999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

動(dòng)態(tài)信任感知的偏好演化模型研究

2022-01-01 00:00:00海燕賈衛(wèi)華劉志中

摘 要: 有界置信模型(bounded confidence model,BCM)是輿論動(dòng)力學(xué)中對(duì)偏好演化進(jìn)行建模的重要模型,但其假設(shè)個(gè)體會(huì)完全接受與之交流個(gè)體的偏好以及所有的個(gè)體會(huì)誠(chéng)實(shí)表達(dá)其偏好與實(shí)際情況不符,存在明顯不足。針對(duì)該問(wèn)題,提出了一種動(dòng)態(tài)信任感知的偏好演化模型(dynamic trust-aware preferences evolution model,DTPEM)。首先,引入偏好接受度算子建模個(gè)體對(duì)交互對(duì)象偏好的接受度;其次,引入動(dòng)態(tài)信任度算子度量個(gè)體偏好表達(dá)的誠(chéng)實(shí)程度;然后建模偏好差距對(duì)信任度的影響。基于智能體模擬仿真實(shí)驗(yàn)與其他模型進(jìn)行對(duì)比,結(jié)果表明,DTPEM在偏好演化的準(zhǔn)確度上有了較大幅度的提升。

關(guān)鍵詞: 用戶(hù)偏好演化; 信任度動(dòng)態(tài)變化; 有界置信模型; 交流偏好; 交流偏好接受度

中圖分類(lèi)號(hào): TP391.9"" 文獻(xiàn)標(biāo)志碼: A

文章編號(hào): 1001-3695(2022)05-028-1454-06

doi:10.19734/j.issn.1001-3695.2021.09.0430

Research on dynamic trust-aware preferences evolution model

Hai Yan1, Jia Weihua1, Liu Zhizhong2

(1.School of Information Engineering, North China University of Water Resources amp; Electric Power, Zhengzhou 450046, China; 2.School of Computer amp; Control Engineering, Yantai University, Yantai Shandong 264005, China)

Abstract: BCM is an important model used to model users’ preferences evolution.But the model assumes that an agent will accept all agents’ preference which interacting with it and express their preferences honestly.This assumption doesn’t accord with the reality and brings obvious deficiency.To solve this problem,this paper proposed a DTPEM.Firstly,DTPEM introduced an operator of acceptable degree of interactional preference,to describe the degrees of the agent’s acceptance to the interactional preferences of the interactional objects.Secondly,the model introduced an operator of dynamic trustable degree to describe the honest degrees of the expression of user preferences.Then,it modeled the influences of the preference differences to the dynamic trustable degrees.Compared with other existing mode,the experimental results demonstrate that the DTPEM has great increase in the accuracy of preference evolution.

Key words: user preference evolution; dynamic changes of trustable degree; bounded confidence model; interactional pre-ferences; acceptable degree of interactional preferences

0 引言

在社會(huì)生活中,人們往往對(duì)社會(huì)、政治公共話(huà)題、社會(huì)公共服務(wù)等具有不同的觀點(diǎn)和看法,這些觀點(diǎn)和看法能夠體現(xiàn)出人們對(duì)這些議題的不同偏好。近年來(lái),隨著社會(huì)經(jīng)濟(jì)和互聯(lián)網(wǎng)技術(shù)的快速發(fā)展,人們可以通過(guò)網(wǎng)絡(luò)等通信工具,根據(jù)自己對(duì)相關(guān)議題和商品的偏好,便捷地發(fā)表和交流各自對(duì)國(guó)家政策、社會(huì)服務(wù)、新興商品的觀點(diǎn)和意見(jiàn)形成社會(huì)輿論。當(dāng)前,政府發(fā)布重大社會(huì)政策、商業(yè)機(jī)構(gòu)發(fā)行新商品新服務(wù)等重要的社會(huì)活動(dòng)都需要正確及時(shí)地預(yù)測(cè)大眾對(duì)該活動(dòng)或服務(wù)的偏好,從而為政策制定、策略調(diào)整提供重要的指導(dǎo)。針對(duì)人類(lèi)群體對(duì)公共政策、社會(huì)服務(wù)的偏好演化進(jìn)行研究,把握社會(huì)群體對(duì)公共問(wèn)題和服務(wù)的興趣,具有重要的理論與應(yīng)用價(jià)值。社會(huì)群體的偏好因受環(huán)境因素和社交對(duì)象的影響而不斷地演化,研究并建立符合個(gè)體偏好變化規(guī)律的演化模型是當(dāng)前亟待解決的重要問(wèn)題。有界置信模型(BCM)是輿論動(dòng)力學(xué)中對(duì)偏好演化進(jìn)行建模的重要工具,在多個(gè)領(lǐng)域得到了成功的應(yīng)用[1~13]。有界置信模型通常假設(shè)個(gè)體偏好等于所有與之交流個(gè)體偏好的平均值以及所有個(gè)體會(huì)誠(chéng)實(shí)地表達(dá)他們的偏好[14]。然而在現(xiàn)實(shí)生活中,上述設(shè)置和假設(shè)并不完全成立。首先,個(gè)體在進(jìn)行交流時(shí),通常以不同程度保留其原有的偏好;其次,個(gè)體對(duì)于不同的交互對(duì)象會(huì)表達(dá)出不同的偏好。上述矛盾給有界置信模型的理論和應(yīng)用研究帶來(lái)了一定的挑戰(zhàn)。本文將上述矛盾歸結(jié)為個(gè)體對(duì)交互對(duì)象偏好影響的接受度問(wèn)題和個(gè)體偏好表達(dá)的誠(chéng)實(shí)度問(wèn)題。

近年來(lái),國(guó)內(nèi)外學(xué)者對(duì)有界置信模型進(jìn)行了改進(jìn),提出了多個(gè)基于有界置信模型的各種應(yīng)用場(chǎng)景的偏好演化改進(jìn)模型[14~41],比如交互欺騙與異構(gòu)信任感知的偏好演化模型[14]、動(dòng)態(tài)自適應(yīng)網(wǎng)絡(luò)中有界信任輿論演化算法[18]、基于有界信任模型的地鐵突發(fā)事件信息傳播[22]、各種基于社會(huì)網(wǎng)絡(luò)的動(dòng)態(tài)意見(jiàn)模型[26,27]、噪聲有界置信模型[28,29]、基于共識(shí)達(dá)成的有界置信模型[30,31]、基于不同交流機(jī)制的有界置信模型[32,33]以及其他擴(kuò)展模型[34~41]。其中,最具代表性的是文獻(xiàn)[14]提出的交互欺騙與異構(gòu)信任感知的偏好演化模型。在該研究中,作者認(rèn)為個(gè)體通常不會(huì)誠(chéng)實(shí)地表達(dá)他們的偏好,并且對(duì)不同的對(duì)象會(huì)表達(dá)出不同的偏好,據(jù)此將個(gè)體偏好劃分為真實(shí)偏好、交流表達(dá)偏好、公開(kāi)表達(dá)偏好以及個(gè)體對(duì)其他個(gè)體的估計(jì)偏好;同時(shí)引入了異構(gòu)信任度并將其作為上述四種偏好演化的重要指標(biāo)。文獻(xiàn)[14]對(duì)于個(gè)體偏好的分類(lèi)和信任度的設(shè)定,很好地體現(xiàn)了個(gè)體間信任的異構(gòu)性,反映了信任度對(duì)偏好演化的影響。然而該研究工作將信任度設(shè)置為靜態(tài)的預(yù)設(shè)值,沒(méi)有考慮信任度的動(dòng)態(tài)性,導(dǎo)致在模型的演化中,信任度可能會(huì)出現(xiàn)較大偏差,從而影響到偏好演化的準(zhǔn)確性。Fu等人[15]將個(gè)體劃分為開(kāi)放思想群體、溫和思想群體和封閉思想群體,并以此改進(jìn)了偏好演化模型,在模型中引入了個(gè)體保守度因子。該研究在一定程度上解決了如何建模個(gè)體對(duì)交互對(duì)象偏好影響的接受程度問(wèn)題,但忽略了個(gè)體接受度的動(dòng)態(tài)性,影響了模型的有效性。

為了解決當(dāng)前偏好演化模型存在的問(wèn)題,本文在文獻(xiàn)[14,15]的基礎(chǔ)上提出了一種動(dòng)態(tài)信任感知的偏好演化模型(DTPEM)。首先,為了建模個(gè)體對(duì)交互對(duì)象偏好影響的接受度問(wèn)題,引入了動(dòng)態(tài)異質(zhì)交互偏好接受度算子,并用其對(duì)當(dāng)前個(gè)體對(duì)其他個(gè)體的交互偏好接受度進(jìn)行建模;其次,設(shè)計(jì)了動(dòng)態(tài)異構(gòu)交互偏好接受度同模型演化時(shí)間之間關(guān)系的度量公式,并依據(jù)該度量公式動(dòng)態(tài)地更新整個(gè)群體的接受度;最后,針對(duì)個(gè)體偏好表達(dá)的誠(chéng)實(shí)度問(wèn)題引入了動(dòng)態(tài)異構(gòu)信任度矩陣,并用其對(duì)個(gè)體之間的信任度進(jìn)行建模,設(shè)計(jì)了信任度更新公式,實(shí)現(xiàn)了信任度隨個(gè)體交互情況動(dòng)態(tài)更新。通過(guò)MATLAB仿真實(shí)驗(yàn)驗(yàn)證了有界置信閾值、動(dòng)態(tài)信任度和交互偏好接受度對(duì)偏好演化的影響,以及對(duì)DTPEM與其他模型進(jìn)行了性能對(duì)比。實(shí)驗(yàn)結(jié)果表明,在偏好演化的準(zhǔn)確度上,DTPEM模型比對(duì)比模型提高了約20.107%。

3.3 模型性能驗(yàn)證

3.3.1 實(shí)驗(yàn)數(shù)據(jù)和參數(shù)

現(xiàn)實(shí)生活中,個(gè)體交際圈中個(gè)體的規(guī)模一般為數(shù)十人,因此本實(shí)驗(yàn)設(shè)定個(gè)體的數(shù)量N=30;同時(shí),隨機(jī)生成10組數(shù)據(jù)(每組為N=30的向量數(shù)據(jù))模擬個(gè)體的初始偏好值;隨機(jī)生成另外10組同樣大小的數(shù)據(jù)模擬個(gè)體的實(shí)際偏好值。本實(shí)驗(yàn)仍然采用演化步數(shù)ES和最小偏好差MPD為驗(yàn)證指標(biāo),實(shí)驗(yàn)參數(shù)設(shè)置如下:信任度α=0.5,偏好接受度ac=0.5,偏好接受度控制變化參數(shù)pac=0.1,信任度變化臨界參數(shù)cri=0.5,信任度控制變化參數(shù)pa=10。

3.3.2 實(shí)驗(yàn)方法

本實(shí)驗(yàn)的目標(biāo)是對(duì)比DTPVM和BCM的性能,因此需要先找到兩種模型下使最小偏好差MPD為最小時(shí)的參數(shù)設(shè)置,然后根據(jù)此參數(shù)設(shè)置得出演化步數(shù)ES和最小偏好差MPD進(jìn)行對(duì)比。為此實(shí)驗(yàn)程序如下:a)根據(jù)參數(shù)的設(shè)置先分別找到兩種模型下最小偏好差MPD最小時(shí)對(duì)應(yīng)的有界置信閾值ε;b)根據(jù)參數(shù)的設(shè)置和步驟a)得到的ε分別找到兩種模型下最小偏好差MPD最小時(shí)對(duì)應(yīng)的α;c)根據(jù)參數(shù)的設(shè)置和步驟a)b)得到的ε、α找到DTPVM下最小偏好差MPD最小時(shí)對(duì)應(yīng)的ac;d)根據(jù)參數(shù)設(shè)置和步驟a)~c)得到的ε、α、ac找到DTPVM下最小偏好差MPD最小時(shí)對(duì)應(yīng)的pac;e)根據(jù)參數(shù)設(shè)置和步驟a)~d)得到的ε、α、ac、pac找到DTPVM下最小偏好差MPD最小時(shí)對(duì)應(yīng)的cri;f)根據(jù)步驟a)~e)得到的ε、α、ac、pac和cri找到DTPVM下最小偏好差MPD最小時(shí)對(duì)應(yīng)的pa;g)根據(jù)步驟a)~f)得到的ε、α、ac、pac、cri和pa得到最小偏好差MPD和其對(duì)應(yīng)的演化步數(shù)ES并輸出;h)根據(jù)3.3.1節(jié)中的10組數(shù)據(jù)執(zhí)行步驟a)~g)分別求出10組數(shù)據(jù)對(duì)應(yīng)的最小偏好差MPD和演化步數(shù)ES并顯示結(jié)果。

3.3.3 實(shí)驗(yàn)結(jié)果

通過(guò)MATLAB執(zhí)行上述實(shí)驗(yàn)后得到的實(shí)驗(yàn)結(jié)果如表1所示。由表1可以看出,在10組數(shù)據(jù)中,DTPEM的演化步數(shù)除第1組數(shù)據(jù)均高于BCM。這是因?yàn)椋珼TPEM的參數(shù)數(shù)量多于BCM,并且引入了一些動(dòng)態(tài)和異構(gòu)的因素,從而導(dǎo)致收斂速度相對(duì)較慢;而B(niǎo)CM參數(shù)僅有信任度和有界置信閾值,并且有界置信閾值是統(tǒng)一的數(shù)值,比較容易達(dá)到穩(wěn)定狀態(tài),收斂速度比DTPEM模型快。在10組數(shù)據(jù)中,DTPEM的最小偏好差值均優(yōu)于BCM模型的最小偏好差值。該實(shí)驗(yàn)結(jié)果表明,雖然DTPEM的演化過(guò)程需要較長(zhǎng)的時(shí)間,但DTPEM模型的偏好演化效果較好。事實(shí)上,對(duì)用戶(hù)偏好演化進(jìn)行研究時(shí),演化效果更為重要,用稍微較長(zhǎng)的時(shí)間獲得較好的演化效果是有意義的。

4 結(jié)束語(yǔ)

針對(duì)當(dāng)前偏好演化模型存在的不足,結(jié)合現(xiàn)實(shí)生活的實(shí)際情況,在已有研究工作的基礎(chǔ)上,本文提出了一種動(dòng)態(tài)信任感知的偏好演化模型(DTPEM)。該模型引入了動(dòng)態(tài)異質(zhì)交互偏好接受度算子,以此度量個(gè)體對(duì)交互對(duì)象偏好影響的接受程度;提出了動(dòng)態(tài)信任度算子,以此度量個(gè)體偏好表達(dá)的誠(chéng)實(shí)程度;此外,該模型還將動(dòng)態(tài)信任度作為影響偏好演化的重要因子,并通過(guò)公式建模偏好差距對(duì)信任度的影響,從而使得DTPEM能夠遵循并反映個(gè)體偏好的演化規(guī)律。通過(guò)模擬仿真實(shí)驗(yàn)與現(xiàn)有的模型進(jìn)行了比較分析,證明了本文模型在準(zhǔn)確度上優(yōu)于其他模型。在后續(xù)的研究工作中,將就當(dāng)前模型的各演化因子進(jìn)一步優(yōu)化和精簡(jiǎn),以提高模型的收斂速度;另一方面,擬進(jìn)一步對(duì)個(gè)體間的信任度建模進(jìn)行深入研究,進(jìn)一步提高模型演化的準(zhǔn)確度。

參考文獻(xiàn):

[1]Chen Xia,Zhang Hengjie,Dong Yucheng.The fusion process with he-terogeneous preference structures in group decision making:a survey[J].Information Fusion,2015,24(7):72-83.

[2]Dong Yucheng,Zhang Hengjie,Herrera-Viedma E.Consensus rea-ching model in the complex and dynamic MAGDM problem[J].Knowledge-Based Systems,2016,106(8):206-219.

[3]Holley R A,Liggett T M.Ergodic theorems for weakly interacting infinite systems and the voter model[J].Annals of Probability,1975,3(4):643-663.

[4]De Oliveira M J.Isotropic majority-vote model on a square lattice[J].Journal of Statistical Physics,1992,66(1):273-281.

[5]Sznajd-Weron K,Sznajd J.Opinion evolution in closed community[J].International Journal of Modern Physics C,2000,11(6):1157-1165.

[6]Creutz M.Deterministic ising dynamics[J].Annals of Physics,1986,167(1):62-72.

[7]Nowak A,Szamrej J,Latané B.From private attitude to public opi-nion:a dynamic theory of social impact[J].Psychological Review,1990,97(3):362-376.

[8]Axelrod R.The dissemination of culture:a model with local convergence and global polarization[J].Journal of Conflict Resolution,1997,41(2):203-226.

[9]Galam S.Minority opinion spreading in random geometry[J].The European Physical Journal B,Condensed Matter amp; Complex Systems,2002,25(4):403-406.

[10]Galam S.Modelling rumors:the no plane Pentagon French hoax case[J].Physica A:Statistical Mechanics and Its Applications,2003,320(3):571-580.

[11]DeGroot M H.Reaching a consensus[J].Journal of the American Statistical Association,1974,69(345):118-121.

[12]Berger R L.A necessary and sufficient condition for reaching a consensus using DeGroot’s method[J].Journal of the American Statistical Association,1981,76(374):415-418.

[13]Dong Yucheng,Ding Zhaogang,Martínez L,et al.Managing consensus based on leadership in opinion dynamics[J].Information Sciences,2017,397-398(8):187-205.

[14]Dong Yucheng,F(xiàn)an Yuxiang,Liang Haiming,et al.Preference evolution with deceptive interactions and heterogeneous trust in bounded confidence model:a simulation analysis[J].Knowledge-Based Systems,2019,175(7):87-95.

[15]Fu Guiyuan,Zhang Weidong,Li Zhijun.Opinion dynamics of modified Hegselmann-Krause model[J].Physica A:Statistical Mechanics and Its Applications,2015,419(2):558-565.

[16]Liang Haiming,Li Congcong,Jiang Guoyin,et al.Preference evolution model based on Wechat-like interactions[J].Knowledge-Based Systems,2019,185(12):104998.

[17]Zhu Xi,F(xiàn)eng Jingshuo,Huang Shuai,et al.An online updating method for time-varying preference learning[J].Transportation Research Part C:Emerging Technologies,2020,121(12):102849.

[18]王彥本,蔡皖東,盧光躍,等.動(dòng)態(tài)自適應(yīng)網(wǎng)絡(luò)中有界信任輿論演化算法[J].西北工業(yè)大學(xué)學(xué)報(bào),2017,35(3):500-506. (Wang Yanben,Cai Wandong,Lu Guangyue,et al.Bounded confidence consensus evolution algorithm in dynamic adaptive network[J].Journal of Northwestern Polytechnical University,2017,35(3):500-506.)

[19]李根強(qiáng),羅艷艷,臧學(xué)蓮.基于有界信任模型的網(wǎng)絡(luò)社群輿情觀點(diǎn)演化研究[J].情報(bào)科學(xué),2017,35(6):63-68,144. (Li Genqiang,Luo Yanyan,Zang Xuelian.Research on the evolution of public opi-nion in network community based on bounded trust model[J].Information Science,2017,35(6):63-68,144.)

[20]朱曉霞,孟建芳.多層網(wǎng)絡(luò)中意見(jiàn)領(lǐng)袖及跟隨者觀點(diǎn)演化研究——基于有界信任模型[J].情報(bào)科學(xué),2019,37(6):30-36. (Zhu Xiaoxia,Meng Jianfang.The evolution of leaders and followers’opinion in multi-layer networks based on bounded confidence model[J].Information Science,2019,37(6):30-36.)

[21]邵鵬,胡平.復(fù)雜網(wǎng)絡(luò)特殊用戶(hù)對(duì)群體觀點(diǎn)演化的影響[J].電子科技大學(xué)學(xué)報(bào),2019,48(4):604-612. (Shao Peng,Hu Ping.The influence mechanism of special members on opinion evolution of group members in complex network[J].Journal of University of Electronic Science amp; Technology of China,2019,48(4):604-612.)

[22]趙海峰,孫艷秋,Edison T S E.基于有界信任模型的地鐵突發(fā)事件信息傳播[J].系統(tǒng)工程理論與實(shí)踐,2017,37(12):3245-3252. (Zhao Haifeng,Sun Yanqiu,Edison T S E.Information diffusion in metro emergency based on bounded confidence model[J].Systems Engineering-Theory amp; Practice,2017,37(12):3245-3252.)

[23]Deffuant G,Neau D,Amblard F,et al.Mixing beliefs among interacting agents[J].Advances in Complex Systems,2000,3:87-98.

[24]Hegselmann R,Krause U.Opinion dynamics and bounded confidence models,analysis,and simulation[J].Journal of Artificial Societies and Social Simulation,2002,5(3):1-2.

[25]Lorenz J.Continuous opinion dynamics under bounded confidence:a survey[J].International Journal of Modern Physics C,2007,18(12):1819-1838.

[26]Castellano C,F(xiàn)ortunato S,Loreto V.Statistical physics of social dynamics[J].Review of Modern Physics,2009,81(2):591-646.

[27]Stauffer D,Sousa A,Schulz C.Discretized opinion dynamics of the Deffuant model on scale-free networks[EB/OL].(2003-10-10).https://arxiv.org/abs/cond-mat/0310243v1.

[28]Carro A,Toral R,San M M.The role of noise and initial conditions in the asymptotic solution of a bounded confidence,continuous-opinion model[J].Journal of Statistical Physics,2013,151(1-2):131-149.

[29]Zhao Yiyi,Zhang Libin,Tang Mingfeng,et al.Bounded confidence opinion dynamics with opinion leaders and environmental noises[J].Computers amp; Operations Research,2016,74(10):205-213.

[30]Fortunato S.On the consensus threshold for the opinion dynamics of Krause-Hegselmann[J].International Journal of Modern Physics C,2005,16(2):259-270.

[31]Wedin E,Hegarty P.The Hegselmann-Krause dynamics for the continuous agent model and a regular opinion function do not always lead to consensus[J].IEEE Trans on Automatic Control,2015,60(9):2416-2421.

[32]Salzarulo L.A continuous opinion dynamics model based on the principle of meta-contrast[J].Journal of Artificial Societies and Social Simulation,2006,9(1):13.

[33]Parravano A,Andina-Díaz A,Meléndez-Jiménez M A.Bounded confidence under preferential flip:a coupled dynamics of structural balance and opinions[J].PLoS One,2016,11(10):e0164323.

[34]Zhao Yiyi,Kou Gang,Peng Yi,et al.Understanding influence power of opinion leaders in e-commerce networks:an opinion dynamics theory perspective[J].Information Science,2018,426(2):131-147.

[35]Li Yupeng,Liu Meng,Cao Jin,et al.Multi-attribute group decision-making considering opinion dynamics[J].Expert Systems with Applications,2021,184(12):115479.

[36]Chen Jia,kou Gang,Wang Haomin,et al.Influence identification of opinion leaders in social networks:an agent-based simulation on competing advertisements[J].Information Fusion,2021,76(12):227-242.

[37]Hou Jian,Li Wenshan,Jiang Mingyue.Opinion dynamics in modified expressed and private model with bounded confidence[J].Physica A:Statistical Mechanics and Its Applications,2021,574(7):125968.

[38]Douven I,Hegselmann R.Mis-and disinformation in a bounded confidence model[J].Artificial Intelligence,2021,291(2):103415.

[39]馬永軍,柴夢(mèng)瑤.基于改進(jìn)HK模型的社交網(wǎng)絡(luò)輿情演化[J].計(jì)算機(jī)應(yīng)用與軟件,2021,38(9):86-91. (Ma Yongjun,Chai Mengyao.Research on public opinion evolution of social network based on improved HK model[J].Computer Applications and Software,2021,38(9):86-91.)

[40]白艷紅.社交網(wǎng)絡(luò)中基于引力場(chǎng)的群體行為生成模型研究[D].上海:上海師范大學(xué),2021. (Bai Yanhong.Research on the generation model of group behavior based on gravitational field in social network[D].Shanghai:Shanghai Normal University,2021.)

[41]秦馳.基于精英用戶(hù)沉默的網(wǎng)絡(luò)意見(jiàn)扭曲模型研究[D].杭州:浙江工商大學(xué),2020. (Qin Chi.Research on network opinion distortion mode based on elite users silence[D].Hangzhou:Zhejiang Gongshang University,2020.)

主站蜘蛛池模板: 在线国产资源| 欧美日本视频在线观看| 国产欧美日韩专区发布| 一本大道香蕉中文日本不卡高清二区 | 中国精品久久| 熟女成人国产精品视频| 欧美五月婷婷| 亚洲成a人片7777| 丁香五月婷婷激情基地| 色偷偷一区| 99久久成人国产精品免费| 天堂网国产| 久久99久久无码毛片一区二区 | 欧美一区二区三区欧美日韩亚洲 | 欧美日一级片| 伊在人亞洲香蕉精品區| 又黄又湿又爽的视频| 亚洲一区毛片| 免费A级毛片无码免费视频| 久久99国产视频| 亚洲人成色在线观看| 日韩不卡高清视频| 亚洲妓女综合网995久久| 看国产毛片| 亚洲综合网在线观看| 精品国产乱码久久久久久一区二区| 亚洲美女高潮久久久久久久| 中国精品久久| 福利视频一区| 一级毛片不卡片免费观看| 国产成人AV综合久久| 九色免费视频| 国产精品对白刺激| 午夜高清国产拍精品| 扒开粉嫩的小缝隙喷白浆视频| 成人免费午夜视频| 国产精品一区二区在线播放| 四虎亚洲国产成人久久精品| 中文字幕亚洲无线码一区女同| 久久不卡精品| 欧美国产精品不卡在线观看| 亚洲精品日产AⅤ| 亚洲成人在线网| 在线观看无码a∨| 国产成年女人特黄特色大片免费| 国产一区二区三区免费观看| 国产三级视频网站| 美女毛片在线| 97青草最新免费精品视频| 国产不卡一级毛片视频| 久久香蕉国产线看观| 中文字幕中文字字幕码一二区| 亚洲欧美成人网| 在线观看无码av免费不卡网站| 欧美日在线观看| 午夜少妇精品视频小电影| 成人毛片在线播放| 日本国产精品| 日韩欧美综合在线制服| 91色在线观看| 久久黄色毛片| 一级毛片网| 婷五月综合| 韩日无码在线不卡| 国产白浆在线观看| 色综合天天综合| 国产区在线看| 久久精品电影| 日本欧美一二三区色视频| 婷婷中文在线| 欧美亚洲一二三区| 成人第一页| 国产传媒一区二区三区四区五区| 欧美全免费aaaaaa特黄在线| 午夜一级做a爰片久久毛片| 欧美乱妇高清无乱码免费| 国产高潮视频在线观看| 国产在线视频自拍| 精品小视频在线观看| 欧美高清三区| 成AV人片一区二区三区久久| aaa国产一级毛片|