摘 要: 為了提高滾動軸承剩余壽命預測的準確性,根據滾動軸承運行過程的兩階段性特點,提出了一種基于蝙蝠算法(BA)和威布爾比例風險模型(WPHM)的滾動軸承兩階段剩余壽命預測方法。首先,構建基于WPHM的剩余壽命預測模型;其次,提出了兩階段極大似然估計法,建立新的似然函數,并利用BA算法進行求解,以提高參數估計的準確性;最后,建立BA-WPHM模型對滾動軸承進行剩余壽命預測。案例分析表明,相比于Newton-Raphson算法、自組織分層猴群算法(SHMA)和獨特的自適應粒子群算法(UAPSO),提出的方法參數估計的準確性更高,剩余壽命的預測精度優于支持向量回歸(SVR)方法,驗證了所提方法的有效性,為滾動軸承維修決策的可行性提供了依據。
關鍵詞: 滾動軸承; 剩余壽命預測; 威布爾比例風險模型; 兩階段極大似然估計法; 蝙蝠算法
中圖分類號: TH133.33;TP391"" 文獻標志碼: A
文章編號: 1001-3695(2022)01-017-0096-06
doi:10.19734/j.issn.1001-3695.2021.07.0242
Two-stage remaining useful life prediction of rolling bearings based on BA-WPHM
Wang Ying1, Gu Xin1, Lyu Wenyuan2
(1.College of Engineering, Northeast Agricultural University, Harbin 150030,China; 2.School of Management,Harbin Institute of Techno-logy, Harbin 150001, China)
Abstract: To improve the accuracy of remaining useful life prediction for rolling bearings,based on the two-stage characteristics of rolling bearings operation,this paper proposed a two-stage remaining useful life prediction method based on bat algorithm(BA) and Weibull proportional hazards model(WPHM).Firstly,it constructed a remaining useful life prediction model based on WPHM.Secondly,it put forward the two-stage maximum likelihood estimation method to establish the new likelihood function,and adopted BA to solve it.Finally,it established the BA-WPHM model for rolling bearings remaining useful life prediction.The case analysis shows that the parameters estimation accuracy of the proposed method is superior to that of Newton-Raphson,self-organizing hierarchical monkey algorithm(SHMA),unique adaptive particle swarm optimization(UAPSO),and the prediction accuracy of BA-WPHM is better than that of support vector regression(SVR) method.The results verify the effectiveness of the proposed method,which can provide a basis for the feasibility of rolling bearing maintenance decision-making.
Key words: rolling bearings; remaining useful life prediction; Weibull proportional hazards model; two-stage maximum likelihood estimation; bat algorithm
0 引言
滾動軸承作為機械設備的關鍵部件,具有摩擦小、效率高、裝配方便等優點,常被應用于設備核心系統中。隨著現代設備的自動化和復雜程度的日益提升,滾動軸承大多處于高溫、高壓和高轉速的工作環境中,這些條件對滾動軸承的可靠性和安全性要求極高,否則,一旦發生故障,輕則影響設備的使用效率造成停機損失,重則將產生嚴重的財產損失和人員傷亡。機械設備故障30%都是由滾動軸承發生故障所導致,滾動軸承作為極其重要又極易受損的零部件,其運行狀態和剩余壽命(remaining useful life,RUL)會直接影響內部系統甚至整臺設備的性能和安全。因此,采用科學的方法對滾動軸承進行剩余壽命預測與健康管理(prognostics and health management,PHM)十分必要[1,2]。
PHM技術主要包含剩余壽命預測和健康管理兩個方面。RUL定義為當前時刻與故障時刻之間的時間間隔,通常用于描述設備的運行狀態以及為維修決策提供可靠的理論依據,長期以來作為PHM技術的重點[3,4]。目前,國內外諸多學者針對RUL預測的研究主要分為基于故障機理的方法[5,6]和基于數據驅動的方法[7~9]兩類。其中,基于數據驅動的壽命預測方法隨著信息技術的快速發展逐漸成為壽命預測領域研究的熱點。該方法通過機器學習、統計推斷和深度學習等方法對設備狀態監測和歷史壽命等數據信息進行特征提取和建模分析。Wang等人[10]提出了一種基于隨機濾波的設備狀態維修方法,對壽命數據進行擬合,為健康管理提供了有力保證;文娟等人[11]提出了一種基于無跡粒子濾波算法(UPF)的軸承剩余壽命預測方法;位晶晶等人[12]針對小樣本數據不均衡下的設備健康預測問題,提出基于改進粒子群算法優化均衡支持向量機(IPSO-BSVM)的健康預測模型;劉文溢等人[13]針對隱馬爾可夫模型在進行設備健康診斷時與實際存在較大偏差的問題,提出一種以似冪關系加速退化為核心的改進退化隱馬爾可夫模型(DGHMM);全航等人[14]為準確地預測軸承剩余壽命,提出二維卷積神經網絡與改進WaveNet組合的壽命預測模型。然而,由于滾動軸承工作環境和運行條件的不確定性、疲勞損傷發展的隨機性以及故障模式的多樣性,導致滾動軸承的剩余壽命分散度很大、隨機性很強;另一方面,狀態監測信息由于各種因素的影響也存在很大的隨機性,上述方法很難準確地揭示滾動軸承潛在的真實運行狀態,影響剩余壽命預測結果[15]。
威布爾比例風險模型(Weibull proportional hazards model,WPHM)是一種實用性很強的壽命數據統計分析方法。由于其對數據分布、殘差分布均無特殊要求,且采用威布爾分布充分擬合壽命數據,對滾動軸承早期故障敏感度較高;另一方面,它能夠處理多個狀態特征對剩余壽命的影響問題,有著其他模型無法比擬的優點,適用于高預測需求場景,具有綜合性能表現良好的優點,因此該模型被廣泛用于滾動軸承的壽命預測[16]。文獻[17]提出基于WPHM模型的設備剩余壽命預測與維修決策方法,在估計WPHM的未知參數時,利用Newton-Raphson方法對極大似然方程組進行求解;文獻[18]提出一種基于核主元分析(KPCA)和WPHM的滾動軸承可靠性評估和壽命預測方法,并采用Nelder-Mead迭代算法進行極大似然函數求解;文獻[19]將峭度、均方根作為特征指標,利用WPHM模型作為軸承可靠度評估模型,并利用Fminsearch優化函數求解極大似然方程組以確定WPHM的未知參數;文獻[20]提出基于WPHM的軸承剩余壽命預測方法,并利用遺傳算法進行參數估計。現有參數求解方法,如Newton-Raphson、Nelder-Mead等迭代法,需要根據經驗設定搜索初值,可能產生結果不收斂或收斂速度慢等影響;遺傳算法(GA)和粒子群算法(PSO)等可能存在收斂速度慢,容易陷入局部最優的缺陷[21],均會導致參數估計不準確和預測精度欠佳的問題。
針對上述問題,一方面考慮到以往研究并未充分利用滾動軸承運行過程的兩階段性特點,忽略其運行狀態的劃分,影響了預測效果;另一方面考慮到蝙蝠算法(bat algorithm,BA)具有結構簡單、不受初值影響、尋優能力強和收斂速度快等優點,可以很好地解決參數估計問題。因此本文提出基于BA-WPHM的滾動軸承兩階段剩余壽命預測方法,以提高參數估計方面的尋優能力和收斂速率,以及滾動軸承剩余壽命預測的精度。
6 結束語
針對滾動軸承剩余壽命預測及模型參數估計問題,結合滾動軸承運行過程的兩階段性特點,本文提出了基于BA-WPHM的兩階段剩余壽命預測模型。首先,將反映滾動軸承退化趨勢的指標監測信息作為模型輸入,利用提出的兩階段極大似然估計法建立似然函數,并借助BA進行求解,得到最優參數估計值,相比于Newton-Raphson、SHMA、UAPSO算法,實現了模型參數估計的優化,為提高剩余壽命預測精度提供了保障;其次,利用基于WPHM的剩余壽命預測模型,分別計算故障率、可靠度和剩余壽命,實現滾動軸承的運行狀態劃分和剩余壽命預測;最后,通過案例分析結果表明,本文方法在RMSE、MAPE和R2方面均優于SVR方法,具有較小的預測誤差和較高的預測精度,且預測結果與真實情況相符程度較高。
本文方法能夠有效應用于滾動軸承的剩余壽命預測,具有一定的應用價值。但是,本文在滾動軸承的狀態監測中僅考慮一維振動監測信息,有必要融合油液和溫度等指標共同表征滾動軸承的退化趨勢,且隨著狀態監測信息維數的增多,一定程度上會增加參數估計的復雜性。因此下一步的研究工作將考慮引入多維的狀態監測信息,并對BA加以改進,保證滾動軸承剩余壽命預測結果的準確性。
參考文獻:
[1]Moussa H,Joon H J,Jungho P,et al.A comprehensive review of artificial intelligence-based approaches for rolling element bearing PHM:shallow and deep learning[J].JMST Advances,2019,1(1):125-151.
[2]趙磊,張永祥,朱丹宸.復雜裝備滾動軸承的故障診斷與預測方法研究綜述[J].中國測試,2020,46(3):17-25. (Zhao Lei,Zhang Yongxiang,Zhu Danchen.Review on rolling bearing fault diagnosis and prognostic for complex equipment[J].China Measurement amp; Test,2020,46(3):17-25.)
[3]裴洪,胡昌華,司小勝,等.基于機器學習的設備剩余壽命預測方法綜述[J].機械工程學報,2019,55(8):1-13. (Pei Hong,Hu Changhua,Si Xiaosheng,et al.Review of machine learning based remaining useful life prediction methods for equipment[J].Journal of Mechanical Engineering,2019,55(8):1-13.)
[4]金曉航,王宇,Zhang Bin.工業大數據驅動的故障預測與健康管理[J/OL].計算機集成制造系統. (2020-08-17)[2021-08-15].http://kns.cnki.net/kcms/detail/11.5946.TP.20200814.1703.006.html. (Jin Xiaohang,Wang Yu,Zhang Bin.Industrial big data-driven fault prognostics and health management[J/OL].Computer Integrated Manufacturing Systems.(2020-08-17)[2021-08-15].http://kns.cnki.net/kcms/detail/11.5946.TP.20200814.1703.006.html.)
[5]王英,喬金友,馬力.狀態預知建模研究綜述[J].價值工程,2011,30(29):274-276. (Wang Ying,Qiao Jinyou,Ma Li.State of the art and progress of research on state prognosis modeling[J].Value Engineering,2011,30(29):274-276.)
[6]劉德昆,李強,王曦,等.動車組軸箱軸承基于實測載荷的壽命預測方法[J].機械工程學報,2016,52(22):45-54. (Liu Dekun,Li Qiang,Wang Xi,et al.Life prediction method for EMU axle box bea-rings based on actual measured loadings[J].Journal of Mechanical Engineering,2016,52(22):45-54.)
[7]Zhao Fuqiong,Tian Zhigang,Zeng Yong.Uncertainty quantification in gear remaining useful life prediction through an integrated prognostics method[J].IEEE Trans on Reliability,2013,62(1):146-159.
[8]Sun Fuqiang,Li Xiaoyang,Liao Haitao,et al.A Bayesian least-squares support vector machine method for predicting the remaining useful life of a microwave component[J].Advances in Mechanical Enginee-ring,2017,9(1):314-334.
[9]李永朋,劉勤明,葉春明,等.基于Erlang-HSMM的設備剩余壽命預測研究[J].計算機應用研究,2021,38(2):426-429,443. (Li Yongpeng,Liu Qinming,Ye Chunming,et al.Research on residual life prediction of equipment based on Erlang-HSMM[J].Application Research of Computers,2021,38(2):426-429,443.)
[10]Wang Wenbin,Hussin B,Jefferis T.A case study of condition based maintenance modelling based upon the oil analysis data of marine diesel engines using stochastic filtering[J].International Journal of Production Economics,2011,136(1):84-92.
[11]文娟,高宏力.一種基于UPF的軸承剩余壽命預測方法[J].振動與沖擊,2018,37(24):208-213. (Wen Juan,Gao Hongli.Remaining useful life prediction of bearings with the unscented particle filter approach[J].Journal of Vibration and Shock,2018,37(24):208-213.)
[12]位晶晶,劉勤明,葉春明,等.基于IPSO-BSVM的小樣本數據不均衡下的設備健康預測研究[J].計算機應用研究,2021,38(4):1119-1122,1127. (Wei Jingjing,Liu Qinming,Ye Chunming,et al.Equipment health prognosis based on IPSO-BSVM under small and imbalanced sample data[J].Application Research of Computers,2021,38(4):1119-1122,1127.)
[13]劉文溢,劉勤明,葉春明,等.基于改進退化隱馬爾可夫模型的設備健康診斷與壽命預測研究[J].計算機應用研究,2021,38(3):805-810. (Liu Wenyi,Liu Qinming,Ye Chunming,et al.Equipment health diagnostics and prognostics method based on improved degene-rated HMM[J].Application Research of Computers,2021,38(3):805-810.)
[14]全航,張強,邵思羽,等.基于CNN-WaveNet的滾動軸承剩余壽命預測[J].計算機應用研究,2021,38(10):3098-3103. (Quan Hang,Zhang Qiang,Shao Siyu,et al.Remaining life prediction of rol-""""""""""""""""""""""""""""""""" ling bearing based on CNN-WaveNet[J].Application Research of Computers,2021,38(10):3098-3103.)
[15]王英.設備狀態維修系統結構與決策模型研究[D].哈爾濱:哈爾濱工業大學,2007. (Wang Ying.Research on system structure and decision model for condition-based maintenance of equipment[D].Harbin:Harbin Institute of Technology,2007.)
[16]劉恩龍.基于WPHM模型的滾動軸承壽命預測方法研究[D].大連:大連理工大學,2014. (Liu Enlong.Research on rolling bearing life prediction method based on WPHM model[D].Dalian:Dalian University of Technology,2014.)
[17]高萍.基于可靠性分析的復雜設備預防性維修決策研究[D].北京:清華大學,2008. (Gao Ping.The research on preventive maintenance decision of complex equipment based on reliability analysis[D].Beijing:Tsinghua University,2008.)
[18]王奉濤,陳旭濤,柳晨曦,等.基于KPCA和WPHM的滾動軸承可靠性評估與壽命預測[J].振動·測試與診斷,2017,37(3):476-483. (Wang Fengtao,Chen Xutao,Liu Chenxi,et al.Rolling bearing reliability assessment and life prediction based on KPCA and WPHM[J].Journal of Vibration,Measurement amp; Diagnosis,2017,37(3):476-483.)
[19]Ren Lei,Cui Jin,Sun Yaqiang,et al.Multi-bearing remaining useful life collaborative prediction:a deep learning approach[J].Journal of Manufacturing Systems,2017,43(2):248-256.
[20]張國珺.基于狀態監測的軸承剩余壽命預測研究[D].太原:中北大學,2020. (Zhang Guojun.Research on prediction of bearing remaining life based on condition monitoring[D].Taiyuan:North University of China,2020.)
[21]孫鈺.機械滾動軸承可靠運行剩余壽命預測及維修決策研究[D].舟山:浙江海洋大學,2020. (Sun Yu.Prediction of remaining useful life and maintenance decision for reliable operation of mechanical rol-ling bearings[D].Zhoushan:Zhejiang Ocean University,2020.)
[22]Wang Wenbin.A model to predict the residual life of rolling element bearings given monitored condition information to date[J].IMA Journal of Management Mathematics,2002,13(1):3-16.
[23]朱田瑋,馬慧民,秦洋.基于比例風險模型的風機齒輪箱的狀態維修決策[J].電力科學與工程,2016,32(5):32-35. (Zhu Tianwei,Ma Huimin,Qin Yang.Condition maintenance decision of wind turbine gear box based on proportional hazard model[J].Electric Power Science and Engineering,2016,32(5):32-35.)
[24]薛菲.基于蝙蝠算法的啟發式智能優化研究與應用[D].北京:北京工業大學,2016. (Xue Fei.Research and application of heuristic intelligent optimization based on bat algorithm[D].Beijing:Beijing University of Technology,2016.)
[25]Wang Wenbin,Zhang Wenjuan.A model to predict the residual life of aircraft engines based upon oil analysis data[J].Naval Research Logistics,2005,52(3):276-284.
[26]Sun Gaoji,Lan Yanfei,Zhao Ruiqing.Self-organizing hierarchical monkey algorithm with time-varying parameter[J].Neural Computing and Applications,2017,31(8):3245-3263.
[27]Isiet M,Gadala M.Self-adapting control parameters in particle swarm optimization[J].Applied Soft Computing Journal,2019,83:article ID 105653.