王劍輝, 李翰之
(中國民用航空飛行學院 空中交通管理學院,四川 廣漢 618307)
航空安全問題一直是人們關注的焦點,安全也是民航發展的生命線,民航事故征候的分析和預測是民航安全研究的重要內容。掌握民航事故征候的發展規律,分析民航事故征候發生的內在原因,可減少民航事故的發生[1-2]。
目前,事故預測的方法主要有回歸分析法、經驗模型法、神經網絡模型法和灰色預測法。回歸分析法、經驗模型法和神經網絡模型法都是在大量歷史數據的前提下預測的,而民用航空系統并沒有大量的事故征候數據[3-4]。事故征候數據量小,而且其還存在某種趨勢的非平穩隨機過程。根據民航事故征候的特點,本文建立改進灰色模型和加權馬爾科夫鏈對民航事故征候進行預測[5]。

(1)
(2)
(3)
其一次響應函數為式(4)。

(4)
其中:
(5)
(6)
(7)


(8)

Y(k)∈Ei,i=1,2,…,m
(9)
其中,Ei表示灰精度指標Y(k)屬于第i種狀態。
采用灰精度指標Y(k)的自相關系數rk來表征各步長的馬爾科夫鏈權重,如式(10)。
(10)
從r1,r2,…,rt中按順序選取相依關系較強的|rk|≥0.3的rk,再歸一化處理,得到各步長馬爾科夫鏈的權重wk,如式(11)。
(11)
對灰精度指標分級的結果進行分析,得到不同步長的馬爾科夫鏈的狀態轉移概矩陣。k步m階狀態轉移概率矩陣為式(12)—式(14)。
(12)

(13)
(14)

找出各步長對應的初始狀態,假設步長為1,2,…,t時對應的初始狀態為a,b,…,d(1≤a,b,…,d≤m),則需要把P(k)(k=1,2,…,t)的第a,b,…,d行提取出來,得到一個新的狀態轉移概率矩陣P′,如式(15)。
(15)
用權重向量乘以新的狀態轉移概率矩陣P′可得到灰精度指標的轉移概率向量P,如式(16)。
P=wk·P′
(16)

(17)
其中,E1l表示El的左邊界;E2l表示El的右邊界??傻檬?18)。
(18)

傳統的SCGM(1,1)c加權馬爾科夫模型只適合短期預測,越向后面發展其預測的結果不太準確,無法進行中長期預測[6]。針對中長期預測本文建立了一種更新數據序列并且改進傳統的灰色加權馬爾科夫模型。先用改進加權馬爾科夫模型預測一個值,再將新預測的值加入到數列中,同時去掉系統中最老的那個數據,形成一個新的X(0)。利用新的X(0)用改進加權馬爾科夫模型預測一個值,再將其結果補充到數列中,同時去掉最老的一個數據。如此進行下去,便實現了系統的數據序列更新,可以達到中長期預測的目的。
相對精度ρ的計算如式(19)。
(19)

平均精度計算如式(20)。
(20)
以中國民航2000—2015年的民航事故征候數為基礎數據,利用SCGM(1,1)c加權馬爾科夫模型對2016—2018年民航事故數量進行預測,再通過與實際值對比,來檢驗模型的精度,然后對2019—2023年中國民航事故征候數預測。
根據《中國民航行業發展統計公告》,2000—2015年的中國民航事故征候數如表1所示。

表1 2000—2015年中國民航事故征候次數統計 單位:件

圖1 事故征候數的實際值和SCGM(1,1)c模型的擬合值

圖2 灰精度指標計算結果
利用Q型聚類,把歐式平方距離作為評價指標,利用Ward法對其進行聚類分析,把灰精度指標Y(k)分為四類,灰精度指標的狀態劃分區間,如表2所示。

表2 灰精度指標的狀態劃分區間
算出灰精度指標的各階自相關系數。步長為1,2,6,7時|rk|>0.3,相依關系較強,對其進行歸一化處理,可以確定各步長的權重如表3所示。

表3 各階自相關系數及權重
分別計算步長為1,2,6,7的馬爾科夫鏈的狀態轉移概率矩陣。

更新數據序列。將2016年的預測值加入到數據序列中,去掉2000年的數據,代入模型預測出2017年的預測值,再將2017年的預測值加入到數據序列去掉2001年的數據,得到2018年的預測值。最后2016—2018年的計算結果分別為439,514,559。
模型精度的評價。該模型在預測2016年民航事故征候次數的精度達到了84.59%,在預測2016—2018年民航事故征候次數時,其最高精度可以達到98.42%,平均精度為90.19%。因此可以把此模型應用于中國民航事故征候的中長期預測。
根據2000—2018年中國民航事故征候數的實際數值,利用新陳代謝系統云灰色加權馬爾科夫模型對2019—2023年的民航事故征候數預測。預測結果為637,679,720,820,929。
本文利用改進的灰色模型和加權馬爾科夫鏈結合,利用更新數據序列的思想,先根據2000—2015年的數據預測2016—2018年的民航事故征候數,最后根據2000—2018年的數據對2019—2023年民航事故征候發生次數進行預測。
根據更新數據序列的改進灰色加權馬爾科夫模型的原理與實例分析,可知更新數據序列的改進灰色加權馬爾科夫模型。
(1)充分融合了SCGM(1,1)c模型和加權馬爾科夫鏈的優點,可以預測隨機波動大的數據序列問題。
(2)數據量小,利用最少的信息通過數學模型挖掘其內部聯系,從而得到相對精確的預測結果。
(3)利用更新數據序列的思想,更新數據,去除老數據,為民航事故征候數的中長期預測提供了新思路,預測最高精度為98.42%,預測平均精度為90.19%,克服了一般灰色馬爾科夫模型只能做短期預測的缺陷。
從預測精度上來看,文章的預測最高精度為98.42%,預測平均精度為90.19%。要想進一步提高擬合精度就需要考慮起降架次,機隊規模和民航業整體運行環境等影響事故征候數的因素進一步改進灰色模型,在擁有大量數據的前提下可以直接利用神經網絡模型與馬爾科夫鏈結合,考慮各種因素對民航事故征候數的影響從而提高預測精度。總體而言文章的預測結果較為精準,對民航的安全運行有著重要意義。