999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

Synchronization Phenomena Investigation of a New Nonlinear Dynamical System 4D by Gardano’s and Lyapunov’s Methods

2021-12-16 06:41:50AbdulsattarAbdullahHamadAhmedAlObeidiEnasAlTaiyOsamahIbrahimKhalafandDacNhuongLe
Computers Materials&Continua 2021年3期

Abdulsattar Abdullah Hamad,Ahmed S.Al-Obeidi,Enas H.Al-Taiy,Osamah Ibrahim Khalaf and Dac-Nhuong Le

1School of Mathematics,Madurai Kamaraj University,Madurai,625021,India

2Specialty of Mathematics,Gifted School of Nineveh,Mosul,Iraq

3Al-Nahrain University,Baghdad,70030,Iraq

4Institute of Research and Development,Duy Tan University,Danang,550000,Vietnam

5Faculty of Information Technology,Duy Tan University,Danang,550000,Vietnam

Abstract: Synchronization is one of the most important characteristics of dynamic systems.For this paper,the authors obtained results for the nonlinear systems controller for the custom Synchronization of two 4D systems.The findings have allowed authors to develop two analytical approaches using the second Lyapunov(Lyp)method and the Gardano method.Since the Gardano method does not involve the development of special positive Lyp functions,it is very efficient and convenient to achieve excessive system SYCR phenomena.Error is overcome by using Gardano and overcoming some problems in Lyp.Thus we get a great investigation into the convergence of error dynamics,the authors in this paper are interested in giving numerical simulations of the proposed model to clarify the results and check them, an important aspect that will be studied is Synchronization Complete hybrid SYCR and anti-Synchronization, by making use of the Lyapunov expansion analysis,a proposed control method is developed to determine the actual.The basic idea in the proposed way is to receive the evolution of between two methods.Finally,the present model has been applied and showing in a new attractor,and the obtained results are compared with other approximate results,and the nearly good coincidence was obtained.

Keywords: Chaos; Lu model; anti-synchronization; hybrid synchronization;Gardano’s method; nonlinear dynamical system

1 Introduction

Chaotic systems with real state variables are boing found and studied with increased attention in several aspects of nonlinear dynamical systems, the first physical and mathematical model of a chaotic system is the system of Lorenz, which only includes real variables discovered in 1963 and opens the way to other chaos systems such as the system of Chen, Lu’s system (2002), Liu’s system (2004), and the system of the Pan system (2009).Each system has a 3-D of differential equations and just one positive Lyapunov exponent [1-5].

Exponent Lyapunov and nonlinear dynamic systems attractor play an important and actively involved role in classifying these systems and have attracted increasing interest in engineering application and different scientific research as, encrypting [6-9], engineering [10-13], and nonlinear circuits [14].One important application in the field of engineering is secure communication i.e.,messages crazy by simple chaotic processes like these are not always secure.The suggestion is that the higher dimensional hyperchaotic systems can be used to solve this problem, thereby the randomness and unpredictability [15-20].

R?ssler performed the first 4-D hyperchaotic system with real variables in 1979 with two positive exponents of Lyapunov and discovered a further 4-D and 5-D hyperchaotic system with three positive exponents of Lyapunov [21-25] and some other systems.In contrast to low dimensions, dynamic systems with higher dimensions are effective and interesting [17-19].

Several papers on the subject today are dedicated to studying the new hyperchaotic systems in higher dimensions (Dimension 5) [16].But most of these research focuses on 4-D and 5-D systems only, while a few kinds of researches are available in 6 dimensional nonlinear dynamical systems [17-20].The 4D system consists of ten-term operators with four parameters and different features which include the Lyapunov exponents of balances and stability.The thrilling attractor is one of the latest dynamic systems classifications, with recent research separating attractors into self-enthusiastic or secret ones.Within the following paragraphs, the results of this work are summarized.

? The synchronization of similar 4-D hyperchaotic systems are studied and is then theoretically introduced as an Engineering application to detect error dynamics between each and its stable communication.

? Non-linear stability-based control methods in Lyapunov, Gardano approach design the various controllers of synchronization phenomena.

? By comparing the results of the Lyapunov method with the Gardano method, the best fitting controllers are found.

2 The Description of the Problem and Our Solution

We use the second Lyapunov method and the methods of Gardano, where we infer that Lyapunov functions as a certain constructive tool as:

TherePis a regular function and the Lyapunov function derivatives

Be certainly negative, i.e.,Qis a positive, square matrix.Nevertheless, if theQmatrix is defined as a negative, we will change thePmatrix to ensure that a givenQmatrix is obtained.

While in Gardano [1-4], the distinguishing formula of Eq.(3) is considered in the 4D hyperchaotic method

Let

This approach allows one to find the roots of the cubic equation (Eq.(3)) on the basis of Δ as:

? If Δ=0, then there are three roots in the second term of Eq.(3), but one is multiple:

? When Δ<0, then three separate root terms have been described by the second term (3):

? When Δ>0, then the second term of Eq.(3) has one real root and two complexes conjugate roots with imaginary sections which do not vanish:

Here, to construct all roots with negative real parts, not choosing an appropriate nonlinear controllerUlike the Lyapunov method is essential.

Briefly, this final point poses three fundamental questions.First, does the Lyapunov method always succeed? Second, is the Gardano method better? Thirdly, how can these two approaches be distinguished? This paper starts with two ways of answering these questions.

3 System Portrayal

The Lorenz system was one of the most commonly studied 3-D chaotic systems.By adding a linear feedback controller, the original design was changed into a 4-D and 5-D hyperchaotic design.The new 4-D hyperchaotic system that contains is designed three positive Lyapunov ExponentsLE1=0.94613,LE2=0.28714,LE3=0.0047625, and one negative Lyapunov ExponentsLE4=-12.4021.The 4-D system which is described by the following mathematical form:

where the real state variables arex1,x2,x3,x4, anda,b,c,h, the all positive real parameters are equal(10,8/3,34,2.5), and this system is rich of dynamical properties.Figs.1a and 1b show the 3-D attractor of the system (9), while Figs.2a and 2b display the 2-D attractor of the structure (9).

Figure 1: 3-D attractor of the system (9) in the (a) (x1,x3,x4) space; (b) (x1,x3,x2) space

3.1 Lyapunov Exponents and Dimensions

The numerical simulation of a = 10, b = 8/3, c = 34, h = 2, 5 was performed based on Wolf Algorithm and MATLAB software.The initial value (15, 8, -1, -2) of the system (9)was hyperchaotic, with three positive exponents of Lyapunov, i.e.,LE1=0.94613,LE2=0.28714,LE3=0.0047625.

The exponents of the plot of Lyapunov are shown in Fig.3.

Figure 2: 2-D attractor of the system (9) in the (a) (x2,x3) plane; (b) (x1,x3) plane

Dimensions of Lyapunov are found as:

4 Synchronization Phenomena

4.1 The New Lorenz 4-D Hyperchaotic Systems are Synchronized

In this section one of the main applications of secure communication engineering is considered theoretical studies and numerical simulations.Therefore, the first system (called drive system)represents the image or message information to be transmitted and, while the second system represents noise following this information, it ensures that it is not penetrated.The second system(called response system) assumes the machine (9) is a drive mechanism and is writable as,

AandBCrepresents parameters matrix and nonlinear part of the system (9) respectively.

While the response system is as follows:

and letU=[u1,u2,u3,u4]Tis the nonlinear controller to be designed.

The synchronization error dynamics between the 4-D hyperchaotic system (10) and system(11) is defined asei=yi-xi,i=1,2,3,4 and satisfied that,=0.

The dynamics of the error are defined as follows:

i.e.,

The matrixA1equal toA, i.e.,A1=Afor identical systems.But, in non-identical systems(different) the matrixA1A.

Now, by designing several controllers based on Lyapunov and Gardano methods we will try to control the error system (12), and compare them.Here arises the problem of the two methods,which is the better method? Our questions are answered in the following theorems.

Theorem 1.If the regulatorUof structure (12) is scheme as the following:

The system (11) can then be tracked with two methods by system (10).

Proof.Replace the error dynamics (12) mechanism over control, we receive:

We are now building a positively defined Lyapunov candidate, based on the Lyapunov method,

wherePdefines as in Eq.(1), Lyapunov’s derivativeV(e)function is time-related as:

whereQ=diag(a,1,b,h), soQ >0.Consequently,(ei)is negative definite onR4.The nonlinear controller is suitable and the complete synchronization is achieved.

The characteristic equation between system (12) and control (13) is defined in Gardano method,and according to Eq.(3),

where

For simplified, we substitute the value of constants asa=10,b=8/3,c=34,h=2.5, in the above equation can be rewritten as:

Therefore, we haveg=-1117, Δ=2.6403×107.Since Δ>0 than the roots are calculate according to Eq.(8) as:

Of course, all roots with negative actual parts are successfully synced with system (11) and system (10), therefore the Gardano method is efficient.The evidence is complete.Such tests are numerically checked in Figs.4 and 5.Where we take the drive system and the response system’s initial values are(15,8,-1,-2)and(-15,-10,16,8)respectively.

Figure 4: Anti-synchronization between systems (11) and (10) with control (13)

Figure 5: The convergence of system (12) with controllers (13)

4.2 Anti-Synchronization

The non-linear control approach, which uses two theoretical methods, offers an antisynchronization between two related highly hyperchaotic systems.To stop collisions, it involves two systems; the first (called drive systems) reflects the first, and the second (called the responses system).This mechanism is the second train, which is used to ensure that there is no collision with the first train.The second is used to prevent collisions.The first train will have a second system.Suppose that the system (10) is the drive system and the reaction system (11).

The 4D hyperchaotic system (10) and system (11) are described as anti-synchronization error dynamics asei=yi+xi,i=1,2,3,4 and satisfied that,=0.

The error dynamics is calculated as the following:

i.e.,

Theorem 2.For system (15) with nonlinear controlU=[u1,u2,u3,u4]Tsuch that

Proof.From the above control (21) with the error system (20), we get:

Now, based on the Lyapunov method:

The derivative of the Lyapunov functionV(e)with respect to time is

whereQ=diag(a,1,b,h), soQ >0.Consequently,(ei)is negative definite onR4.The nonlinear controller is suitable and the anti-synchronization is achieved.

In Gardano method

After substituting the values of the constants (a,b,c,h), we get

Therefore, we haveg= -165, Δ = 96855.1644.Since Δ>0 than the roots are calculate according to Eq.(8) as:

Of course, all roots with negative actual parts are successfully synced with the system (11)and system (10), therefore the Gardano method is efficient.The evidence is complete.These results are numerically checked in Figs.6 and 7.Where the drive system and the response system initial values are used(15,8,-1,-2)and(-15,-10,16,8)respectively.

Figure 6: Anti-synchronization between systems (11) and (10) with control (13)

4.3 Hybrid Synchronization

Hybrid synchronization is a mixture of the previous two phenomena (Complete synchronization and Anti-synchronization).There are thus two appropriate systems, one system (Called drive system),the other system (Called response system).There are two systems.Assume that the drive system is(10) and the reaction system is (11):

Figure 7: The convergence of system (20) with controllers (21)

The hybrid synchronization error dynamics is defined asei=yi-xi,ej=yj+xj,i=1,3;j=2,4, and satisfied that ,=0.

The error dynamics is calculated as the following:

i.e.,

Theorem 3.If the nonlinear controlUof error dynamical system (6) is designed as the following:

Proof.Rewrite system (26) with control (27) as follows:

Now, based on the Lyapunov method:

The derivative of the Lyapunov functionV(e)with respect to time is

whereQ=diag(a,1,b,h), soQ >0.Consequently,(ei)is negative definite onR4.The nonlinear controller is suitable and the anti-synchronization is achieved.

In Gardano method:

Figure 8: Anti-synchronization between systems (11) and (10) with control (13)

After substituting the values of the constants (a,b,c,h), we get

Figure 9: The convergence of system (26) with controllers (27)

Tab.1 shows the variance amongst second method of Lyapunov and Cardano’s method.

Table 1: The variance amongst second method of Lyapunov and Cardano’s method

The structure of the subject of synchronization phenomena in two methods is shown in Fig.10.

Figure 10: A diagram showing the structure of the subject of synchronization phenomena in two methods

Therefore, we have g= -382.926, Δ = 2.177149231×108.Since Δ>0 than the roots are calculate according to Eq.(8) as:

In addition, all roots with negative actual parts are successfully synced with system (11) and system (10), therefore the Gardano method is efficient.The evidence is complete.Such tests are numerically checked in Figs.8 and 9.Where the drive system and the response system initial values are used(15,8,-1,-2)and(-15,-10,16,8)respectively.

Thus, all questions in this section are answered in these theorems, and the following table indicates that the Cardano method is stronger than the Lyapunova method.

5 Conclusions

The second method Lyapunov and the Cardano method are based on nonlinear models and two theoretical approaches.We have been trying to grasp the discrepancies in each process and how to achieve synchronization? Within this article, two identical 4D hyperchaotic systems deal with the synchronization phenomena.What is the best method? This paper, therefore, answers all these questions in the Cardano method and makes notice that a supporting function, like the Lyapunov method, should not be created or modified.The Cardano process is better than the Lyapunov procedure.The computational simulation was used to describe the same findings.

The following scheme shows the topics of research:

Funding Statement:The authors received no specific funding for this study.

Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

主站蜘蛛池模板: 在线免费无码视频| 日韩精品久久久久久久电影蜜臀| 四虎亚洲国产成人久久精品| 亚洲色婷婷一区二区| 国产青青草视频| 国产噜噜在线视频观看| 国产亚洲美日韩AV中文字幕无码成人 | 天天色天天操综合网| 91精品啪在线观看国产| 久久精品欧美一区二区| 中文字幕人成人乱码亚洲电影| 日韩精品一区二区深田咏美| 免费在线a视频| 亚洲第一中文字幕| 亚洲第一天堂无码专区| 国产精品久线在线观看| 国产成人精品日本亚洲| 日本免费一级视频| 白浆视频在线观看| 东京热高清无码精品| 久久综合伊人77777| 成人综合网址| 亚洲精品在线影院| 亚洲黄色高清| 亚洲bt欧美bt精品| 永久免费av网站可以直接看的| 久久综合婷婷| 午夜高清国产拍精品| 欧美日韩综合网| 国产美女免费| 中文一区二区视频| 免费人成网站在线观看欧美| 九九久久精品免费观看| 久久综合亚洲色一区二区三区| 欲色天天综合网| 欧美特黄一级大黄录像| 极品性荡少妇一区二区色欲| 亚洲AV无码精品无码久久蜜桃| 久久国产精品77777| 天天综合色网| 成人中文在线| 久久www视频| 精品撒尿视频一区二区三区| 真实国产乱子伦视频| 毛片基地视频| 成人va亚洲va欧美天堂| 亚洲综合一区国产精品| 精品成人一区二区三区电影| 欧美亚洲中文精品三区| 毛片久久网站小视频| 2021国产v亚洲v天堂无码| 99这里只有精品在线| 日本影院一区| 天天爽免费视频| 婷婷99视频精品全部在线观看| 热久久综合这里只有精品电影| 亚洲第一黄片大全| 中文字幕精品一区二区三区视频| 国产欧美日韩视频怡春院| 亚洲国产无码有码| 国产精品人成在线播放| 日韩色图区| 亚洲电影天堂在线国语对白| 亚洲精品国产自在现线最新| 亚洲精品无码专区在线观看| 亚洲男女在线| 国产日韩欧美中文| 亚洲精品动漫在线观看| 动漫精品中文字幕无码| 中国一级特黄视频| 一级毛片免费高清视频| a色毛片免费视频| 日韩毛片基地| 伊人色在线视频| 中日韩欧亚无码视频| 亚洲热线99精品视频| 国产另类视频| 欧美日韩中文字幕在线| 波多野结衣中文字幕一区| a级毛片视频免费观看| 亚洲精品综合一二三区在线| 狼友av永久网站免费观看|