999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

Entanglement and Sudden Death for a Two-Mode Radiation Field Two Atoms

2021-12-15 12:46:00EmanHilalKhalilandAbdelKhalek
Computers Materials&Continua 2021年2期

Eman M.A.Hilal,E.M.Khaliland S.Abdel-Khalek

1Department of Mathematics, Faculty of Science, University of Jeddah,Jeddah, Saudi Arabia

2Mathematics Department, Faculty of Science, Taif University, Taif City, Saudi Arabia

3Department of Mathematics, Faculty of Science, Al-Azhar University, Cairo,Egypt

4Department of Mathematics, Faculty of Science, Sohag University, Sohag, Egypt

Abstract:The effect of the field-field interaction on a cavity containing two qubit(TQ)interacting with a two mode of electromagnetic field as parametric amplifier type is investigated.After performing an appropriate transformation,the constants of motion are calculated.Using the Schr?dinger differential equation a system of differential equations was obtained, and the general solution was obtained in the case of exact resonance.Some statistical quantities were calculated and discussed in detail to describe the features of this system.The collapses and revivals phenomena have been discussed in details.The Shannon information entropy has been applied for measuring the degree of entanglement (DE) between the qubits and the electromagnetic field.The normal squeezing for some values of the parameter of the field-field interaction is studied.The results showed that the collapses disappeared after the field-field terms were added and the maximum values of normal squeezing decrease when increasing of the field-field interaction parameter.While the revivals and amplitudes of the oscillations increase when the parameter of the field-field interaction increases.Degree of entanglement is partially more entangled with increasing of the field-field interaction parameter.The relationship between revivals,collapses and the degree of entanglement(Shannon information entropy)was monitored and discussed in the presence and absence of the field-field interaction.

Keywords: Field-field interaction; su(1,1) Lie group; degree of entanglement;normal squeezing

1 Introduction

The entanglement between the atom-field(AF)interaction for Jaynes-Cummings model(JCM)[1]has been discussed by[2].This simple model represents the interacting between qubit(Q)and the field placed individually in a high-Q space.It is known that,this model is simple and analytically solvable,which helps to effectively understand quantum optics and information problems.The entanglement between TQ has been studied in one and two JCM and one-photon [3].The influence of the amplifier terms (two-photon degenerate and non-degenerate case) on the two two-level atoms has been investigated by [4,5].The effect of atom-atom cross interaction has been studied with a maximally entangled state,the occurrence of sudden birth of entanglement has been studied by[6].The problem of TQ interaction with one mode has been studied by[7-10].On the other hand,the system of TQ and a system represented by su(1,1)in existence of classical field has been studied by[6].However,the generalization of the model from one atom to two atoms with classical field or Stark shift has been investigated by [8,9].The interaction between the TQ and a one field leads to more entanglement between the subsystem, such that the atoms in general entangled and after adding the field due to the interaction is more increases [10].The effectiveness of the squeezed state on the TQ system interacting with a field in frame 2-photon has been studied by [11,12].The degree of entanglement of two atoms with a linear interaction prepared initially in thermal state has been studied by[13].

In this communication, consider a two mode of the electromagnetic field as parametric amplifier interacting with a TQ as well as the field-field interaction as follows:

where, Ωjrepresents the TQ frequency.Whileare the Pauli matrices.The λ is the coupling of the TQ-EMF interaction andgis a coupling of the field-field interaction.If we setand introducing the su(1,1)generators, ^K±and ^K0as follows:

which satisfy the relations:Therefore, we find that:is the Casimier operator andkis the Bargmann number.The Hamiltonian of Eq.(1) can be governed by an su(1,1) and su(2) Lie algebra as:

So the su(1,1)operators in the number state representation takes the following form,

whereSk,m=It is noted that the connection between(m,k)and the photon number of the field modes is

The basic aim of this work is to study the behavior of the system Eq.(3)besides to see the influence of the external terms (field-field interaction), which represented the linear combination betweenandterms on the interaction of the present system.The derivation of the Schr?dinger differential equations and their solution will be done in the next Section 2.The relative inversion will be discussed in Section 3 and the degree of entanglement in Section 4.The normal squeezing is considered in Section 5.In Section 6 some brief remarks will be presented.

2 Wave Function

To calculate the wave function for the present system Eq.(3),we must solve the Schr?dinger differential equations.It is necessary to calculate the constants of the motion,which facilitates the process solution.In the presence of field-field interaction, we cannot obtain the constants of motion.So we apply the following transformations to remove these terms.

Now if we substitute Eq.(5)into the Hamiltonian Eq.(3),the Hamiltonian becomes t

With Ωjis the transition frequency for each qubit and indicates to the artificial frequency of the quantum system.The Heisenberg equation of motion is applied to calculate the dynamical operatorsas follows:

Therefore we introduce the constant operatoras

By applying Eq.(8),the Hamiltonian Eq.(6)becomes

where the quantity Δjrefers to the detuning parameter which is represented by

Consider that the initial condition for the su(1,1)system is the Barut-Girardello coherent state and TQ are in excited states.Therefore,the initial conditions state for the wave function takes the following equation,

where |ξ〉 is given by

where the quantityNis the normalized factor.Therefore the time dependence of the state |ψ(t)〉 takes the form,

with β1(m,t), β2(m,t), β3(m,t) and β4(m,t) are the solutions of Schrodinger equationiˉh?|ψ(t)〉/?t= ^H|ψ(t)〉 which take the following form,

The coefficients β1(m,t), β2(m,t), β3(m,t) and β4(m,t) are given by the following equations,

with

Now we can measure some physical quantities that help us to understand the behavior of the Hamiltonian Eq.(3).The relative inversion, degree of entanglement and normal squeezing will be discussed in forthcoming.

3 Relative Inversion

In quantum optics, the phenomena of collapses and revivals provide us more measures for the system and its connection to the process of entanglement.Therefore,it is known that there are relations between the photon number and the phenomena of collapses and revivals,so we will study the effective of the field-field interaction on the population inversion.Through the two Eqs.(5)and (8),the change in the sum of photons is defined as follows

4 Degree of Entanglement

Entanglement is one of the mainstays of many vital applications of quantum information [14-19].In addition, it forms the support of experiments in quantum information.On the other hand, there are many uses and applications of the disentanglement quantum system [2].Through dynamic analyzes and conclusions we can describe the behavior of the DF for the system contains the A-F interaction via Shannon information entropies[14]which is defined by

Now we examine the DF between the interaction of the TQ and the QS with including the field-field interaction which are represented in Eq.(3).Depending on the same condition as mentioned in the previous section.In the first case with excluding the field-field interaction(i.e.,g=0),the entropy indicates that the system begins to disentanglement followed by partial entanglement and the entropy functionH(t)shows periodic and regular oscillations with a periodnπ(n=0, 1, 2,…).The system approaches to zero value (pure state) at the lower values ofH(t) namely (nπ) as shown in Fig.2a.After adding the fieldfield interaction into account (i.e.,=0.01) the lower and higher values of the entropy increases, the system becomes more partial entanglements, the oscillations grow and the maxima holds in centre of the collapses and the revivals regions as comparison between the relative inversion and the degree of entanglement, see Figs.1b and 2b.It is pointed out the entropy function is symmetric about the value(0.2) in the preceding case, this symmetry vanished after adding the field-field interaction into the interaction cavity, the higher values of the entropy increase and the system still in partial entanglement state.By increasing the parameter field-field interaction adjust=0.1, the oscillations increase and the extreme values of the entropy function increase too as the time of interaction goes on, see Fig.2c.With more increase of the parameterg, we see that the lower values which occurs in the collapses regions decrease and the DF approaches the pure state, see Fig.2d.

Figure 1:The relative inversion with λt, where ξ=25, k =3, Δ1 =0 (a)=0.0 (b)=0.01(c)=0.1 (d)=0.35

Figure 2:The DE with λt, where ξ=25, k =3, Δ1 =0, (a)=0.0 (b)=0.01 (c)=0.1(d)=0.35

5 Normal Squeezing

One of the fundamentals of quantum mechanics is normal squeezing,which is completely related to the Heisenberg uncertainty principle, which has been suggested by [20-28].A fundamental assumption in the study of quantum mechanics for any two observableandthat are not commute (i.e.,cannot be determined with the same precision.The uncertainty relation for the observableandachieves the following inequality,

To analyze the normal squeezing behavior,consider the same conditions as in the above sections.In the absence of the field-field interaction(g=0),the regular squeezing appears inand never occurs in.The oscillations of the squeezing repeated periodically with period(nπ,nis nonnegative integer number)and the oscillations reduced gradually as observed in Fig.3a.To visualize the field-field interaction by setting=0.01, we see that the squeezing regions in the quadraturereduced and the maximum values of the oscillations decreased, see Fig.3b.By increasing the parameterg, adjust=0.1, the squeezing more reduced for the first quadratureA(may takes the minimum values), while for the second quadraturethe squeezing began to grow gradually as the time increasing, Fig.3c.

Figure 3:The normal squeezing with λt, where ξ=25, k =3, Δ1 =0, (a)=0.0 (b)=0.01(c)=0.1 (d)=0.35

Finally, with more increases of theg, adjust=0.35, the squeezing regions formore increases as the time increases, see Fig.2d.Moreover, there is exchange for squeezing phenomena between the two quadratureandwhich dependence on the field-field interaction parameterg.

6 Conclusion

The effect of a field-field interaction on a cavity containing a pair of qubit interacting with a two-mode field of parametric amplifier is studied.The electromagnetic field transformed into a su(1,1) Lee group.Appropriate transformations have also been used to determine the constants of motion by calculating the equations of motion for some operators by using the Heisenberg differential formula.The wave function is calculated by solving the Schr?dinger differential equation.The relative population, Shannon information entropy as well as the normal squeezing are discussed.The influence of the field-field interaction terms due to reduce of the frequency of the su(1,1) term in the system Hamiltonian are also presented.The results indicated that the collapses phenomena are reduced by increasing of the ratioThe entanglement between the parties of the system started in separated state and becomes partially entangled, the lower and higher values of the modified Shannon information entropy are related to the periods of collapses and the revivals regions.The periods of squeezing estimated, in the exclude of the field-field interaction terms, the squeezing occurs in quadratureand after adding the ratiothe squeezing grows in the quadratureand reduced for the quadrature.

Funding Statement:This work was funded by the University of Jeddah,Saudi Arabia,under Grant No.UJ-02-082-DR.The authors,therefore,acknowledge with thanks the University technical and financial support.

Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

主站蜘蛛池模板: 国产精品永久久久久| 亚洲人成日本在线观看| 四虎在线观看视频高清无码 | 国产精品乱偷免费视频| 亚洲一区二区无码视频| 自慰网址在线观看| 夜色爽爽影院18禁妓女影院| 欧美高清视频一区二区三区| 国产精品制服| 亚洲美女一级毛片| 亚洲天堂精品在线观看| 四虎永久在线| 玩两个丰满老熟女久久网| 国产午夜一级毛片| 青青极品在线| 国国产a国产片免费麻豆| 国产迷奸在线看| 91欧洲国产日韩在线人成| 丰满人妻中出白浆| 特级欧美视频aaaaaa| 国产日韩欧美一区二区三区在线| 亚洲精品视频免费| 国产色婷婷| 亚洲天堂视频在线播放| 狠狠躁天天躁夜夜躁婷婷| 又猛又黄又爽无遮挡的视频网站| 色老二精品视频在线观看| 999国产精品| 国产精品女熟高潮视频| 一级毛片在线播放| 国产哺乳奶水91在线播放| 欧美天堂在线| AV在线天堂进入| 热这里只有精品国产热门精品| 国产精品三级av及在线观看| 一级全免费视频播放| 日韩精品无码免费专网站| 一区二区三区四区精品视频| 欧美成人精品一级在线观看| 免费不卡在线观看av| 日韩午夜伦| 亚洲日本中文字幕乱码中文| 五月激情婷婷综合| 日韩欧美中文| 国产精品亚洲五月天高清| 美女高潮全身流白浆福利区| 四虎影视8848永久精品| 国产欧美精品一区aⅴ影院| 国产h视频在线观看视频| 国产午夜精品鲁丝片| 欧美劲爆第一页| 国产毛片不卡| 91精品免费高清在线| 91精品国产麻豆国产自产在线| 欧美日韩高清| 亚洲欧美日韩动漫| 91一级片| 91欧美在线| 在线观看免费AV网| 不卡的在线视频免费观看| 国产日本视频91| 精品国产美女福到在线不卡f| 国产免费黄| 国产一级裸网站| 波多野结衣一区二区三区88| 日韩人妻无码制服丝袜视频| 色135综合网| 无码视频国产精品一区二区| 亚洲日韩Av中文字幕无码| 国产成人资源| 无码电影在线观看| 国产91线观看| 免费A级毛片无码免费视频| 中文字幕永久在线看| 欧美国产成人在线| av一区二区三区高清久久| 日韩欧美国产精品| 国产精品自拍露脸视频| 人妻出轨无码中文一区二区| 国产精品一区二区国产主播| 国产女人18水真多毛片18精品| 激情综合图区|