董 偉,黃小英,湯喜蘭,李秋香,趙國巍,梁新麗*,楊 明
植物精油對心血管疾病作用的研究進展
董 偉1,黃小英1,湯喜蘭2,李秋香1,趙國巍1,梁新麗1*,楊 明1
1. 江西中醫藥大學 現代中藥制劑教育部重點實驗室,江西 南昌 330004 2. 江西科技師范大學藥學院,江西 南昌 330013
心血管疾病是心臟和血管方面相關的疾病,包括高血壓、高脂血癥、血栓栓塞、冠心病和心力衰竭等。心血管疾病嚴重危害人類健康,是全球范圍內造成死亡的最主要原因。維護心血管系統健康的關鍵因素是對疾病的預防。植物精油及其部分成分能舒張血管、降血壓、抗心肌缺血、預防和改善動脈粥樣硬化、抗血小板聚集以及抗心律失常,從而對心血管系統具有保護作用。植物精油有益于人體的心血管系統,但需要更多的臨床研究和安全性研究的證據。
植物精油;心血管疾病;高血壓;心肌缺血;動脈粥樣硬化;血小板聚集;心律失常
心血管疾病是心臟和血管的疾病,包括高血壓、高脂血癥、血栓栓塞、冠心病和心力衰竭等。心血管疾病嚴重危害人類健康,是全球范圍內造成死亡的最主要原因。根據世界衛生組織的數據,每年有超過1700萬人(占全球死亡人數的31%)死于心血管疾病。隨著心血管疾病診斷人數的增加,預計2030年前的死亡人數將達到2330萬[1]。流行病學研究表明,某些因素與心血管疾病的發生有明顯關聯。這些因素包括高血壓、高膽固醇血癥、糖尿病、炎癥、致動脈粥樣硬化的飲食以及血液中過量自由基等因素導致的氧化應激;運動缺乏、肥胖和凝血增加也起到了一定作用。近幾十年來,人們越來越多地研究替代療法,特別是植物療法和膳食補充劑來治療心血管疾病。植物精油是芳香植物產生的復雜次生代謝產物,具有強烈的氣味,具有抑菌、抗衰老、抗哮喘等作用[2-5]。研究顯示植物精油具有心臟保護作用,含有抗心血管疾病的活性化合物,可以通過影響血管舒張、降低心率和降低血壓來改善心血管系統,在促進心血管系統健康方面起了一定作用。本文總結了植物精油在降低心血管疾病風險方面的作用及現狀,為開發治療如高血壓、心絞痛、動脈粥樣硬化等心血管疾病新的功能性產品提供研究思路和建議。
高血壓通常極大地增加其他心血管事件包括心肌梗死、卒中和充血性心力衰竭的風險。近69%的首次心臟病發作、7%的首次卒中和74%的充血性心力衰竭患者患有高血壓。研究表明,降低血壓可以降低心血管事件的發生率[6]。
研究顯示植物精油以及所含成分對-硝基--精氨酸甲酯(-nitro--arginine methyl ester,-NAME)所致慢性高血壓大鼠[7-8]、脫氧皮質酮所致高血壓大鼠[9-10]和自發性高血壓大鼠有降壓作用[11]。植物精油誘導血管擴張通常是由于直接舒張血管引起的。植物精油iv可引起正常大鼠劑量相關性雙相低血壓和心動過緩[12-13],降低收縮壓、舒張壓、平均動脈壓和心率[14]。1-硝基-2-苯基乙烷[13]、香芹酚[8]、香茅醇[15]、丁香酚[10]等精油中所含的成分iv可直接舒張血管平滑肌引起正常大鼠產生低血壓反應。
在體外實驗中植物精油可舒張預收縮的離體動脈環。如艷山姜(Pers.) Burtt. et Smith精油[7]、阿育魏實Sprague精油[16]以濃度相關性地方式抑制苯腎上腺素(phenylephrine,PHE)和KCl誘導的內皮完整和內皮剝離大鼠離體主動脈環的收縮,鉀通道阻斷劑不影響松弛作用[7],亞甲基藍和-NAME不影響舒張血管作用[16]。
內皮是一層高度專門化的管腔血管層,主要通過釋放內皮衍生的血管擴張劑如一氧化氮(nitric oxide,NO)和前列環素在血管舒張中起關鍵作用。植物精油的血管舒張功能可能與內皮依賴性途徑有關,如內皮-精氨酸/NO途徑或內皮環氧化酶途徑[2]。研究顯示丁香羅勒L.精油[10]、香薷狀刺蕊草Benth.[14]對內皮完整的主動脈有明顯的舒張作用,其作用機制可能是通過NO依賴途徑實現。薤白Bunge精油及其主要成分二甲基二硫醚對PHE的內皮完整離體大鼠肺動脈環收縮有舒張作用,在去除血管內皮后可被消除,其舒張作用有賴于血管內皮的完整性;動脈舒張通過蛋白激酶A依賴的一氧化氮合酶(nitric oxide synthase,NOS)磷酸化和NO信號轉導等機制引起[17]。
植物精油舒張血管也可能不依賴于內皮通路,其也可通過阻斷血管平滑肌膜上的電壓門控型鈣通道而舒張血管。荒野蒿L.精油的血管舒張作用似乎是非內皮依賴性的,舒張作用在去除內皮后持續存在;但鈣通道阻滯劑預處理后減弱了這種作用,提示血管舒張是通過抑制L型鈣離子通道和激活肌漿/內質網Ca2+-ATP酶泵介導的[18]。Jowitt精油iv會誘發劑量相關性低血壓和心動過速,該作用不受-NAME或吲哚美辛的影響,但在阿托品使用后部分減少;其對離體動脈環也有舒張作用,這些作用主要是通過阻斷鈣離子通道介導的[19]。1,8-桉葉素是姚金娘科植物藍桉Labill.的主要成分,被發現可以抑制細胞鈣離子內流,舒張離體動脈,降低主動脈壓[20]。其可降低長期接觸尼古丁所致高血壓大鼠的收縮壓,并拮抗尼古丁所致的脂質過氧化水平升高[21]。
抑制ACE活性是治療高血壓的方法之一,研究顯示Schumach. & Thonn.精油等植物精油[22-23]具有抑制ACE舒張血管的作用,這可能是這些精油舒張血管、預防高血壓的原因。分子對接顯示精油所含的匙葉桉油烯醇與ACE的結合親和力最好,最低結合能為?31.4 kJ/mol[23]。
心肌梗死是一種嚴重的心血管疾病,以缺血/再灌注損傷為特征。研究表明對器官造成損害的主要因素不是缺血本身而是再灌注。在再灌注期間,自由基的過度生成導致氧化應激和急性炎癥反應。心肌梗死后,炎癥過程導致包括(tumor necrosis factor-α,TNF-α)、轉化生長因子-β和白細胞介素(interleukin,IL)在內的各種細胞因子的釋放可導致心肌壞死、細胞凋亡、纖維化、心力衰竭、非梗死區心肌肥厚,最終導致心臟重構[24]。艷山姜精油[25]、賀蘭山丁香Hemsl. var.Ma et S. Q. Zhou精油[26]對異丙腎上腺素(isoproterenol,ISO)、冠狀動脈結扎誘導的大鼠心肌梗死以及H2O2誘導的大鼠心肌細胞死亡有保護作用。
薰衣草Mill.精油可通過抑制炎癥和心肌梗死,對抗氧化應激,從而發揮心臟保護作用[24]。姜黃L.精油可降低缺血/再灌注大鼠模型左心室缺血面積和內皮細胞誘導的炎癥,并減少黏附因子如E-選擇素和細胞間黏附分子-1的表達,減少了炎癥細胞與內皮細胞的黏附[27]。
植物精油中的成分如香芹酚[25]能保護心肌細胞缺血/再灌注損傷,可明顯縮小心肌梗死面積,對心肌缺血具有潛在的治療作用。香芹酚的心肌保護作用可能與其通過激活絲裂原活化蛋白激酶/細胞外信號調節激酶和蛋白激酶B/NOS信號通路而發揮抗氧化和抗凋亡作用有關。此外,精油中的萜類成分如α-蒎烯[29]、諾卡酮[30]具有抗炎、抗氧化的作用,對ISO誘導的心肌梗死中血脂異常、心肌內脂質積累和脂質代謝改變有明顯的保護作用。
動脈粥樣硬化是一種動脈內膜膽固醇沉積過多的慢性炎癥性疾病,與氧化應激和內皮功能障礙有關。高脂血癥是引起肥胖、糖尿病、心血管疾病等代謝癥候群的重要因素。高脂血癥是最常見的血脂異常形式,按照脂質類型分為高膽固醇血癥、高三酰甘油血癥、高膽固醇和高三酰甘油混合型高脂血癥,被認為是心血管疾病,特別是動脈粥樣硬化的一個非常危險的因素[31]。研究發現,膽固醇改變了血管的結構和功能,其在血管壁內生成并干擾內皮功能,導致內皮損傷、斑塊、阻塞和栓子[32]。
植物精油有調血脂作用。酸橙(Christm.) Swingle精油、大蒜L.精油、洋蔥L.精油、迷迭香Linn.精油可以降低高脂血癥大鼠血清總膽固醇(total cholesterol,TC)、三酰甘油(triacylglycerol,TG)、低密度脂蛋白膽固醇(low density lipoprotein cholesterin,LDL-C)水平,從而降低肥胖預防動脈粥樣硬化形成[33-34]。此外研究發現植物精油中所含成分香葉醇[35]、桃金娘烯醛[36]、油酰胺[37]能顯著降低血漿TC、TG、脂肪酸、LDL-C水平和動脈粥樣硬化指數。
動脈粥樣硬化是由血管和炎癥細胞之間復雜的相互作用引起的。傳統上認為它是一種內膜炎癥性疾病,以內皮功能障礙、炎性細胞募集、脂質氧化和泡沫細胞形成為特征。內皮損傷和功能障礙被認為是動脈粥樣硬化形成的基礎,它通過由內向外的信號觸發血管炎癥和脂質攝取[38]。單核細胞與受損內皮層黏附增加是動脈粥樣硬化形成的關鍵早期因素。在炎癥條件下,活化的血管內皮細胞上特異性細胞黏附分子的表達增加,從而增加單核細胞黏附。
五味子(Turcz.) Baill.精油通過選擇性抑制基質金屬蛋白酶9的表達,抑制TNF-α誘導的人主動脈平滑肌細胞HASMCs遷移,提示其具有潛在的抗動脈粥樣硬化活性[39]。在動脈粥樣硬化過程中,單核細胞在動脈粥樣硬化斑塊的形成、穩定和破裂過程中起重要作用。牛至L.精油具有抗炎作用,使氧化低密度脂蛋白(oxidized low-density lipoprotein,ox-LDL)激活的人急性THP-1單核細胞促炎性因子TNF-α、IL-1β和IL-6合成減少,抗炎性因子IL-10合成增加[40]。植物精油中的倍半萜化合物β-欖香烯[41]、反式石竹烯[42]、鼠尾草酚[42]能抑制炎性因子的產生,阻止單核細胞與內皮細胞的黏附,增加斑塊的穩定性,抑制動脈粥樣硬化發展。
LDL氧化在動脈粥樣硬化形成中起重要作用,其與其經典受體的親和力由于氧化而降低。相反,它被巨噬細胞中的清道夫分子吸收,因此形成了泡沫細胞,這些泡沫細胞在增加血管內皮下脂肪層方面起重要作用。研究顯示檸檬精油及其成分γ-松油烯可以有效地減緩LDL的氧化[43]。魁蒿Pamp.精油中由于含有豐富的抗氧化劑,可通過減少氧化甾醇的形成來改善肝臟脂質代謝,其可能通過LDL氧化和上調低密度脂蛋白受體(low density lipoprotein receptor,LDLR)而具有抗動脈粥樣硬化作用[44]。千金子精油、艷山姜精油對高脂血癥和動脈粥樣硬化有改善作用,對ox-LDL誘導的人臍靜脈內皮細胞、人主動脈內皮細胞損傷的內皮有保護作用,減輕ox-LDL誘導的凋亡所致的細胞損傷[45-46];可通過提高超氧化物歧化酶、過氧化氫酶和谷胱甘肽過氧化物酶的活性,增加谷胱甘肽的水平,降低丙二醛的含量,改善氧化應激[46]。此外,精油中的酚類物質如百里香酚、丁香酚、百里醌[47-48],具有較強的抗氧化性能;可以改變LDL顆粒對LDLR的親和力[47]。香茅醛是一種主要由植物次生代謝產生的單萜類化合物,可通過誘導NOS的調節抑制NO的產生,并減少環氧酶的表達減少前列腺素的釋放,從而改善內皮功能障礙,阻止動脈粥樣硬化的發展[49]。
膽固醇的蓄積在心血管疾病中起突出的作用,被認為是冠狀動脈疾病的重要病因,哺乳動物中甲羥戊酸通路負責膽固醇作為主要最終產物的生物合成。研究顯示植物精油有降膽固醇的作用,高膽固醇血癥受試者每天服用140 mg檸檬草油膠囊(主要含香葉醇和檸檬醛)90 d之后,血清膽固醇水平有效下降[50]。
羥甲基戊二酸單酰輔酶A還原酶(hydroxymethylglutaryl-CoA synthase,HMGCR)是體內催化膽固醇合成的關鍵酶,其活性大小直接影響膽固醇合成的速度和含量的高低[51]。植物精油對HMGCR有明顯抑制作用[44,48,52-53]。從而降低膽固醇的合成。研究顯示(Miller) N.E. Brown精油抑制HMGCR,降低HMGCR蛋白水平,降膽固醇生成,抑制TG、膽固醇酯和磷脂合成,并減少脂滴的大小和體積[52]。香葉醇可降低小鼠肝臟HMGCR蛋白水平和酶的催化活性,導致肝細胞膽固醇合成下降[35]。
過氧化物酶體增殖物激活受體-α(peroxisome proliferator-activated receptor-α,PPAR-α)是一種核激素受體,調節與脂質代謝和炎癥相關的基因[54]。PPAR-α通過影響膽固醇代謝的多個過程,包括從頭合成、降解、腸道吸收、膽汁和糞便排泄,成為控制膽固醇穩態的關鍵開關;抑制PPAR-α可顯著上調HMGCR的表達,進而促進膽固醇的生物合成[55]。肝X受體α是配體激活的轉錄因子,調節脂質和膽固醇代謝相關基因的表達。研究顯示姜黃精油對高膽固醇和高脂飼料喂養金黃地鼠模型顯示出抗高脂血癥作用,可能是通過調節PPAR-α、肝X受體α等與調節膽固醇穩態和轉運相關的基因來實現的[56-57]。
LDLR是脂蛋白受體家族的創始成員,介導低密度脂蛋白顆粒內吞作用和調節膽固醇穩態。LDLR介導的LDL清除是決定循環中LDL-C水平的主要因素,在動脈粥樣硬化形成中起重要作用[58]。研究顯示植物精油的調血脂作用與其上調LDLR有關[53]。香葉醇還增強了編碼LDL和極低密度脂蛋白受體mRNA的表達[35]。
動物細胞中的脂質平衡是由固醇調節元件結合蛋白(sterol regulatory element-binding protein,SREBP)維持的,這是一種膜結合轉錄因子[59]。SREBP-1和SREBP-2是固醇感受器,當細胞膽固醇和氧化型膽固醇水平較低時,SREBP-1和SREBP-2被激活為功能性轉錄因子。SREBP-1a和SREBP-1c參與脂肪合成、脂肪酸合成和碳水化合物代謝基因的誘導,SREBP2參與膽固醇合成基因的上調。研究顯示紅松葉精油可抑制SREBP-1c、SREBP-2的表達以及膽固醇酰基轉移酶1和2的水平[53]。
血小板對于止血、血栓形成以及各種心血管和腦血管疾病的發作至關重要。但是,血管中的血小板聚集會引起血栓形成,并且是各種臨床疾病的病因。血小板活化和聚集的潛在機制對于預防和治療受損血管的失血非常重要。此外,調節血小板聚集是預防失血和治療心血管疾病的主要策略之一[60]。
植物精油具有抑制血小板聚集、凝塊收縮、抗血栓形成作用。研究顯示茴香Mill.精油及其主要成分茴香腦[61]、薰衣草精油[62]對花生四烯酸、膠原蛋白、二磷酸腺苷(adenosine 5′-diphosphate,ADP)和血栓素A2受體激動劑U46619誘導的血小板聚集有抑制作用,對膠原-腎上腺素注射所致小鼠急性血栓形成有抗血栓形成作用。
植物精油中所含的倍半萜類化合物通常具有抗血小板聚集作用[63]。莪術二酮是莪術精油的主要倍半萜類化合物之一,具有抗血小板聚集和抗血栓形成作用。莪術二酮還能抑制血小板活化因子活化的血小板中P-選擇素的表達[60]。植物精油對血小板活化因子(platelet-activating factor,PAF)受體結合有明顯的抑制作用,這與精油中的倍半萜和倍半萜含量有關[64]。另有研究顯示富含苯丙素類和酚類的精油具有較好的抑制血小板聚集作用[65]。肉桂醛也有抑制血小板聚集、凝塊收縮、抗血栓形成和舒張血管的作用,可能與抑制血栓素A2受體有關[66]。
心律失常是由心臟協調電活動變化引起的一種紊亂,是導致猝死的主要原因之一。心律失常表現為脈沖產生異常、傳導障礙或二者都有。心肌細胞表現出對細胞內鈣穩態的精細動態控制。目前發現植物精油中的萜類化合物法尼醇[67]、橙花醇[68]、香葉醇[69]具有抗心律失常的特性,可降低細胞內Ca2+瞬時值、鉀電流(k)、L型鈣電流(Ca.L)并且縮短了90%復極時的動作電位時程從而降低嚴重心律失常的發生率;抑制鈣火花頻率和鈣波的產生,減少受到Ca2+超載影響的心肌細胞產生活性氧[67];降低心率和收縮力,抑制毒毛旋花苷誘發的心律失常,但不改變毒毛旋花苷引起的正性肌力變化[68-69]。
目前以植物精油為載體的芳香療法通過按摩、香薰等使用方式可降低心血管疾病的風險,植物精油吸入可以引起副交感神經活動增加和交感神經活動減少,產生降壓、鎮靜作用。薰衣草、依蘭(Lam.) Hook. f. & Thomson、蠟菊(Roth) G. Don、馬郁蘭L.和檸檬(L.) Burm. f.等精油通常用來輔助降低高血壓[6],改善睡眠質量[70-71]。此外,雪松醇是從雪松(Roxb. ex D. Don) G. Don精油中提取的純化合物,加熱霧化吸入后可降低心率、收縮壓、舒張壓和呼吸頻率[72]。一項前瞻性臨床研究顯示迷迭香L.精油對原發性低血壓患者有升高血壓的作用并改善患者的健康相關生活質量[73]。
心肌梗死不僅會導致身體問題,還會導致焦慮、疲勞、抑郁、睡眠障礙、睡眠干擾等心理問題。吸入天竺葵L'Hér.精油的芳香療法對心血管重癥監護病房患者植入心臟支架后降低焦慮、提高睡眠質量和穩定血壓有積極作用[74]。中風患者通常參加康復鍛煉計劃,如物理治療、職業治療和/或語言治療。結合筷子訓練的移動豆子任務已被用于中風患者優勢手障礙的康復治療,但其會增加中風患者的心血管反應。對于特質焦慮癥狀較高的腦卒中患者,用薰衣草精油和葡萄柚i Macfad.精油刺激嗅覺,可以抑制移動豆子任務過度的舒張壓升高的心血管系統反應[75]。
人們普遍認為藥用植物比合成藥物更安全,對人體的危害更小,天然成分相對于合成化合物毒性更小[76]。植物精油在心血管系統的安全性方面還缺乏更多的研究信息。毒理研究顯示歐薄荷L. subsp.(Thunb.) Briq.精油125~500 μL/kg使大鼠紅細胞和淋巴細胞減少,白細胞和平均細胞體積無明顯變化,對血清低密度脂蛋白、膽固醇、Na+、Ca2+、Cl?、K+、肌酐和尿酸無明顯影響,不易導致動脈粥樣硬化[77]。黃樟油素-2′,3′-氧化物是黃樟素的主要代謝物,存在于多種植物精油當中,如八角茴香Hook. f.、肉豆蔻Houtt.和黑胡椒L.等。黃樟油素-2′,3′-氧化物使apoE?/?小鼠內皮細胞受損血管壁脂質面積達59.8%,導致動脈粥樣硬化。其通過激活p75神經營養素受體(p75 neurotrophin receptor,p75NTR)和IL-8,促進斑塊破裂和斑塊中細胞的凋亡[78]。
植物精油及其成分對心血管系統的作用分別見表1、2。

表1 植物精油對心血管系統的作用
續表1

植物名主要成分實驗和模型作用文獻 Aniba rosaeodora (Rosewood) var. amazonica Ducke芳樟醇(87.7%)、α-松油醇(3.1%)、香葉醇(1.2%)雙側迷走神經切斷和迷走神經C-纖維傳導阻斷大鼠;PHE誘導的預收縮的離體胸主動脈環降壓、減慢心率、舒張動脈12 香薷狀刺蕊草莪術烯(46.1%)、二苯甲酮(8.6%)、α-蓽澄茄醇(5.7%)、牻牛兒酮(6.3%)PHE、KCl誘導的預收縮的離體胸主動脈環;雙側迷走神經切斷大鼠舒張動脈、降低迷走神經切斷術后大鼠的收縮壓、舒張壓、平均動脈壓、心率14 阿育魏實百里香酚(38.1%)、γ-萜品烯(33.3%)、對聚傘花烴(23.1%)PHE、KCl誘導的預收縮的離體胸主動脈環舒張離體動脈16 薤白二甲基三硫(34.93%)、二甲基二硫(11.64%)、2,3,5,6-四甲基吡嗪(7.32%)、1,3-二噻烷(7.18%)PHE誘導的預收縮的離體肺動脈環、大鼠肺動脈內皮細胞模型擴張肺動脈17 荒野蒿匙葉桉葉油醇(10.19%)、β-桉葉醇(4.05%)、對傘花烴(3.83%)、δ-杜松萜烯(3.67%)、β-蒎烯(2.82%)、氧化石竹烯(2.30%)、salvial-4(14)-en-1-one(2.51%)PHE、KCl誘導的預收縮的離體胸主動脈環舒張主動脈,抑制L型鈣通道、肌漿網鈣泵降低細胞內鈣;抗血小板聚集;抗氧化18 Cymbopogon winterianus香葉醇(40.06%)、香茅醛(27.44%)、香茅醇(10.45%)雙側迷走神經切斷和迷走神經C-纖維傳導阻斷大鼠;PHE誘導的預收縮的腸系膜動脈環劑量相關性低血壓;舒張離體動脈19 Seseli pallasii Besserα-蒎烯(48.2%)、氧化石竹烯(4.3%~4.4%)、香葉烯D(2.9%~4.1%)、檸檬烯(3.3%~3.8%)、匙葉桉葉油醇(3.1%)、β-蒎烯(2.9%~4.6%)PHE誘導的預收縮的離體腸系膜動脈環舒張主動脈,抑制ACE23 薰衣草乙酸芳樟酯、芳樟醇、1,8-桉葉素、薰衣草醇、乙酸薰衣草酯、樟腦、順式-β-羅勒烯、反式-β-羅勒烯、1-松油烯-4-醇、α-松油醇、檸檬烯大鼠左冠狀動脈前降支結扎再灌注模型抗氧化、抗炎、抑制細胞凋亡、保護缺血心肌24 乙酸芳樟酯(36.2%)、芳樟醇(33.4%)、1,8-桉葉素(5.8%)、乙酸熏衣草酯(3.0%)花生四烯酸、U46619、膠原和ADP誘導的血小板聚集;凝血酶誘導的凝塊收縮;膠原和腎上腺素誘導的急性肺栓塞模型抑制血小板聚集;抑制凝塊收縮;抑制血栓形成62 賀蘭山丁香α-杜松醇(19.9%)、τ-依蘭油醇(18.5%)、胡椒烯(4.5%)、β-杜松烯(4.37%)和α-依蘭油烯(3.29%)大鼠左冠狀動脈前降支結扎再灌注模型;H2O2誘導的心肌細胞損傷模型心肌缺血、抗缺氧、抗氧化應激、抗血小板聚集作用26 姜黃芳姜黃酮、α-姜黃酮、β-姜黃酮高脂喂養敘利亞倉鼠抗高脂血癥的作用;減少氧化應激、血小板活化和血管功能障礙56 大鼠左冠狀動脈前降支結扎再灌注模型;THP-1與人內皮細胞EA.hy926 共培養模型減少左心室缺血面積和內皮細胞誘導的炎癥27
續表1

植物名主要成分實驗和模型作用文獻 酸橙檸檬烯(42.35%),γ-松油烯(15.44%)、β-蒎烯(12.57%)、α-蒎烯(3.12%)、乙酸橙酯(2.2%)和檜烯(2.12%)高脂飼料喂養大鼠抗氧化,降低LDL水平33 五味子—主動脈平滑肌細胞抑制腫瘤TNF-α誘導的血管平滑肌細胞遷移39 牛至反式水合檜烯(45.21%)、百里香酚(24.10%)、香芹酚(7.99%)ox-LDL激活的THP-1單核細胞模型促炎因子TNF-α、IL-1β和IL-6合成減少,抗炎因子IL-10的產生增加40 魁蒿1,8-桉葉素(20.1%)、反式石竹烯(16.3%)、1-檸檬烯(12.6%)、苯酚(7.5%)和莰烯(7.5%)肝源性HepG2細胞降低膽固醇44 Nigella sativa L.對傘花烴(3.81%)、對叔丁基鄰苯二酚(4.28%)、(+)-trans,trans-5-caranol(7.83%)、4-松油醇(10.55%)、百里香醌(13.53%)和百里香酚(31.98%)動脈粥樣硬化飼料喂養Wistar大鼠降膽固醇、抗氧化48 Lippia alba 月桂烯酮(30.4%)、1,8-桉葉素(21.4%)、月桂烯(11.0%)、檜烯(4.3%)、右旋大根香葉烯(3.2%)HepG2細胞、非肝源性細胞A549濃度范圍內降低膽固醇52 紅松Pinus koraiensis Siebold et Zuccarini 龍腦(21.11%)、D-檸檬烯(21.01%)、α-蒎烯(16.74%)和冰片(11.52%)HepG2細胞促進LDLR的表達,降低SREBP-1、-2、HMGCR的表達;抑制HACA T1、2和LDL-氧化活性53 茴香茴香腦(75.83%)、檸檬烯(5.67%)、甲基胡椒酚(4.56%)花生四烯酸、膠原、ADP和血栓素A2激動劑U46619誘導的血小板聚集;凝塊收縮實驗;血小板活性檢測;膠原和腎上腺素誘導的急性肺栓塞模型;PHE、KCl誘導的預收縮的胸主動脈環抑制血小板聚集;抑制凝血酶誘導的凝塊回縮;抗血栓形成;舒張離體動脈61 Ocotea quixos (Lam.) Kosterm. 反式肉桂醛(27.8%)、肉桂酸甲酯(21.6%)、苯甲醛(3.1%)、檸檬烯(8.1%)、α-蒎烯(3.1%)、p-cymene(4.8%)、芳樟醇(3.2%)、4-松油醇(2.2%)、α-松油醇(2.9%)花生四烯酸、U46619、ADP、佛波酯、膠原誘導的血小板聚集;凝血酶誘導的凝塊收縮;膠原和腎上腺素誘導的急性肺栓塞模型;U46619誘導的預收縮的離體胸主動脈環抑制血小板聚集;抗血栓形成;舒張離體動脈66 Hedychium coronariumJ. Koening1,8-桉葉素(22.68%)、β-蒎烯(14.78%)、β-石竹烯(12.95%)、β-松油醇(7.90%)、α-蒎烯(7.10%)松油酮(4.45%)ADP、膠原誘導的血小板聚集試驗抑制血小板聚集79

表2 植物精油成分對心血管系統的作用
心血管系統健康的關鍵因素是對疾病的預防。大量研究顯示大多數植物精油及其部分成分對心血管系統的保護作用,能舒張血管、降血壓、抗心肌缺血、預防和改善動脈粥樣硬化、抗血小板聚集以及抗心律失常。因此,它們可能成為抑制和/或治療心血管疾病的候選藥物。盡管許多研究報告了植物精油對心血管系統的作用及其可能作用機制,但這些研究絕大多數為體外和動物研究。現有的臨床報道或研究僅限于植物精油作為芳香療法,對高血壓、心肌梗死等進行輔助治療,缺乏臨床的直接應用的證據以及在心血管系統安全性方面的信息。因此,還需要更多研究來進一步確定植物精油對人體有益于人體心血管系統,特別是有心血管危險因素患者心血管系統的機制。
利益沖突 所有作者均聲明不存在利益沖突
[1] Suroowan S, Mahomoodally F. Common phyto-remedies used against cardiovascular diseases and their potential to induce adverse events in cardiovascular patients [J]., 2015, 1(1): 1-13.
[2] Saljoughian S, Roohinejad S, Bekhit A E A,. The effects of food essential oils on cardiovascular diseases: A review [J]., 2018, 58(10): 1688-1705.
[3] 董偉, 徐希強, 汪新娌, 等. 植物精油緩解抗生素耐藥研究現狀[J]. 中草藥, 2020, 51(15): 4032-4041.
[4] 鐘鈺, 鄭琴, 胡鵬翼, 等. 植物精油抗衰老的藥理作用與機制的研究進展[J]. 中草藥, 2019, 50(22): 5584-5590.
[5] 董偉, 黃小英, 湯喜蘭, 等. 植物精油抗哮喘作用的研究進展[J]. 中草藥, 2021, 52(5): 1492-1500.
[6] Walsh M E, Reis D, Jones T. Integrating complementary and alternative medicine: Use of essential oils in hypertension management [J]., 2011, 29(2): 87-88.
[7] da Cunha G H, de Moraes M O, Fechine F V,. Vasorelaxant and antihypertensive effects of methanolic fraction of the essential oil of[J]., 2013, 58(5/6): 337-345.
[8] Aydin Y, Kutlay O, Ari S,. Hypotensive effects of carvacrol on the blood pressure of normotensive rats [J]., 2007, 73(13): 1365-1371.
[9] Lahlou S, Interaminense L F, Leal-Cardoso J H,. Antihypertensive effects of the essential oil ofand its main constituent, terpinen-4-ol, in DOCA-salt hypertensive conscious rats [J]., 2003, 17(3): 323-330.
[10] Interaminense L F, Jucá D M, Magalh?es P J,. Pharmacological evidence of calcium-channel blockade by essential oil ofand its main constituent, eugenol, in isolated aortic rings from DOCA-salt hypertensive rats [J]., 2007, 21(5): 497-506.
[11] Interaminense L D F L, de Siqueira R J B, Xavier F E,. Cardiovascular effects of 1-nitro-2-phenylethane, the main constituent of the essential oil of, in spontaneously hypertensive rats [J]., 2011, 25(6): 661-669.
[12] de Siqueira R J, Rodrigues K M, da Silva M T,. Linalool-rich rosewood oil induces vago-vagal bradycardic and depressor reflex in rats [J]., 2014, 28(1): 42-48.
[13] de Siqueira R J, Macedo F I, Interaminense Lde F,. 1-Nitro-2-phenylethane, the main constituent of the essential oil of, elicits a vago-vagal bradycardiac and depressor reflex in normotensive rats [J]., 2010, 638(1/2/3): 90-98.
[14] Shiva Kumar A, Jeyaprakash K, Chellappan D R,. Vasorelaxant and cardiovascular properties of the essential oil of[J]., 2017, 199: 86-90.
[15] Bastos J F A, Moreira í J A, Ribeiro T P,. Hypotensive and vasorelaxant effects of citronellol, a monoterpene alcohol, in rats [J]., 2010, 106(4): 331-337.
[16] Sargazi Zadeh G, Panahi N. Endothelium-independent vasorelaxant activity ofessential oil on rat aorta [J]., 2017, 39(2): 133-138.
[17] Han C, Qi J, Gao S,. Vasodilation effect of volatile oil fromBunge are mediated by PKA/NO pathway and its constituent dimethyl disulfide in isolated rat pulmonary arterials [J]., 2017, 120: 52-57.
[18] Dib I, Fauconnier M L, Sindic M,. Chemical composition, vasorelaxant, antioxidant and antiplatelet effects of essential oil ofL. from Oriental Morocco [J]., 2017, 17(1): 1-15.
[19] de Menezes I A C, Moreira í J A, de Paula J W A,. Cardiovascular effects induced byessential oil in rats: Involvement of calcium channels and vagal pathway [J]., 2010, 62(2): 215-221.
[20] Pinto N V, Assreuy A M, Coelho-de-Souza A N,. Endothelium-dependent vasorelaxant effects of the essential oil from aerial parts ofand its main constituent 1, 8-cineole in rats [J]., 2009, 16(12): 1151-1155.
[21] Moon H K, Kang P, Lee H S,. Effects of 1,8-cineole on hypertension induced by chronic exposure to nicotine in rats [J]., 2014, 66(5): 688-693.
[22] Oboh G, Ademosun A O, Odubanjo O V,. Antioxidative properties and inhibition of key enzymes relevant to type-2 diabetes and hypertension by essential oils from black pepper [J]., 2013, 2013: 926047.
[23] Suru?i? R, Kundakovi? T, Laku?i? B,. Variations in chemical composition, vasorelaxant and angiotensin I-converting enzyme inhibitory activities of essential oil from aerial parts ofbesser (Apiaceae) [J]., 2017, 14(5): e1600407.
[24] Souri F, Rakhshan K, Erfani S,. Natural lavender oil () exerts cardioprotective effects against myocardial infarction by targeting inflammation and oxidative stress [J]., 2019, 27(4): 799-807.
[25] Paulino E T, Barros Ferreira A K, da Silva J C G,. Cardioprotective effects induced by hydroalcoholic extract of leaves ofon myocardial infarction in rats [J]., 2019, 242: 112037.
[26] Yan Y, O W, Zhao X J,. Effect of essential oil ofHemsl. var.on ischemia of myocardium, hypoxia and platelet aggregation [J]., 2010, 131(2): 248-255.
[27] Manhas A, Khanna V, Prakash P,.oil reduces endothelial cell-mediated inflammation in postmyocardial ischemia/reperfusion in rats [J]., 2014, 64(3): 228-236.
[28] Chen Y, Ba L, Huang W,. Role of carvacrol in cardioprotection against myocardial ischemia/reperfusion injury in rats through activation of MAPK/ERK and Akt/ENOS signaling pathways [J]., 2017, 796: 90-100.
[29] Zhang B, Wang H, Yang Z,. Protective effect of alpha-pinene against isoproterenol-induced myocardial infarction through NF-κB signaling pathway [J]., 2020, 39(12): 1596-1606.
[30] Meeran M F N, Azimullah S, Al Ahbabi M M,. Nootkatone, a dietary fragrant bioactive compound, attenuates dyslipidemia and intramyocardial lipid accumulation and favorably alters lipid metabolism in a rat model of myocardial injury: Anandstudy [J]., 2020, 25(23): 5656.
[31] Miao J, Zang X, Cui X,. Autophagy, hyperlipidemia, and atherosclerosis [J]., 2020, 1207: 237-264.
[32] Eissa F A, Choudhry H, Abdulaal W H,. Possible hypocholesterolemic effect of ginger and rosemary oils in rats [J]., 2017, 14(4): 188-200.
[33] Lin L Y, Chuang C H, Chen H C,. Lime ((Christm.) Swingle) essential oils: Volatile compounds, antioxidant capacity, and hypolipidemic effect [J]., 2019, 8(9): 398.
[34] Yang C, Li L, Yang L,. Anti-obesity and Hypolipidemic effects of garlic oil and onion oil in rats fed a high-fat diet [J]., 2018, 15: 43.
[35] Galle M, Kladniew B R, Castro M A,. Modulation by geraniol of gene expression involved in lipid metabolism leading to a reduction of serum-cholesterol and triglyceride levels [J]., 2015, 22(7/8): 696-704.
[36] Ayyasamy R, Leelavinothan P. Myrtenal alleviates hyperglycaemia, hyperlipidaemia and improves pancreatic insulin level in STZ-induced diabetic rats [J]., 2016, 54(11): 2521-2527.
[37] Cheng M C, Ker Y B, Yu T H,. Chemical synthesis of 9()-octadecenamide and its hypolipidemic effect: A bioactive agent found in the essential oil of mountain celery seeds [J]., 2010, 58(3): 1502-1508.
[38] Kim H W, Shi H, Winkler M A,. Perivascular adipose tissue and vascular perturbation/atherosclerosis [J]., 2020, 40(11): 2569-2576.
[39] Jeong J W, Kim J W, Ku S K,. Essential oils purified frominhibits tumor necrosis factor-α-induced matrix metalloproteinase-9 activation and migration of human aortic smooth muscle cells [J]., 2015, 15: 7.
[40] Oca?a-Fuentes A, Arranz-Gutiérrez E, Se?orans F J,. Supercritical fluid extraction of oregano () essentials oils: Anti-inflammatory properties based on cytokine response on THP-1 macrophages [J]., 2010, 48(6): 1568-1575.
[41] Liu M, Chen X T, Ma J,. Β-Elemene attenuates atherosclerosis in apolipoprotein E-deficient mice via restoring NO levels and alleviating oxidative stress [J]., 2017, 95: 1789-1798.
[42] Lian K C, Chuang J J, Hsieh C W,. Dual mechanisms of NF-kappaB inhibition in carnosol-treated endothelial cells [J]., 2010, 245(1): 21-35.
[43] Gra?mann J, Schneider D, Weiser D,. Antioxidative effects of lemon oil and its components on copper induced oxidation of low density lipoprotein [J]., 2011, 51(10): 799-805.
[44] Chung M J, Kang A Y, Park S O,. The effect of essential oils of dietary wormwood (), with and without added vitamin E, on oxidative stress and some genes involved in cholesterol metabolism [J]., 2007, 45(8): 1400-1409.
[45] Chen Y, Li D, Xu Y N,. Essential oils from Fructus A. zerumbet protect human aortic endothelial cells from apoptosis induced by ox-LDL[J]., 2014, 2014: 1-9.
[46] Shen X C, Tao L, Li W K,. Evidence-based antioxidant activity of the essential oil from Fructus A. zerumbet on cultured human umbilical vein endothelial cells’ injury induced by ox-LDL [J]., 2012, 12(1): 1-10.
[47] Naderi G A, Asgary S, Ani M,. Effect of some volatile oils on the affinity of intact and oxidized low-density lipoproteins for adrenal cell surface receptors [J]., 2004, 267(1/2): 59-66.
[48] Ahmad S, Beg Z H. Elucidation of mechanisms of actions of thymoquinone-enriched methanolic and volatile oil extracts fromagainst cardiovascular risk parameters in experimental hyperlipidemia [J]., 2013, 12: 86.
[49] Lu J X, Guo C, Ou W S,. Citronellal prevents endothelial dysfunction and atherosclerosis in rats [J]., 2019, 120(3): 3790-3800.
[50] Elson C E, Underbakke G L, Hanson P,. Impact of lemongrass oil, an essential oil, on serum cholesterol [J]., 1989, 24(8): 677-679.
[51] Liao P, Wang H, Hemmerlin A,. Past achievements, current status and future perspectives of studies on 3-hydroxy-3-methylglutaryl-CoA synthase (HMGS) in the mevalonate (MVA) pathway [J]., 2014, 33(7): 1005-1022.
[52] Montero-Villegas S, Polo M, Galle M,. Inhibition of mevalonate pathway and synthesis of the storage lipids in human liver-derived and non-liver cell lines byessential oils [J]., 2017, 52(1): 37-49.
[53] Kim J H, Lee H J, Jeong S J,. Essential oil ofleaves exerts antihyperlipidemic effects via up-regulation of low-density lipoprotein receptor and inhibition of acyl-coenzyme A: Cholesterol acyltransferase [J]., 2012, 26(9): 1314-1319.
[54] Wu Q, Wang Q, Fu J,. Polysaccharides derived from natural sources regulate triglyceride and cholesterol metabolism: A review of the mechanisms [J]., 2019, 10(5): 2330-2339.
[55] Yu X H, Zheng X L, Tang C K. Peroxisome proliferator-activated receptor α in lipid metabolism and atherosclerosis [J]., 2015, 71: 171-203.
[56] Singh V, Jain M, Misra A,.oil ameliorates hyperlipidaemia and associated deleterious effects in golden Syrian hamsters [J]., 2013, 110(3): 437-446.
[57] Singh V, Rana M, Jain M,.oil attenuates accelerated atherosclerosis and macrophage foam-cell formation by modulating genes involved in plaque stability, lipid homeostasis and inflammation [J]., 2015, 113(1): 100-113.
[58] Mineo C. Lipoprotein receptor signalling in atherosclerosis [J]., 2020, 116(7): 1254-1274.
[59] Kober D L, Xu S, Li S,. Identification of a degradation signal at the carboxy terminus of SREBP2: A new role for this domain in cholesterol homeostasis [J]., 2020, 117(45): 28080-28091.
[60] Xia Q, Wang X, Xu D J,. Inhibition of platelet aggregation by curdione fromWenyujin essential oil [J]., 2012, 130(3): 409-414.
[61] Tognolini M, Ballabeni V, Bertoni S,. Protective effect ofessential oil and anethole in an experimental model of thrombosis [J]., 2007, 56(3): 254-260.
[62] Ballabeni V, Tognolini M, Chiavarini M,. Novel antiplatelet and antithrombotic activities of essential oil fromReverchon “Grosso” [J]., 2004, 11(7/8): 596-601.
[63] Tao Y, Wang Y. Bioactive sesquiterpenes isolated from the essential oil ofT. Chen [J]., 2010, 81(5): 393-396.
[64] Moharam B A, Jantan I, Ahmad Fb,. Antiplatelet aggregation and platelet activating factor (PAF) receptor antagonistic activities of the essential oils of fivespecies [J]., 2010, 15(8): 5124-5138.
[65] Tognolini M, Barocelli E, Ballabeni V,. Comparative screening of plant essential oils: Phenylpropanoid moiety as basic core for antiplatelet activity [J]., 2006, 78(13): 1419-1432.
[66] Ballabeni V, Tognolini M, Bertoni S,. Antiplatelet and antithrombotic activities of essential oil from wild(Lam.) Kosterm. (Lauraceae) calices from Amazonian Ecuador [J]., 2007, 55(1): 23-30.
[67] Souza D S, Menezes-Filho J E R, Santos-Miranda A,. Calcium overload-induced arrhythmia is suppressed by farnesol in rat heart [J]., 2019, 859: 172488.
[68] de Menezes-Filho J E R, de Souza D S, Santos-Miranda A,. Nerol attenuates ouabain-induced arrhythmias [J]., 2019, 2019: 5935921.
[69] de Menezes-Filho J E, Gondim A N, Cruz J S,. Geraniol blocks calcium and potassium channels in the mammalian myocardium: Useful effects to treat arrhythmias [J]., 2014, 115(6): 534-544.
[70] Kim I H, Kim C, Seong K,. Essential oil inhalation on blood pressure and salivary cortisol levels in prehypertensive and hypertensive subjects [J]., 2012, 2012: 984203.
[71] Ju M S, Lee S, Bae I,. Effects of aroma massage on home blood pressure, ambulatory blood pressure, and sleep quality in middle-aged women with hypertension [J]., 2013, 2013: 403251.
[72] Dayawansa S, Umeno K, Takakura H,. Autonomic responses during inhalation of natural fragrance of cedrol in humans [J]., 2003, 108(1/2): 79-86.
[73] Fernández L F, Palomino O M, Frutos G. Effectiveness ofessential oil as antihypotensive agent in primary hypotensive patients and its influence on health-related quality of life [J]., 2014, 151(1): 509-516.
[74] Shirzadegan R, Gholami M, Hasanvand S,. Effects ofon anxiety among patients with acute myocardial infarction: A triple-blind randomized clinical trial [J]., 2017, 29: 201-206.
[75] Iokawa K, Kohzuki M, Sone T,. Effect of olfactory stimulation with essential oils on cardiovascular reactivity during the moving beans task in stroke patients with anxiety [J]., 2018, 36: 20-24.
[76] Abd Kadir S L, Yaakob H, Mohamed Zulkifli R. Potential anti-dengue medicinal plants: A review [J]., 2013, 67(4): 677-689.
[77] Odeyemi O O, Yakubu M T, Masika P J,. Toxicological evaluation of the essential oil fromL. subsp.leaves in rats [J]., 2009, 12(3): 669-674.
[78] Su L, Zhang H, Zhao J,. Safrole-2′,3′-oxide induces atherosclerotic plaque vulnerability in apolipoprotein E-knockout mice [J]., 2013, 217(2): 129-136.
[79] Guzman L, Nerio L S, Venturini W,. Antiplatelet and antibacterial activities of essential oils obtained from rhizomes and leaves ofJ. Koening [J]., 2020, 92(2): e20190615.
[80] Lahlou S, Interaminense L F, Magalh?es P J,. Cardiovascular effects of eugenol, a phenolic compound present in many plant essential oils, in normotensive rats [J]., 2004, 43(2): 250-257.
[81] Zhang Z, Yang C, Dai X,. Inhibitory effect of trans-caryophyllene (TC) on leukocyte-endothelial attachment [J]., 2017, 329: 326-333.
Research progress on effect of essential oils on cardiovascular diseases
DONG Wei1, HUANG Xiao-ying1, TANG Xi-lan2, Li Qiu-xiang1, ZHAO Guo-wei1, LIANG Xin-li1, YANG Ming1
1. Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China 2. School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China
Cardiovascular diseases are a group of disorders of heart and blood vessels, and include hypertension, hyperlipidemia, thromboembolism, coronary artery disease and heart failure. Cardiovascular diseases are a serious threat to human health and a leading cause of mortality worldwide. The key to a healthy cardiovascular system is the prevention of illness. Essential oils and some of components are able to signi?cantly promote the cardiovascular system and can lead to vasorelaxation, hypotension, prevention and improvement of atherosclerosis, anti-platelet aggregation and anti-arrhythmia. Essential oils are beneficial to the cardiovascular system, but more evidence from clinical trials is necessary to confirm these results in humans.
essential oils; cardiovascular diseases; hypertension; myocardial ischemia; atherosclerosis; platelet aggregation; arrhythmia
R282.710.5
A
0253 - 2670(2021)24 - 7668 - 12
10.7501/j.issn.0253-2670.2021.24.030
2021-06-06
國家自然科學基金資助項目(82060733);國家自然科學基金資助項目(81960732);江西省自然科學基金資助項目(20181BAB215041);江西省科技廳重大科技研發專項(20194ABC28009);江西中醫藥大學現代中藥制劑教育部重點實驗室開放基金資助項目(TCM-201911)
董 偉,講師,主要從事中藥藥效物質基礎研究。Tel: (0791)87118658 E-mail: sober96@foxmail.com
梁新麗 Tel: (0791)87118658 E-mail: paln7@163.com
[責任編輯 崔艷麗]