999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

Synchronization Phenomena Investigation of a New Nonlinear Dynamical System 4D by Gardano’s and Lyapunov’s Methods

2021-12-16 06:41:50AbdulsattarAbdullahHamadAhmedAlObeidiEnasAlTaiyOsamahIbrahimKhalafandDacNhuongLe
Computers Materials&Continua 2021年3期

Abdulsattar Abdullah Hamad,Ahmed S.Al-Obeidi,Enas H.Al-Taiy,Osamah Ibrahim Khalaf and Dac-Nhuong Le

1School of Mathematics,Madurai Kamaraj University,Madurai,625021,India

2Specialty of Mathematics,Gifted School of Nineveh,Mosul,Iraq

3Al-Nahrain University,Baghdad,70030,Iraq

4Institute of Research and Development,Duy Tan University,Danang,550000,Vietnam

5Faculty of Information Technology,Duy Tan University,Danang,550000,Vietnam

Abstract: Synchronization is one of the most important characteristics of dynamic systems.For this paper,the authors obtained results for the nonlinear systems controller for the custom Synchronization of two 4D systems.The findings have allowed authors to develop two analytical approaches using the second Lyapunov(Lyp)method and the Gardano method.Since the Gardano method does not involve the development of special positive Lyp functions,it is very efficient and convenient to achieve excessive system SYCR phenomena.Error is overcome by using Gardano and overcoming some problems in Lyp.Thus we get a great investigation into the convergence of error dynamics,the authors in this paper are interested in giving numerical simulations of the proposed model to clarify the results and check them, an important aspect that will be studied is Synchronization Complete hybrid SYCR and anti-Synchronization, by making use of the Lyapunov expansion analysis,a proposed control method is developed to determine the actual.The basic idea in the proposed way is to receive the evolution of between two methods.Finally,the present model has been applied and showing in a new attractor,and the obtained results are compared with other approximate results,and the nearly good coincidence was obtained.

Keywords: Chaos; Lu model; anti-synchronization; hybrid synchronization;Gardano’s method; nonlinear dynamical system

1 Introduction

Chaotic systems with real state variables are boing found and studied with increased attention in several aspects of nonlinear dynamical systems, the first physical and mathematical model of a chaotic system is the system of Lorenz, which only includes real variables discovered in 1963 and opens the way to other chaos systems such as the system of Chen, Lu’s system (2002), Liu’s system (2004), and the system of the Pan system (2009).Each system has a 3-D of differential equations and just one positive Lyapunov exponent [1-5].

Exponent Lyapunov and nonlinear dynamic systems attractor play an important and actively involved role in classifying these systems and have attracted increasing interest in engineering application and different scientific research as, encrypting [6-9], engineering [10-13], and nonlinear circuits [14].One important application in the field of engineering is secure communication i.e.,messages crazy by simple chaotic processes like these are not always secure.The suggestion is that the higher dimensional hyperchaotic systems can be used to solve this problem, thereby the randomness and unpredictability [15-20].

R?ssler performed the first 4-D hyperchaotic system with real variables in 1979 with two positive exponents of Lyapunov and discovered a further 4-D and 5-D hyperchaotic system with three positive exponents of Lyapunov [21-25] and some other systems.In contrast to low dimensions, dynamic systems with higher dimensions are effective and interesting [17-19].

Several papers on the subject today are dedicated to studying the new hyperchaotic systems in higher dimensions (Dimension 5) [16].But most of these research focuses on 4-D and 5-D systems only, while a few kinds of researches are available in 6 dimensional nonlinear dynamical systems [17-20].The 4D system consists of ten-term operators with four parameters and different features which include the Lyapunov exponents of balances and stability.The thrilling attractor is one of the latest dynamic systems classifications, with recent research separating attractors into self-enthusiastic or secret ones.Within the following paragraphs, the results of this work are summarized.

? The synchronization of similar 4-D hyperchaotic systems are studied and is then theoretically introduced as an Engineering application to detect error dynamics between each and its stable communication.

? Non-linear stability-based control methods in Lyapunov, Gardano approach design the various controllers of synchronization phenomena.

? By comparing the results of the Lyapunov method with the Gardano method, the best fitting controllers are found.

2 The Description of the Problem and Our Solution

We use the second Lyapunov method and the methods of Gardano, where we infer that Lyapunov functions as a certain constructive tool as:

TherePis a regular function and the Lyapunov function derivatives

Be certainly negative, i.e.,Qis a positive, square matrix.Nevertheless, if theQmatrix is defined as a negative, we will change thePmatrix to ensure that a givenQmatrix is obtained.

While in Gardano [1-4], the distinguishing formula of Eq.(3) is considered in the 4D hyperchaotic method

Let

This approach allows one to find the roots of the cubic equation (Eq.(3)) on the basis of Δ as:

? If Δ=0, then there are three roots in the second term of Eq.(3), but one is multiple:

? When Δ<0, then three separate root terms have been described by the second term (3):

? When Δ>0, then the second term of Eq.(3) has one real root and two complexes conjugate roots with imaginary sections which do not vanish:

Here, to construct all roots with negative real parts, not choosing an appropriate nonlinear controllerUlike the Lyapunov method is essential.

Briefly, this final point poses three fundamental questions.First, does the Lyapunov method always succeed? Second, is the Gardano method better? Thirdly, how can these two approaches be distinguished? This paper starts with two ways of answering these questions.

3 System Portrayal

The Lorenz system was one of the most commonly studied 3-D chaotic systems.By adding a linear feedback controller, the original design was changed into a 4-D and 5-D hyperchaotic design.The new 4-D hyperchaotic system that contains is designed three positive Lyapunov ExponentsLE1=0.94613,LE2=0.28714,LE3=0.0047625, and one negative Lyapunov ExponentsLE4=-12.4021.The 4-D system which is described by the following mathematical form:

where the real state variables arex1,x2,x3,x4, anda,b,c,h, the all positive real parameters are equal(10,8/3,34,2.5), and this system is rich of dynamical properties.Figs.1a and 1b show the 3-D attractor of the system (9), while Figs.2a and 2b display the 2-D attractor of the structure (9).

Figure 1: 3-D attractor of the system (9) in the (a) (x1,x3,x4) space; (b) (x1,x3,x2) space

3.1 Lyapunov Exponents and Dimensions

The numerical simulation of a = 10, b = 8/3, c = 34, h = 2, 5 was performed based on Wolf Algorithm and MATLAB software.The initial value (15, 8, -1, -2) of the system (9)was hyperchaotic, with three positive exponents of Lyapunov, i.e.,LE1=0.94613,LE2=0.28714,LE3=0.0047625.

The exponents of the plot of Lyapunov are shown in Fig.3.

Figure 2: 2-D attractor of the system (9) in the (a) (x2,x3) plane; (b) (x1,x3) plane

Dimensions of Lyapunov are found as:

4 Synchronization Phenomena

4.1 The New Lorenz 4-D Hyperchaotic Systems are Synchronized

In this section one of the main applications of secure communication engineering is considered theoretical studies and numerical simulations.Therefore, the first system (called drive system)represents the image or message information to be transmitted and, while the second system represents noise following this information, it ensures that it is not penetrated.The second system(called response system) assumes the machine (9) is a drive mechanism and is writable as,

AandBCrepresents parameters matrix and nonlinear part of the system (9) respectively.

While the response system is as follows:

and letU=[u1,u2,u3,u4]Tis the nonlinear controller to be designed.

The synchronization error dynamics between the 4-D hyperchaotic system (10) and system(11) is defined asei=yi-xi,i=1,2,3,4 and satisfied that,=0.

The dynamics of the error are defined as follows:

i.e.,

The matrixA1equal toA, i.e.,A1=Afor identical systems.But, in non-identical systems(different) the matrixA1A.

Now, by designing several controllers based on Lyapunov and Gardano methods we will try to control the error system (12), and compare them.Here arises the problem of the two methods,which is the better method? Our questions are answered in the following theorems.

Theorem 1.If the regulatorUof structure (12) is scheme as the following:

The system (11) can then be tracked with two methods by system (10).

Proof.Replace the error dynamics (12) mechanism over control, we receive:

We are now building a positively defined Lyapunov candidate, based on the Lyapunov method,

wherePdefines as in Eq.(1), Lyapunov’s derivativeV(e)function is time-related as:

whereQ=diag(a,1,b,h), soQ >0.Consequently,(ei)is negative definite onR4.The nonlinear controller is suitable and the complete synchronization is achieved.

The characteristic equation between system (12) and control (13) is defined in Gardano method,and according to Eq.(3),

where

For simplified, we substitute the value of constants asa=10,b=8/3,c=34,h=2.5, in the above equation can be rewritten as:

Therefore, we haveg=-1117, Δ=2.6403×107.Since Δ>0 than the roots are calculate according to Eq.(8) as:

Of course, all roots with negative actual parts are successfully synced with system (11) and system (10), therefore the Gardano method is efficient.The evidence is complete.Such tests are numerically checked in Figs.4 and 5.Where we take the drive system and the response system’s initial values are(15,8,-1,-2)and(-15,-10,16,8)respectively.

Figure 4: Anti-synchronization between systems (11) and (10) with control (13)

Figure 5: The convergence of system (12) with controllers (13)

4.2 Anti-Synchronization

The non-linear control approach, which uses two theoretical methods, offers an antisynchronization between two related highly hyperchaotic systems.To stop collisions, it involves two systems; the first (called drive systems) reflects the first, and the second (called the responses system).This mechanism is the second train, which is used to ensure that there is no collision with the first train.The second is used to prevent collisions.The first train will have a second system.Suppose that the system (10) is the drive system and the reaction system (11).

The 4D hyperchaotic system (10) and system (11) are described as anti-synchronization error dynamics asei=yi+xi,i=1,2,3,4 and satisfied that,=0.

The error dynamics is calculated as the following:

i.e.,

Theorem 2.For system (15) with nonlinear controlU=[u1,u2,u3,u4]Tsuch that

Proof.From the above control (21) with the error system (20), we get:

Now, based on the Lyapunov method:

The derivative of the Lyapunov functionV(e)with respect to time is

whereQ=diag(a,1,b,h), soQ >0.Consequently,(ei)is negative definite onR4.The nonlinear controller is suitable and the anti-synchronization is achieved.

In Gardano method

After substituting the values of the constants (a,b,c,h), we get

Therefore, we haveg= -165, Δ = 96855.1644.Since Δ>0 than the roots are calculate according to Eq.(8) as:

Of course, all roots with negative actual parts are successfully synced with the system (11)and system (10), therefore the Gardano method is efficient.The evidence is complete.These results are numerically checked in Figs.6 and 7.Where the drive system and the response system initial values are used(15,8,-1,-2)and(-15,-10,16,8)respectively.

Figure 6: Anti-synchronization between systems (11) and (10) with control (13)

4.3 Hybrid Synchronization

Hybrid synchronization is a mixture of the previous two phenomena (Complete synchronization and Anti-synchronization).There are thus two appropriate systems, one system (Called drive system),the other system (Called response system).There are two systems.Assume that the drive system is(10) and the reaction system is (11):

Figure 7: The convergence of system (20) with controllers (21)

The hybrid synchronization error dynamics is defined asei=yi-xi,ej=yj+xj,i=1,3;j=2,4, and satisfied that ,=0.

The error dynamics is calculated as the following:

i.e.,

Theorem 3.If the nonlinear controlUof error dynamical system (6) is designed as the following:

Proof.Rewrite system (26) with control (27) as follows:

Now, based on the Lyapunov method:

The derivative of the Lyapunov functionV(e)with respect to time is

whereQ=diag(a,1,b,h), soQ >0.Consequently,(ei)is negative definite onR4.The nonlinear controller is suitable and the anti-synchronization is achieved.

In Gardano method:

Figure 8: Anti-synchronization between systems (11) and (10) with control (13)

After substituting the values of the constants (a,b,c,h), we get

Figure 9: The convergence of system (26) with controllers (27)

Tab.1 shows the variance amongst second method of Lyapunov and Cardano’s method.

Table 1: The variance amongst second method of Lyapunov and Cardano’s method

The structure of the subject of synchronization phenomena in two methods is shown in Fig.10.

Figure 10: A diagram showing the structure of the subject of synchronization phenomena in two methods

Therefore, we have g= -382.926, Δ = 2.177149231×108.Since Δ>0 than the roots are calculate according to Eq.(8) as:

In addition, all roots with negative actual parts are successfully synced with system (11) and system (10), therefore the Gardano method is efficient.The evidence is complete.Such tests are numerically checked in Figs.8 and 9.Where the drive system and the response system initial values are used(15,8,-1,-2)and(-15,-10,16,8)respectively.

Thus, all questions in this section are answered in these theorems, and the following table indicates that the Cardano method is stronger than the Lyapunova method.

5 Conclusions

The second method Lyapunov and the Cardano method are based on nonlinear models and two theoretical approaches.We have been trying to grasp the discrepancies in each process and how to achieve synchronization? Within this article, two identical 4D hyperchaotic systems deal with the synchronization phenomena.What is the best method? This paper, therefore, answers all these questions in the Cardano method and makes notice that a supporting function, like the Lyapunov method, should not be created or modified.The Cardano process is better than the Lyapunov procedure.The computational simulation was used to describe the same findings.

The following scheme shows the topics of research:

Funding Statement:The authors received no specific funding for this study.

Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

主站蜘蛛池模板: 亚洲天堂福利视频| 国产精品永久免费嫩草研究院| 欧美精品三级在线| 国产精品成人一区二区不卡 | 国产97视频在线观看| 国产精品19p| 五月婷婷综合在线视频| 乱人伦99久久| 四虎精品国产AV二区| 伊人激情综合网| 91久久夜色精品国产网站| 国产欧美视频在线| 日韩A∨精品日韩精品无码| 国产精品理论片| 久久综合伊人 六十路| 久久黄色一级片| 久久综合国产乱子免费| 亚洲人成色77777在线观看| 免费午夜无码18禁无码影院| 亚洲色成人www在线观看| 国产91全国探花系列在线播放| 国产又色又爽又黄| 亚洲自拍另类| 青青草91视频| 无码aⅴ精品一区二区三区| 亚洲男人的天堂久久香蕉网| 无遮挡国产高潮视频免费观看 | a欧美在线| 亚洲—日韩aV在线| 中日韩一区二区三区中文免费视频| 夜夜拍夜夜爽| 亚洲成a人片| 国产99免费视频| 97视频精品全国免费观看| 毛片久久网站小视频| 久久一色本道亚洲| 亚洲欧洲自拍拍偷午夜色| 91偷拍一区| 亚洲日韩精品欧美中文字幕| 波多野结衣一级毛片| 天天摸天天操免费播放小视频| 五月丁香伊人啪啪手机免费观看| 国产高清在线精品一区二区三区| 在线观看视频一区二区| 波多野一区| 91精品aⅴ无码中文字字幕蜜桃| 亚洲国产精品不卡在线 | 国产中文一区a级毛片视频| 欧美精品v欧洲精品| 人妻中文字幕无码久久一区| 国产精品女在线观看| 99精品这里只有精品高清视频| 手机在线免费不卡一区二| 亚洲区欧美区| 97精品国产高清久久久久蜜芽 | 国产电话自拍伊人| 黄色福利在线| 婷婷六月综合| 久久精品免费国产大片| 99久久性生片| 五月丁香在线视频| 精品久久高清| 男女性色大片免费网站| 亚洲欧洲日产国码无码av喷潮| 国产波多野结衣中文在线播放| 国产三级a| 青青草国产在线视频| 九色在线观看视频| 国产成人夜色91| 国产男人的天堂| 国产日本欧美在线观看| 日本亚洲最大的色成网站www| 国产精品成| 久久亚洲高清国产| 青青青国产视频| 麻豆精品在线播放| 日韩在线成年视频人网站观看| 成人午夜网址| 国产伦精品一区二区三区视频优播| 成人夜夜嗨| 国产呦精品一区二区三区下载| 亚洲天堂区|