999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

Boundary effects on the sojourn time of two-dimensional inverted inverse quadratic oscillator in a wedge

2022-01-14 07:23:42LeJiayiCHENYinPANXiaoyin
寧波大學學報(理工版) 2022年1期
關鍵詞:浙江

Le Jiayi, CHEN Yin, PAN Xiaoyin

Boundary effects on the sojourn time of two-dimensional inverted inverse quadratic oscillator in a wedge

Le Jiayi, CHEN Yin, PAN Xiaoyin*

( School of physical science and technology, Ningbo University, Ningbo 315211, China )

boundary effect; sojourn time; path-integral; wedge

1 Introduction

Boundary conditions play important roles in almost all areas of classical and quantum physics, including classical electrodynamics[1], quantum field theory[2]and its applications on condensed matter (such as quantum Hall effect[3-6], quantum dots and wires[7-11], graphene[12-14], etc), and fundamental physics like quantum gravity[15]and cosmology[16], as well as in quantum mechanics (QM)[17]. It is well known that the original approach to QM due to Heisenberg and Schr?dinger is based on the Hamiltonian formalism, while the Feynman’s path integral method[18-20]is a Lagrangian approach. However, Feynman’s approach becomes more intricate than the Hamiltonian operator approach and requires a sophisticated implementation for systems constrained to bounded domains[21].

The wedge problem, namely the propagation of radiation or particles in the presence of a wedge, as a typical example that shows the significance of boundary condition both in classical and quantum physics has a long history. The earlier work could date back to Sommerfeld’s[22]calculation of diffraction of light by a wedge in 1896. Later, Pauli also studied the wedge problem[23]in the context of diffraction of light.

The quantum version of the wedge problem has been attacked by several groups using path integral techniques independently. Crandall[24]and DeWitt- Morette[25]calculated the propagator for a free particle interacting with a rational wedge. Schulman[26]and Wiegel et al[27]obtain, respectively, the exact propagator of a free particle interacting with a harmonic oscillator, both interacting with an infinite half-plane barrier. Later Cheng[28]generalized their results to the case in the additional presence of a harmonic oscillator potential, the case when the wedge is irrational[29], and further to the case of a two-dimensional inverse quadratic oscillator interacting with a wedge[30].

On the other hand, the calculation of sojourn time which measures the limited time for a particle to sojourn near an unstable equilibrium, is a fundamental problem in quantum mechanics[31-36]. The problem is often idealized drastically and reduces to the behavior of a particle in an inverted harmonic oscillator potential which is exactly solvable and has wide applications in many areas such as evolution of cosmology[37], reactive scattering[38], masers[39], and can serve as a test ground for various approximation methods[40]. Especially, the AB effect on the sojourn time of an inverted two-dimensional (2D) harmonic oscillator under a perpendicular uniform magnetic field has been studied recently[41], and the quantum effect of the integer part of the flux quantum number is manifested for the first time.

2 The model and evolution of the Gaussian wave packet

where is the strength of the inverse square potential, . Thus, the particle moves only in the x-y plane with an infinite barrier at angle and , i.e. the wave function must vanish at and . This boundary condition is obviously different from the case in the absence of the wedge, which has a periodic boundary condition . As we shall see below, the change of boundary condition will change the sojourn time dramatically.

Employ the following identity[43],

3 Calculation of the sojourn time and numerical results

From the wave function of Eq. (9) we can obtain the corresponding density,

which describes the descent from equilibrium in detail. Substitution of Eq. (12) into Eq. (13) and performing the angle integral yields

For comparison, we also give the result for the case when the wedge is absent. In this case

and

and

Adopting the definition as that in Ref. [31], we have the expression for the sojourn time,

Unfortunately, the integral in Eq. (19) cannot be performed analytically, in order to investigate the effects of the wedge, we have to resort to numerical calculations.

where N is a large integer number. The results for (which is essentially the same as since the difference between the two cases is too small to detect) are presented in Fig. 2. From the graph, it is clear that the sojourn time monotonically increases as the external angle increases as expected. Of particular interest is the case when as shown in Fig. 3. In this case the wedge becomes a singular line and does not occupy any area. It appears that the sojourn time in this case should not differ much from the case without a wedge. However, from the results presented in Fig. 2, it is evident that the sojourn time T has a big jump at (for instance, at , the value of T jumps from 0.3091 to 1.2994, while the value of T jumps from 0.0970 to 0.1500 for , see more in Table 1), implying that there is a huge difference between the case when the wedge becomes a singular line and the one without a wedge. In other words, a singular line which does not occupy any area in 2D space, but counter- intuitively can reduce the sojourn time dramatically to about or more than 30 percentage less. Namely, the time for the particle to stay in the circle with radius is reduced to less than 70 percentage of the original value when the circle is cut by a singular line. Particularly, the sojourn time is reduced to about 24 percentage of the value of in the case when . This surprising huge amount of difference indicates that the boundary indeed plays an important role in this problem.

Fig. 3 The wedge in the limit of

Table 1 The values of the sojourn T (R=1) at and for different values ofg

Fig. 4 Sojourn time as a function of g at in the absence of the wedge ()

4 Discussions and concluding remarks

Fig. 5 The plot of function for ,

Fig. 6 The plot of function for ,

Fig. 7 The plot of function for ,

[1] Jackson J D. Classical Electrodynamics[M]. 3rd ed. Zurich: Wiley-VCH, 1998:832.

[2] Glimm J, Jaffe A. Quantum Physics—A Functional Integral Point of View[M]. Berlin: Springer-Verlag, 1987.

[3] Klitzing K V, Dorda G, Pepper M. New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance[J]. Physical Review Letters, 1980, 45(6):494-497.

[4] MacDonald A H. Quantum Hall Effect: A Perspective[M]. Dordrecht: Springer Netherlands, 1989.

[5] Chakraborty T, Pietil?inen P. The Fractional Quantum Hall Effect[M]. Heidelberg: Springer-Verlag, 1988.

[6] Prange R E, Girvin S M. The Quantum Hall Effect[M]. New York: Springer, 1990.

[7] Chakraborty T. Quantum Dots[M]. Amsterdam: Elsevier, 1999.

[8] Jacak L, Harylak P, Wojs A. Quantum Dots[M]. Heidelberg: Springer-Verlag, 2013.

[9] Reimann S M, Manninen M. Electronic structure of quantum dots[J]. Reviews of Modern Physics, 2002, 74(4):1283-1342.

[10] Hanson R, Kouwenhoven L P, Petta J R, et al. Spins in few-electron quantum dots[J]. Reviews of Modern Physics, 2007, 79(4):1217-1265.

[11] Harrison P, Valavanis A. Quantum Wells, Wires and Dots: Theoretical and Computational Physics of Semiconductor Nanostructures[M]. 4th ed. Hoboben, NJ: John Wiley & Sons, 2016:505-542.

[12] Novoselov K S, McCann E, Morozov S V, et al. Unconventional quantum Hall effect and Berry’s phase of 2π in bilayer graphene[J]. Nature Physics, 2006, 2(3): 177-180.

[13] Castro Neto A H, Guinea F, Peres N M R, et al. The electronic properties of graphene[J]. Reviews of Modern Physics, 2009, 81(1):109-162.

[14] Kotov V N, Uchoa B, Pereira V M, et al. Electron- electron interactions in graphene: Current status and perspectives[J]. Reviews of Modern Physics, 2012, 84(3): 1067-1125.

[15] Birrell N D, Davies P C W. Quantum Fields in Curved Space[M]. Cambridge: Cambridge University Press, 1984.

[16] Preskill J. Cosmic strings and other topological defects[J]. Science, 1996, 272(5264):966-971.

[17] Grosche C.-Function perturbations and boundary problems by path integration[J]. Annalen der Physik, 1993, 505(6):557-589.

[18] Müller-Kirsten H J W. Introduction to Quantum Mechanics: Schr?dinger Equation and Path Integral[M]. Singapore: World Scientific Publishing, 2006.

[19] Feynman R P, Hibbs A R. Quantum Mechanics and Path Integrals[M]. New York: McGraw-Hill, 1965.

[20] Feynman R P. Space-time approach to non-relativistic quantum mechanics[J]. Reviews of Modern Physics, 1948, 20(2):367-387.

[21] Asorey M, Clemente-Gallardo J, Mu?oz-Casta?eda J M. Boundary conditions: The path integral approach[J]. Journal of Physics: Conference Series, 2007, 87:012004.

[22] von Sommerfeld A. über verzweigte potentiale im raum [J]. Proceedings of the London Mathematical Society, 1896, 28(1):395-429.

[23] Pauli W. On asymptotic series for functions in the theory of diffraction of light[J]. Physical Review, 1938, 54(11): 924-931.

[24] Crandall R E. Combinatorial approach to Feynman path integration[J]. Journal of Physics A: General Physics, 1993, 26(14):3627-3648.

[25] DeWitt-Morette C. Feynman path integrals: I. Linear and affine techniques; II. The Feynman-Green function[J]. Communications in Mathematical Physics, 1974, 37(1): 63-81.

[26] Schulman L S. Exact time-dependent Green’s function for the half-plane barrier[J]. Physical Review Letters, 1982, 49(9):599-601.

[27] Wiegel F W, Michels J J. Dynamics of unwinding of a simple entanglement[J]. Journal of Physics A: General Physics, 1987, 20(14):4653-4659.

[28] Cheng B K. The two-dimensional harmonic oscillator interacting with a wedge[J]. Journal of Physics A: General Physics, 1990, 23(24):5807-5814.

[29] Inomata A. Remarks on the Time Transformation Technique for Path Integration[M]//Gutzwiller M C, Inomata A, Klauder J R, et al. Path Integrals from meV to MeV. Singapore: World Scientific Publishing, 1986:433-448.

[30] Cheng B K, Luz M E. Exact propagator for a two- dimensional inverse quadratic oscillator interacting with a wedge[J]. Journal of Physics A: General Physics, 1992, 25(7):2033-2042.

[31] Barton G. Quantum mechanics of the inverted oscillator potential[J]. Annals of Physics, 1986, 166(2):322-363.

[32] Baskoutas S, Jannussis A, Mignani R. Study of the generalized parametric oscillator[J]. Physics Letters A, 1992, 164(1):17-22.

[33] Baskoutas S, Jannussis A, Mignani R. Quantum tunnelling of a damped and driven, inverted harmonic oscillator[J]. Journal of Physics A: General Physics, 1993, 26(23):7137-7147.

[34] Guo G J, Ren Z Z, Ju G X, et al. Quantum tunneling effect of a time-dependent inverted harmonic oscillator[J]. Journal of Physics A: Mathematical and Theoretical, 2011, 44(18):185301.

[35] Guo G J, Ren Z Z, Ju G X, et al. Quantum tunneling effect of a driven inverted harmonic oscillator[J]. Journal of Physics A: Mathematical and Theoretical, 2011, 44(30): 305301.

[36] Guo G J, Ren Z Z, Ju G X, et al. The sojourn time of the inverted harmonic oscillator on the noncommutative plane[J]. Journal of Physics A: Mathematical and Theoretical, 2011, 44(4):425301.

[37] Felder G, Frolov A, Kofman L, et al. Cosmology with negative potentials[J]. Physical Review D, 2002, 66(2): 023507.

[38] AbuSalbi N, Kouri D J, Shima Y, et al. Quantum mechanical study of the D+H2→HD+H reaction[J]. The Journal of Chemical Physics, 1985, 82(6):2650-2661.

[39] Fahyan S E. Laser physics[D]. Malang, Indonesia: Universitas Negeri Malang, 1993.

[40] Bender C M, Cooper F, Milton K A, et al. Discrete-time quantum mechanics. III. Spin systems[J]. Physical Review D, 1987, 35(10):3081-3091.

[41] Wang Y J, Guo W, Pan X Y, et al. The Aharonov-Bohm effect on the sojourn time of the two-dimensional inverted harmonic oscillator under a perpendicular magnetic field[J]. Europhysics Letters, 2019, 124(6):60007.

[42] Bogachek E N, Landman U. Edge states, Aharonov- Bohm oscillations, and thermodynamic and spectral properties in a two-dimensional electron gas with an antidot[J]. Physical Review B, 1995, 52(19):14067-14077.

[43] Gradshteyn I S, Ryzhik I M, Jeffrey A, et al. Table of integrals, series, and products[J]. Journal of Biomechanical Engineering, 1981, 103(1):58.

[44] Wang Z, Guo D. An Introduction to Special Function[M]. Beijing: Peking University Press, 2000. (in Chinese)

邊界對二維反諧振子在平方反比勢和楔子中逗留時間的影響

樂家怡, 陳 寅, 潘孝胤*

(寧波大學 物理科學與技術學院, 浙江 寧波 315211)

邊界效應; 逗留時間; 路徑積分; 楔子

2021?10?08.

寧波大學學報(理工版)網址: http://journallg.nbu.edu.cn/

國家自然科學基金(11375090).

樂家怡(1996-), 女, 浙江慈溪人, 在讀碩士研究生, 主要研究方向: 量子力學. E-mail: 592981258@qq.com

潘孝胤(1974-), 男, 浙江寧海人, 研究員, 主要研究方向: 凝聚態理論. E-mail: panxiaoyin@nbu.edu.cn

O413.1

A

1001-5132(2022)01-0105-07

(責任編輯 韓 超)

猜你喜歡
浙江
Mother
掃一掃閱覽浙江“助企八條”
浙江嘉興卷
學生天地(2019年30期)2019-08-25 08:53:22
Dave Granlund's Cartoons
“雙下沉、兩提升”浙江醫改提升群眾獲得感
浙江“最多跑一次”倒逼“放管服”
幽默臺歷
喜劇世界(2017年5期)2017-03-29 01:52:25
浙江“雙下沉、兩提升”之路
中國衛生(2016年7期)2016-11-13 01:06:44
浙江老年報:養安享杭州又增新點
杭州(2015年9期)2015-12-21 02:51:52
浙江醫改三部曲
中國衛生(2014年10期)2014-11-12 13:10:10
主站蜘蛛池模板: 激情六月丁香婷婷四房播| 天天色综网| 久久这里只有精品23| 尤物成AV人片在线观看| 亚洲IV视频免费在线光看| 免费不卡视频| 国产精品真实对白精彩久久| 欧美一区二区三区国产精品| 国产福利在线免费| 看看一级毛片| 蜜桃视频一区| 午夜国产理论| 国内精品久久人妻无码大片高| 国产青榴视频| 中文字幕精品一区二区三区视频| 国产日韩av在线播放| 国产午夜人做人免费视频中文| 亚洲精品人成网线在线| 2019年国产精品自拍不卡| 成人午夜久久| 伊人成人在线| 67194在线午夜亚洲 | 久久久久亚洲AV成人网站软件| 最新加勒比隔壁人妻| 九九香蕉视频| 97国产在线播放| 亚洲一区二区成人| 亚洲国产日韩视频观看| 9啪在线视频| 一级毛片网| 国产精品30p| 成人福利视频网| 久久综合婷婷| 免费国产小视频在线观看| 色噜噜狠狠色综合网图区| 激情爆乳一区二区| 波多野结衣无码视频在线观看| 精品国产毛片| 国产va在线观看| 久久窝窝国产精品午夜看片| 亚洲成人精品久久| 亚洲欧美综合另类图片小说区| 久久一日本道色综合久久| 国产电话自拍伊人| 欧美国产日韩一区二区三区精品影视| 国产凹凸视频在线观看| 91精品网站| 精品久久久无码专区中文字幕| 久久综合伊人77777| 成人在线综合| 欧美人与性动交a欧美精品| 欧美日本在线一区二区三区| 精品剧情v国产在线观看| 高h视频在线| 曰韩免费无码AV一区二区| 青青青国产视频| 亚洲AV无码一区二区三区牲色| 亚洲二区视频| 99精品欧美一区| 97超级碰碰碰碰精品| 最新日韩AV网址在线观看| 成人福利在线视频免费观看| 美女黄网十八禁免费看| 99久久精彩视频| 又爽又大又黄a级毛片在线视频| 一级毛片免费观看久| 国产裸舞福利在线视频合集| 91无码视频在线观看| 久热中文字幕在线观看| 亚洲区视频在线观看| 在线综合亚洲欧美网站| 欧美成人在线免费| 欧美日本在线观看| 国产情精品嫩草影院88av| 久久精品只有这里有| 免费久久一级欧美特大黄| 高清久久精品亚洲日韩Av| 亚洲成AV人手机在线观看网站| 日本妇乱子伦视频| 国产一区二区三区视频| 伊人AV天堂| 亚洲区一区|