes correspondingly appear at the valence band, leading to an enhancedI-Vperformance under illumination. The log-scaleI-Vcurves are presented in Fig. 4(d). The performance of the heterojunction is improved under 254 nm UV irradiation compared with that under dark conditions under conditions where the heterojunction interface is not treated by any physical or chemical techniques.

Fig. 3. The energy-band alignment diagram of the Ga2O3/FTO heterojunction.

Fig. 4. The Ga2O3/FTO heterojunction on glass substrate: (a) a schematic diagram; (b) a photograph; (c) the linear scale I-V characteristics; and (d)the log-scale I-V characteristics.

In short, the work reported in this paper shows the feasibility of preparing a Ga2O3/FTO heterojunction. In addition, higher rectification performance of the Ga2O3/FTO heterojunction can be obtained using effective interior interface treatments and improved growth techniques. This is because the magnetron sputtering method always causes damage to the films, which may lead to metal contaminants and interfacial disorder.[29,30]Finally,in this work,the rectifying characteristics of the Ga2O3/FTO heterojunction were verified.

4. Conclusion

Based on Kraut’s method, the band alignment of the Ga2O3/FTO heterojunction is studied using XPS in this paper. In particular, the Ga2O3/FTO heterojunction exhibits a staggered type-II band alignment accompanied with ?ECof 1.66±0.02 eV and ?EVof?2.41±0.02 eV.At the same time,the rectification ratio of the heterojunction was measured under the conditions of 254 nm light illumination and darkness.Based on the above results, some conclusions can be drawn from the Ga2O3/FTO heterojunction studied here with good rectifying behavior,and it is expected to be further applied to hetero-structured optoelectronic and electronic devices.

主站蜘蛛池模板: 日韩精品无码不卡无码| 不卡无码h在线观看| 91亚洲视频下载| 亚洲无码高清视频在线观看| 亚洲品质国产精品无码| 国产日韩欧美视频| 中文字幕在线观| 熟女成人国产精品视频| 久久综合九九亚洲一区| 国产精品不卡片视频免费观看| 麻豆国产在线观看一区二区| 色哟哟国产精品| 国产精品免费露脸视频| 欧美亚洲国产视频| 综合久久久久久久综合网| 国产黄色片在线看| 久久99国产综合精品1| 国产白浆在线| 国产午夜人做人免费视频| 国产精品视频公开费视频| 香蕉网久久| 欧美日韩激情在线| 国产另类乱子伦精品免费女| 亚洲精品不卡午夜精品| 欧美成人aⅴ| 五月婷婷亚洲综合| 中文字幕亚洲综久久2021| 色婷婷色丁香| 国产v精品成人免费视频71pao| 麻豆国产在线不卡一区二区| 老司国产精品视频| 2022精品国偷自产免费观看| 国产波多野结衣中文在线播放| 视频二区欧美| 91小视频在线观看| 中文字幕久久亚洲一区| 97国产在线播放| 无码人妻免费| 国产免费羞羞视频| 国产微拍一区二区三区四区| 国产精品自在拍首页视频8| 无码专区在线观看| 人妻丰满熟妇AV无码区| 国产打屁股免费区网站| 国产高清又黄又嫩的免费视频网站| 成人在线亚洲| 色偷偷男人的天堂亚洲av| 人人爽人人爽人人片| 99热这里只有精品2| 欧美中文字幕在线视频| 一级毛片在线免费视频| 日本精品影院| 国产免费人成视频网| 日韩无码视频网站| 91视频99| 亚洲婷婷在线视频| 国产 在线视频无码| 性69交片免费看| 精品欧美一区二区三区在线| 国产亚洲欧美日本一二三本道| 欧美在线网| 婷婷综合缴情亚洲五月伊| 国产精品男人的天堂| 99久久精品免费看国产免费软件 | 亚洲黄色成人| 国模视频一区二区| 亚洲黄色激情网站| 国产亚洲高清视频| 91网站国产| 久久人人妻人人爽人人卡片av| 91视频区| 日韩欧美中文在线| 激情综合五月网| 又猛又黄又爽无遮挡的视频网站| 成人日韩精品| 免费不卡视频| 亚洲a级在线观看| 色网在线视频| 超薄丝袜足j国产在线视频| 国产小视频a在线观看| 人人爱天天做夜夜爽| 国产日韩欧美视频|