





摘 要: 針對(duì)目前單通道心電信號(hào)識(shí)別精度不高、現(xiàn)存多元分解方法效果不佳、多元非線性心電信號(hào)分析復(fù)雜等問(wèn)題,提出了一種基于自適應(yīng)多元多尺度色散熵的心電信號(hào)分類方法。首先利用頻譜分析,創(chuàng)新性地引入了正弦輔助多元經(jīng)驗(yàn)?zāi)B(tài)分解方法,對(duì)心電信號(hào)進(jìn)行分解得到多元模態(tài)分量;然后結(jié)合多模態(tài)分解和色散熵的優(yōu)越性,通過(guò)累加多元本征模態(tài)分量代替粗粒化采樣,提出了自適應(yīng)多元多尺度色散熵的方法獲取特征熵值;最后將特征輸入到多個(gè)分類器上進(jìn)行分類,通過(guò)實(shí)驗(yàn)對(duì)比分析,在模擬信號(hào)和MIT-BIH數(shù)據(jù)上驗(yàn)證該方案的有效性。
關(guān)鍵詞: 心電信號(hào); 模態(tài)混疊; SA-MEMD; 熵; 信號(hào)分類
中圖分類號(hào): TN911.7"" 文獻(xiàn)標(biāo)志碼: A
文章編號(hào): 1001-3695(2022)05-037-1505-05
doi:10.19734/j.issn.1001-3695.2021.10.0450
Classification of ECG signal based on adaptive multivariate multiscale entropy
Zhang Langfei, Li Shinan, Liang Zhuguan, Ding Hongwei
(School of Information Science amp; Engineering, Yunnan University, Kunming 650500, China)
Abstract: In order to solve the problems of low accuracy of single channel electrocardiogram signal identification and the complexity of multivariate nonlinear electrocardiogram signal analysis by existing multivariate decomposition methods,
this paper proposed a classification method of ECG signals based on adaptive multiscale dispersion entropy.Firstly,it used spectrum analysis,innovatively introduced sinusoidal assisted multivariate empirical mode decomposition method to decompose ECG signals to obtain multivariate modal components.Then it combined the advantages of multi-mode decomposition and dispersion entropy,proposed an adaptive multi-scale dispersion entropy method to obtain the characteristic entropy value by adding multiple eigenmode components instead of coarse-grained sampling.Finally,the features were input to multiple classifiers for classification.The effectiveness of the proposed scheme is verified on analog signals and MIT-BIH data by experimental comparison and analysis.
Key words: electrocardiogram; mode mixing; SA-MEMD; entropy; classification
0 引言
心電信號(hào)(electrocardiogram,ECG)是一種用于記錄心臟生理活動(dòng)的信號(hào)[1],通常由P、QRS、T波構(gòu)成[2],具有低頻、微弱、非線性等特點(diǎn)。心電信號(hào)具有反映心律失常、室性早搏、心肌缺血和心肌梗死等心臟疾病的能力[3],對(duì)心電信號(hào)的處理研究對(duì)于疾病診療具有重要臨床意義。
近年來(lái),因時(shí)頻分解算法和熵算法在分析非線性信號(hào)方面的優(yōu)異性,從而在心電信號(hào)的處理中得到了廣泛的應(yīng)用[4]。王金海等人[5]將經(jīng)驗(yàn)?zāi)B(tài)分解(empirical mode decomposition,EMD)和近似熵(approximate entropy,ApEn)相結(jié)合,用于ECG分類獲得了良好的分類效果;王鳳等人[6]基于集合經(jīng)驗(yàn)?zāi)B(tài)分解(ensemble empirical mode decomposition,EEMD)和多尺度模糊熵(multiscale fuzzy entropy,MFE)對(duì)ECG進(jìn)行分類識(shí)別,平均識(shí)別率達(dá)到了98%。雖然EMD和EEMD避免了預(yù)設(shè)函數(shù),但在分解信號(hào)時(shí),存在模態(tài)混疊和偽分量等問(wèn)題,且只能處理一維信號(hào),無(wú)法體現(xiàn)多通道采集對(duì)于ECG研究的優(yōu)勢(shì)。
隨著多傳感器技術(shù)的發(fā)展,多元數(shù)據(jù)可以克服單元數(shù)據(jù)容易丟失、識(shí)別精度低、穩(wěn)定性差等問(wèn)題而受到研究者的關(guān)注[7]。張毅等人[8]將多變量經(jīng)驗(yàn)?zāi)B(tài)分解(multivariate empirical mode decomposition,MEMD)方法用于想象腦電信號(hào)特征分析,有效地解決了多元本征模態(tài)分量(multivariate intrinsic mode function,MIMF)個(gè)數(shù)、頻率不匹配的問(wèn)題。相較于EMD分類準(zhǔn)確率提升了10%左右。為解決MEMD的混疊和冗余分量問(wèn)題,韓笑等人[9]提出了噪聲輔助的多變量經(jīng)驗(yàn)?zāi)J椒纸猓╪oise-assisted multivariate empirical mode decomposition,NA-MEMD)和互信息結(jié)合的特征提取方法,提升了腦電信號(hào)的分類準(zhǔn)確率。利用MEMD的二元濾波器組特性、輔助信號(hào)的尺度對(duì)齊原理,Ge等人[10]提出了正弦輔助噪聲的多元經(jīng)驗(yàn)?zāi)B(tài)分解(sinusoidal signal assisted multivariate empirical mode decomposition,SA-MEMD)用于腦電信號(hào)的多元分解。吳利鋒等人[11]在此基礎(chǔ)上提出了改進(jìn)的正弦輔助多元經(jīng)驗(yàn)?zāi)J椒纸猓╥mproved sinusoidal assisted multivariate empirical mode decomposition,ISA-MEMD),減輕了傳統(tǒng)多元分解模式混合的現(xiàn)象。
熵作為量化時(shí)間序列復(fù)雜性和不規(guī)則程度的有效特征,如多尺度樣本熵(multiscale sample entropy,MSE)[12]、多尺度色散熵(multiscale dispersion entropy,MDE)[13]等,在一元信號(hào)處理領(lǐng)域得到了廣泛的應(yīng)用。基于多維嵌入重構(gòu)理論,MSE和MFE被進(jìn)一步擴(kuò)展,提出了多元多尺度樣本熵(multivariate multiscale sample entropy,MMSE)和多元多尺度模糊熵(multivariate multiscale fuzzy entropy,MMFE)[14],既關(guān)注了信號(hào)的復(fù)雜性,又考慮了多通道間的相互預(yù)測(cè)性[8]。石鵬等人[15]基于MEMD的MMSE特征提取方法分析多模態(tài)信號(hào),進(jìn)行人體靜態(tài)平衡能力評(píng)估,準(zhǔn)確率提升了10%左右。李春艷等人[16]提出了基于MEMD-MMFE的勵(lì)磁涌流識(shí)別方法,很好地解決了差動(dòng)保護(hù)誤制動(dòng)的問(wèn)題,且與MEMD-MMSE相比誤制動(dòng)次數(shù)有效減少。而后,Azami等人[17]又提出了多元多尺度色散熵(multivariate multiscale dispersion entropy,MMDE)的算法,并通過(guò)實(shí)驗(yàn)論證了MMDE較于MMSE和MMFE在計(jì)算效率和穩(wěn)定性上的優(yōu)越性。然而,傳統(tǒng)的多尺度粗粒化方式存在著明顯缺陷,即隨著尺度因子增加,粗粒化時(shí)間序列逐漸變短,導(dǎo)致熵值不穩(wěn)定[18]。Hu等人[19]通過(guò)連續(xù)去除低頻或高頻MIMF,提出了MEMD的自適應(yīng)尺度熵來(lái)計(jì)算特征,特征識(shí)別度相較于MMSE有所提升,但分解效率低。
綜上所述,心電信號(hào)分析領(lǐng)域依然存在以下問(wèn)題:a)單元數(shù)據(jù)易丟失、穩(wěn)定性差;b)多元數(shù)據(jù)分解效果不理想;c)粗粒化尺度依賴經(jīng)驗(yàn)手工調(diào)參,不具自適應(yīng)性以及尺度增加熵值不穩(wěn)定,分類準(zhǔn)確率低。為此,本文提出了基于SA-MEMD算法和自適應(yīng)多元多尺度色散熵(adaptive multivariate multiscale dispersion entropy,AMMDE)的心電信號(hào)分類方法,以求取得更優(yōu)的分解效果,避免復(fù)雜的手工調(diào)參,熵值不穩(wěn)定等問(wèn)題。
3.2 數(shù)據(jù)集驗(yàn)證
目前國(guó)際上應(yīng)用最多的數(shù)據(jù)庫(kù)MIT-BIH心電數(shù)據(jù)庫(kù),本文選用該數(shù)據(jù)庫(kù)以評(píng)測(cè)SA-MEMD和自適應(yīng)多元多尺度色散熵分類算法的性能。心律失常數(shù)據(jù)庫(kù)記錄了48個(gè)30 min時(shí)限的雙導(dǎo)聯(lián)(MLII導(dǎo)聯(lián)和胸導(dǎo)聯(lián)V5)心電信號(hào),其中信號(hào)采樣頻率為360 Hz,心拍持續(xù)周期為0.6~0.8 s,因此推斷出一個(gè)心拍的采樣點(diǎn)數(shù)在221~283[20]。本文以醫(yī)師標(biāo)記和QRS波位置為基準(zhǔn),向前向后分別截取90個(gè)和165個(gè),即256個(gè)樣本點(diǎn)組成一個(gè)心拍樣本,取正常(N)、左束支傳導(dǎo)阻滯(LBBB)、右束支傳導(dǎo)阻滯(RBBB)三類心拍信號(hào)各600(共1 800)個(gè)樣本進(jìn)行分類驗(yàn)證,如表1所示。
3.2.1 數(shù)據(jù)集的IMF分解
圖4為處理后的數(shù)據(jù)集在三種分解算法下的分解示意圖(篇幅限制,僅展示部分)。第一行為信號(hào)原始波形,圖4(a)(d)為MILL、V5通道經(jīng)MEMD分解所得模態(tài)圖,共產(chǎn)生七個(gè)模態(tài)分量,如標(biāo)記所示,兩通道的IMF1、IMF2和IMF3均存在嚴(yán)重的混疊;經(jīng)NA-MEMD分解的模態(tài)圖如圖4(b)(e)所示,共產(chǎn)生八個(gè)分量,其中IMF2和IMF3中仍存在不同程度混疊;兩通道信號(hào)通過(guò)SA-MEMD分解模態(tài)圖如圖4(c)(f)所示,基本不存在偽分量和混疊分量,各模態(tài)均是最優(yōu)分解。
為進(jìn)一步量化SA-MEMD對(duì)于心電信號(hào)分解的有效性,對(duì)兩通道進(jìn)行相關(guān)性分析,相關(guān)性越大,說(shuō)明分解越有效。依據(jù)經(jīng)驗(yàn),本文預(yù)設(shè)閾值為0.3,閾值大于0.3的被視為相關(guān)分量,閾值小于0.3則被視為無(wú)關(guān)分量。如表2所示,MEMD的重要分量主要集中在少數(shù)模態(tài)中,多數(shù)分量低于0.3,為無(wú)關(guān)分量。同理,NA-MEMD對(duì)比前者獲得了提升,而SA-MEMD則能取得最優(yōu)分解效果。
3.2.2 心電信號(hào)的識(shí)別分類
經(jīng)多元分解得到的IMF分量是頻率調(diào)制信號(hào),如圖4分解結(jié)果所示,每個(gè)IMF均能反映出原信號(hào)的不同波形特性,在不同頻帶上表征同一信號(hào)的不同特征,此外,多元色散熵在量化不同頻帶的復(fù)雜度上具有優(yōu)異的穩(wěn)定性,且能在不斷累加中放大區(qū)分度。由于左束支遲滯和右束支遲滯會(huì)使心肌激動(dòng)延遲和異常,使得以R波為基準(zhǔn)向前向后取得的波形幅度、間隔寬度、斜率等與正常信號(hào)均不相同,由此分解得到的不同頻帶的IMF必然具有較大的信號(hào)特征差異,所以,結(jié)合SA-MEMD分解算法和自適應(yīng)多元多尺度色散熵的優(yōu)勢(shì)對(duì)不同心電信號(hào)進(jìn)行分類識(shí)別變得切實(shí)可行。
本文按照相同原理提出自適應(yīng)多元多尺度樣本熵(adaptive multivariate multiscale sample entropy,AMMSE)和自適應(yīng)多元多尺度模糊熵(adaptive multivariate multiscale fuzzy entropy,AMMFE),與AMMDE進(jìn)行對(duì)比實(shí)驗(yàn)。因深度學(xué)習(xí)需要龐大的數(shù)據(jù)樣本進(jìn)行訓(xùn)練,本文選用傳統(tǒng)分類器隨機(jī)森林(random)、K近鄰(KNN)和支持向量機(jī)(SVM)進(jìn)行識(shí)別分類。
不同熵算法下,三種分解方法獲得的分類準(zhǔn)確率柱狀圖如圖5所示。在同一種熵值算法中,SA-MEMD在不同的分類器上始終可以獲得最高的準(zhǔn)確率,其原因是SA-MEMD算法有著最優(yōu)的分解性能,模態(tài)得到有效分離,累加之后得到的熵值區(qū)分度高于前兩者,識(shí)別精度達(dá)到最大,從而表明了分解算法的高效性。
縱向來(lái)看,對(duì)于同一種分解算法,在同種分類器上,所提出的AMMDE始終能獲得最高準(zhǔn)確率,其原因是AMMDE在算法的穩(wěn)定性和數(shù)據(jù)長(zhǎng)度敏感度上均優(yōu)于AMMSE和AMMFE,而AMMFE對(duì)數(shù)據(jù)的穩(wěn)定性和敏感度又優(yōu)于AMMSE,最終導(dǎo)致分類精度為AMMDEgt;AMMFEgt;AMMSE,從而驗(yàn)證了所提自適應(yīng)熵的有效性。綜合全局,受分解性能、熵算法敏感性和穩(wěn)定性等因素影響,AMMSE+MEMD獲得的分類準(zhǔn)確率最低,而AMMDE+SA-MEMD的聯(lián)合算法獲得的準(zhǔn)確率最高。
4 結(jié)束語(yǔ)
首先,本文首次引入SA-MEMD算法以提升心電信號(hào)的分解效果;然后將自適應(yīng)分解得到的一系列模態(tài)分量累加,以代替粗粒化尺度因子,提出了自適應(yīng)多元多尺度色散熵的特征計(jì)算方法;最后,將熵值作為特征輸入到分類器中進(jìn)行分類。在模擬信號(hào)和MIT-BIH數(shù)據(jù)集上分別對(duì)本文方法進(jìn)行了驗(yàn)證,實(shí)驗(yàn)結(jié)果表明,相較于MEMD、NA-MEMD,SA-MEMD分解所得的模態(tài)分量少、相關(guān)度高、能有效抑制混疊和偽分量的產(chǎn)生,得到最優(yōu)分解效果。通過(guò)累加,創(chuàng)新性地提出了自適應(yīng)多元熵算法,避免了粗粒化采樣手工設(shè)參、尺度增大導(dǎo)致熵值不穩(wěn)定等問(wèn)題。同AMMSE、AMMFE相比,所提的AMMDE在各個(gè)分類器上均能一直取得最優(yōu)分類準(zhǔn)確率。
參考文獻(xiàn):
[1]牛曉東,盧莉蓉,王鑒,等.基于改進(jìn)經(jīng)驗(yàn)?zāi)B(tài)分解域內(nèi)心動(dòng)物理特征識(shí)別模式分量的心電信號(hào)重建[J].物理學(xué)報(bào),2021,70(3):311-319. (Niu Xiaodong,Lu Lirong,Wang Jian,et al.Reconstruction of ECG signals based on pattern components of inner animal feature recognition in improved EMD domain[J].Acta Physica Sinica,2021,70(3):311-319.)
[2]張培玲,李小真,崔帥華.基于改進(jìn)小波閾值-CEEMDAN算法的ECG信號(hào)去噪研究[J].計(jì)算機(jī)工程與科學(xué),2020,42(11):2067-2072. (Zhang Peiling,Li Xiaozhen,Cui Shuaihua.ECG signal denoising based on improved wavelet thresholding and CEEMDAN algorithm[J].Computer Engineering amp; Science,2020,42(11):2067-2072.)
[3]彭良廣,龐宇,王元發(fā),等.多導(dǎo)聯(lián)心電信號(hào)特征檢測(cè)系統(tǒng)的設(shè)計(jì)[J].計(jì)算機(jī)工程與設(shè)計(jì),2020,41(3):896-901. (Peng Liangguang,Pang Yu,Wang Yuanfa,et al.Design of feature detection system of multi-lead ECG signal[J].Computer Engineering and Design,2020,41(3):896-901.)
[4]劉萌萌,王敏,熊慧,等.基于EMD方法的心電信號(hào)帶內(nèi)噪聲濾除[J].天津工業(yè)大學(xué)學(xué)報(bào),2014,33(4):62-65,69. (Liu Mengmeng,Wang Min,Xiong Hui,et al.Intra band noise filtering of ECG signal based on EMD method[J].Journal of Tiangong University,2014,33(4):62-65,69.)
[5]王金海,史夢(mèng)穎,張興華.基于EMD和ApEn特征提取的心律失常分類研究[J].儀器儀表學(xué)報(bào),2016,37(S1):168-173. (Wang Jinhai,Shi Mengying,Zhang Xinghua.Classification of arrhythmia based on EMD and ApEn feature extraction[J].Chinese Journal of Scientific Instrument,2016,37(S1):168-173.)
[6]王鳳,潘廣貞,孫艷青.基于EEMD多尺度模糊熵的心電分類算法[J].傳感器與微系統(tǒng),2018,37(12):125-127,135. (Wang Feng,Pan Guangzhen,Sun Yanqing.ECG classification algorithm based on EEMD multiscale fuzzy entropy[J].Transducer and Microsystem Technologies,2018,37(12):125-127,135.)
[7]李鵬,劉澄玉,李麗萍,等.多尺度多變量模糊熵分析[J].物理學(xué)報(bào),2013,62(12):130-138. (Li Peng,Liu Chengyu,Li Liping,et al.Multiscale and multivariable fuzzy entropy analysis[J].Acta Physica Sinica,2013,62(12):130-138.)
[8]張毅,周春雨,羅元.基于MEMD的運(yùn)動(dòng)想象腦電信號(hào)的特征提取與分析[J].重慶郵電大學(xué)學(xué)報(bào):自然科學(xué)版,2015,27(3):386-391. (Zhang Yi,Zhou Chunyu,Luo Yuan.Feature extraction and analysis of motor imagery EEG based on MEMD[J].Journal of Chongqing University of Posts and Telecommunications:Natural Science,2015,27(3):386-391.)
[9]韓笑,佘青山,高云園,等.基于NA-MEMD和互信息的腦電特征提取方法[J].傳感技術(shù)學(xué)報(bào),2016,29(8):1140-1148. (Han Xiao,She Qingshan,Gao Yunyuan,et al.EEG feature extraction based on NA-MEMD and mutual information[J].Chinese Journal of Sensors and Actuators,2016,29(8):1140-1148.)
[10]Ge Sheng,Shi Yanhua,Wang Ruimin,et al.Sinusoidal signal assisted multivariate empirical mode decomposition for brain-computer interfaces[J].IEEE Journal of Biomedical and Health Informatics,2017,22(5):1373-1384.
[11]吳利鋒,呂勇,袁銳,等.改進(jìn)的正弦輔助多元經(jīng)驗(yàn)?zāi)J椒纸饧捌湓跐L動(dòng)軸承故障診斷中的應(yīng)用[J/OL].中國(guó)機(jī)械工程.[2021-12-10].http://kns.cnki.net/kcms/detail/42.1294.th.20210917.2205.006.html. (Wu Lifeng,Lyu Yong,Yuan Rui,et al.Improved sinusoidal assisted multivariate empirical mode decomposition and its application to rolling bearing fault diagnosis[J/OL].China Mecha-nical Engineering.[2021-12-10].http://kns.cnki.net/kcms/detail/42.1294.th.20210917.2205.006.html.)
[12]Nikulin V V,Brismar T.Comment on multiscale entropy analysis of complex physiologic time series[J].Physical Review Letters,2004,92(8):705-708.
[13]Azami H,Kinney-Lang E,Ebied A,et al.Multiscale dispersion entropy for the regional analysis of resting-state magnetoencephalogram complexity in Alzheimer’s disease[C]//Proc of the 39th Annual International Conference of IEEE Engineering in Medicine and Biology Society.Piscataway,NJ:IEEE Press,2017:3182-3185.
[14]Costa M,Goldberger A L,Peng C K.Multiscale entropy analysis(MSE)[EB/OL].(2005-06-24).https://archive.physionet.org/physiotools/mse/tutorial/tutorial.pdf.
[15]石鵬,張啟忠,張華平,等.基于多元經(jīng)驗(yàn)?zāi)B(tài)分解的多元多尺度熵靜態(tài)平衡能力評(píng)估[J].電子學(xué)報(bào),2020,48(4):670-674. (Shi Peng,Zhang Qizhong,Zhang Huaping,et al.Evaluation of multivariate multiscale entropy static equilibrium capability based on multivariate empirical mode decomposition[J].Acta Electronica Sinica,2020,48(4):670-674.)
[16]李春艷,周念成,廖建權(quán),等.基于MEMD-MMFE的雙饋風(fēng)電場(chǎng)送出變壓器勵(lì)磁涌流識(shí)別方法[J].中國(guó)電機(jī)工程學(xué)報(bào),2019,39(17):5061-5073,5287. (Li Chunyan,Zhou Niancheng,Liao Jianquan,et al.Identification method of inrush current of output transfor-mer in double-fed wind farm based on MEMD-MMFE[J].Procee-dings of the CSEE,2019,39(17):5061-5073,5287.)
[17]Azami H,F(xiàn)ernandez A,Escudero J.Multivariate multiscale dispersion entropy of biomedical times series[EB/OL].(2017-04-12).https://arxiv.org/abs/1704.03947.
[18]周付明,申金星,楊小強(qiáng),等.基于改進(jìn)多元多尺度色散熵的齒輪箱多通道振動(dòng)信號(hào)故障診斷[J].機(jī)械傳動(dòng),2021,45(4):112-122. (Zhou Fuming,Shen Jinxing,Yang Xiaoqiang,et al.Fault diagnosis of gearbox multichannel vibration signals based on improved multivariate multi-scale dispersion entropy[J].Journal of Mechanical Transmission,201,45(4):112-122.)
[19]Hu Meng,Liang Hualou.Adaptive multiscale entropy analysis of multivariate neural data[J].IEEE Trans on Biomedical Engineering,2012,59(1):12-15.
[20]孫夢(mèng)莉.基于深度遷移學(xué)習(xí)的心電信號(hào)分類算法研究[D].大連:大連海事大學(xué),2020. (Sun Mengli.Research on ECG signal classification algorithm based on deep transfer learning[D].Dalian:Dalian Maritime University,2020.)