999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

厚基巖采場弱膠結(jié)巖層動力潰砂機制研究現(xiàn)狀與展望

2022-02-25 08:34:56董書寧柳昭星
煤炭學(xué)報 2022年1期

董書寧,柳昭星,3,王 皓

(1.中煤科工集團(tuán)西安研究院有限公司,陜西 西安 710054;2.陜西省煤礦水害防治技術(shù)重點實驗室,陜西 西安 710077;3.西安科技大學(xué) 地質(zhì)與環(huán)境學(xué)院,陜西 西安 710054)

我國西部礦區(qū)由于煤炭資源儲量豐富,現(xiàn)已成為國家煤炭資源的主要產(chǎn)地。而西部礦區(qū)主要富煤區(qū)的成煤時代以相對較晚的早—中侏羅世為主,致使煤系地層中侏羅系砂泥巖地層通常膠結(jié)程度不足,具有強度低、易崩解等典型力學(xué)特性。因此,西部礦區(qū)弱膠結(jié)巖層一直是煤炭企業(yè)工程技術(shù)人員和科研工作者關(guān)心的熱點和應(yīng)對的難點。在國家規(guī)劃的14個大型煤炭基地中,黃隴、寧東煤炭基地多個煤礦出現(xiàn)采場頂板潰水潰砂與強礦壓顯現(xiàn)并發(fā)災(zāi)害。該類型災(zāi)害嚴(yán)重制約了煤炭資源的高效安全開發(fā)。而這種數(shù)百米至千米埋深采場的潰砂災(zāi)害,既不同于淺埋、近松散層采掘工作面出現(xiàn)的潰砂災(zāi)害,也不同于礦井頂板涌水災(zāi)害,其破壞力極強,是我國西部礦區(qū)一種新型的厚基巖采場頂板弱膠結(jié)巖層動力潰砂災(zāi)害。

目前,對于厚基巖采場下弱膠結(jié)頂板潰砂災(zāi)害的研究相對較少,已有的研究僅參考以往淺埋、近松散層采場潰砂災(zāi)害或頂板離層水害相關(guān)研究內(nèi)容和思路,缺少關(guān)于礦山壓力作用的分析和探討;筆者曾就黃隴煤田某煤礦采場潰水潰砂和強礦壓顯現(xiàn)疊加災(zāi)害進(jìn)行研究,分析了礦山壓力的作用,但未形成動力潰砂的概念和認(rèn)識。因此,該新型頂板水害發(fā)生的機制和規(guī)律尚未被充分認(rèn)識,現(xiàn)有理論和技術(shù)遇到瓶頸,無法對災(zāi)害形成有效防控。而揭示災(zāi)害形成的內(nèi)在機制是當(dāng)前災(zāi)害有效防控首要解決的難題,相關(guān)研究有重要的理論意義和工程應(yīng)用價值。筆者通過調(diào)研分析以往淺埋、近松散層采場頂板的非動力潰水潰砂及采場頂板弱膠結(jié)巖層動力潰砂相關(guān)研究現(xiàn)狀,總結(jié)研究不足,研究得到關(guān)鍵科學(xué)問題,提出當(dāng)前亟待解決和研究的主要問題和內(nèi)容,以期對該類型災(zāi)害防控技術(shù)體系構(gòu)建提供借鑒和參考。

1 與淺埋、近松散層采場潰砂的不同

以往發(fā)生的采掘潰砂是采掘活動導(dǎo)通近松散層或上覆新近系含水砂層而誘發(fā)的含砂量較高(一般50%以上)的水砂混合流體潰入井下采煤工作面或掘進(jìn)工作面,并造成財產(chǎn)損失及人員傷亡的一種礦井地質(zhì)災(zāi)害。例如,2018年山東某礦回風(fēng)暗斜井掘進(jìn)工作面導(dǎo)通新近系砂層形成的潰砂,2010年神東礦區(qū)哈拉溝煤礦采場頂板裂隙導(dǎo)通第四系松散沙層形成的潰砂等。該類型潰砂災(zāi)害的形成動力僅為自重和水壓,缺少外在的礦山壓力作為動力,屬于非動力潰砂;而采場頂板弱膠結(jié)巖層潰砂是受回采擾動而劣化的頂板弱膠結(jié)巖層在其上方硬巖破斷和下方基本頂失穩(wěn)帶來的礦壓顯現(xiàn)效應(yīng)下而產(chǎn)生突涌的一種突發(fā)性強、破壞性大、沖擊力大的礦井災(zāi)害,其實質(zhì)是弱膠結(jié)地層劣化誘發(fā)硬巖破斷失穩(wěn)效應(yīng)下的頂板動力潰砂。例如,2016年陜西黃隴煤田某煤礦采場頂板泥石流災(zāi)害等。

弱膠結(jié)巖層動力潰砂與以往非動力潰砂災(zāi)害在物源、表象和動力源上存在明顯不同。以往淺埋或近松散層采場的非動力潰水潰砂災(zāi)害潰涌物來源為松散層或近松散層地層(圖1)。但弱膠結(jié)巖層動力潰砂災(zāi)害中由于采場覆巖較厚(表1),根據(jù)文獻(xiàn)[23-25]關(guān)于黃隴、寧東礦區(qū)煤層采動導(dǎo)水裂隙帶高度的實測、統(tǒng)計結(jié)果,煤層回采后所形成的導(dǎo)水裂隙帶高度無法波及松散層或近松散層地層,因此,潰涌物源不可能來自松散層或近松散層地層(物源不同);除淺埋或近松散層采場強礦壓顯現(xiàn)中頂板切落貫通松散層出現(xiàn)潰砂災(zāi)害外,覆巖較厚(大于導(dǎo)水裂隙帶高度)的采場強礦壓顯現(xiàn)中鮮有頂板潰砂災(zāi)害出現(xiàn)(表象不同);松散層或近松散層采場潰砂災(zāi)害的動力僅為水壓和自重,不存在礦山壓力作為動力的上覆巖層條件(動力源不同),而弱膠結(jié)巖層動力潰砂災(zāi)害中頂板潰砂動力與砂源地層上覆巖層的強礦壓顯現(xiàn)存在明顯聯(lián)系和影響。

圖1 淺埋或近松散層采場頂板的非動力潰砂示意Fig.1 Non-dynamic sand burst of shallow buried or near loose stope roof

表1 黃隴、寧東煤炭基地潰水潰砂和強礦壓顯現(xiàn)并發(fā)災(zāi)害案例(不完全統(tǒng)計)[12-14]

2 淺埋、近松散層采場潰砂形成機制與防治

2.1 形成機制

目前,采場頂板潰水潰砂主要集中在我國西部淺埋采場及華東、華北等礦區(qū)的近松散層采場,該類型潰砂災(zāi)害發(fā)生的工程地質(zhì)模式可分為垮落帶直接揭露含水砂層、導(dǎo)水裂隙帶滲透破壞含水砂層和地面砂體、井下鉆孔等人為通道導(dǎo)通含水砂層等3種類型。災(zāi)害的發(fā)生需要同時具備以下4個條件:① 水砂源。提供水砂潰涌的富水砂層;② 潰涌通道。采掘擾動形成的潰水潰砂通道;③ 流動空間。容納水砂混合物的采掘空間;④ 動力源。較大的動水壓力。

(1)水砂來源。水砂是采場潰水潰砂災(zāi)害形成的基礎(chǔ)條件,西部淺埋采場及華東、華北等礦區(qū)的近松散層采場水砂來源主要為第四系松散層或近松散層的弱膠結(jié)地層。如榆神府礦區(qū)潰砂來源主要為薩拉烏蘇組及風(fēng)積沙砂層,風(fēng)積沙在榆神府礦區(qū)厚度0~30 m,一般5 m左右,以粉細(xì)沙為主,粒徑介于0.25~0.50 mm的顆粒占95%以上。薩拉烏蘇組厚度0~175.75 m,一般10~30 m,粒徑與風(fēng)積沙相近,易于發(fā)生潰砂。水源主要為薩拉烏蘇組含水層,薩拉烏蘇組地下水在風(fēng)沙灘區(qū)普遍分布,厚度變化大;新疆某礦工作面開采過程中水砂來源為上覆弱膠結(jié)的古近系砂礫巖含水層;華東、華北等礦區(qū)的許多大煤田多為隱伏型,煤層上覆有巨厚松散層沉積,松散層底部常存在弱至中等富水的礫石含水層,是該地區(qū)潰水潰砂災(zāi)害的水砂來源。

(2)通道特征。裂隙通道是產(chǎn)生潰砂的必要條件,潰砂及危害程度主要與裂隙發(fā)育結(jié)構(gòu)和砂的顆粒大小有關(guān),通道的寬度、傾角和結(jié)構(gòu)特征對顆粒速度分布和受力能夠產(chǎn)生重要影響,通道寬度控制了潰砂量,在相同初始水頭條件下,隨著突砂口尺寸的加大,突砂量基本呈線性增加。潰砂通道發(fā)育過程可劃分為裂隙漸次發(fā)育階段、裂隙貫通階段和突水潰砂通道形成3個階段。在裂隙發(fā)育未完全時,砂粒潰入在一定程度上能夠抑制裂隙的發(fā)育,但持續(xù)的水壓作用增大了裂隙內(nèi)的孔隙壓力,促使裂隙進(jìn)一步發(fā)育,到達(dá)一定程度后,就會造成水砂突涌,并沿著各新生裂隙流入,進(jìn)而加速裂隙發(fā)育過程,甚至造成煤層頂板的垮落,加劇潰水潰砂災(zāi)害。另外,水砂能夠降低巖塊間摩擦因數(shù),致使水砂涌入工作面開采時易發(fā)生滑落失穩(wěn)、來壓劇烈和臺階下沉現(xiàn)象。因此,在淺埋采場中,潰砂通道往往是由于基本頂巖塊回轉(zhuǎn)或回轉(zhuǎn)觸矸后由于支架阻力不夠滑落失穩(wěn)形成的,而巖塊端角接觸面高度越高、采場支架工作阻力越大越不容易發(fā)生潰砂。

(3)流動空間。非動力潰水潰砂是水砂混合物在自重和水壓作用下在井下不同空間內(nèi)快速轉(zhuǎn)移流動而對井下設(shè)施、空間和人員等造成損傷的過程,因此,采空區(qū)、巷道等均可成為水砂潰涌的流動空間。而涌入空間的大小將決定潰砂危害性的大小及發(fā)展程度。原因在于:當(dāng)飽和含水砂層被采動裂隙導(dǎo)通時,潰涌口下方存在較大空間將有利于水砂混合物的快速流動,致使災(zāi)害潰砂形成,而對于較小的流動空間,即使有較大的水流作用,也容易導(dǎo)致砂體堆積在潰涌口,阻止?jié)⑸暗倪M(jìn)一步發(fā)展。

(4)動力特征。臨界水力坡度是淺埋、近松散層采場頂板潰砂發(fā)生的關(guān)鍵,該結(jié)論已得到理論分析、室內(nèi)試驗的證實。當(dāng)缺少水動力條件時,根據(jù)普氏平衡拱理論,砂體顆粒在重力作用下能夠相互擠壓,形成相對穩(wěn)定的結(jié)構(gòu);當(dāng)發(fā)生涌水時,水流會對砂顆粒產(chǎn)生浮力、拖曳力、滲透壓力等力的作用,造成顆粒結(jié)構(gòu)的失穩(wěn)和運移。當(dāng)砂顆粒達(dá)到臨界流速時便會產(chǎn)生潰砂,并且涌水的速度決定了單位時間的潰砂量,在相同突砂口張開的情況下,涌砂量隨著初始水頭增大而增大。砂體顆粒在運動過程中顆粒之間及與通道內(nèi)壁間產(chǎn)生碰撞、摩擦,造成顆粒速度分布呈現(xiàn)連續(xù)增大、快速見效和緩慢波動等3個階段。另外,對于厚層基巖采場,采掘擾動波及上覆松散層或新近系弱膠結(jié)地層能夠產(chǎn)生高勢能潰砂災(zāi)害,其中砂體自重在潰砂啟動過程中起到重要作用。

2.2 防治措施

根據(jù)淺埋、近松散層采場潰砂特點和機制,對其防治形成了危險性評價、預(yù)警監(jiān)測和主動治理等技術(shù)。采場頂板的臨界水平變形、裂粒比(裂隙寬度與松散層粒徑之比)、變粒比(臨界拉伸水平變形與顆粒有效直徑之比)、含水層水壓均是潰砂危險性的評價指標(biāo)。根據(jù)大量的勘探數(shù)據(jù),選取潰砂影響關(guān)鍵因素為影響因子,在GIS平臺下構(gòu)建基于多因素融合技術(shù)的潰砂評價模型,并以此進(jìn)行綜合分區(qū),可形成潰砂災(zāi)害實時或面向生產(chǎn)計劃的預(yù)警方法。另外,基巖上覆黏土層、承壓含水層以及水砂突涌前后含水砂層中孔隙水壓力可以作為近松散含水層開采潰砂災(zāi)害預(yù)警和監(jiān)測的重要前兆信息源。潰砂災(zāi)害的主動治理可采用地面或井下注漿、含水層疏放水、提高采場支架阻力、建造擋水墻、鋪設(shè)雙抗網(wǎng)和金屬網(wǎng)等手段。

3 厚基巖采場頂板弱膠結(jié)巖層動力潰砂形成機制

筆者前期對黃隴煤田某煤礦采場頂板潰水潰砂與強礦壓顯現(xiàn)(切頂壓架)并發(fā)災(zāi)害的動力源、物源進(jìn)行研究(圖2),得到潰砂物源為侏羅系直羅組泥巖類地層,動力源除潰涌物自重和含水層水壓外,還包括侏羅系弱膠結(jié)地層上部洛河組砂巖破斷產(chǎn)生的礦山壓力,而且試驗證明弱膠結(jié)地層遇水易崩解、劣化。上述表明弱膠結(jié)地層遇水劣化誘發(fā)上部硬巖破斷,為潰砂提供了動力,而且?guī)r層破斷的傳遞載荷和弱膠結(jié)地層吸水增量載荷造成基本頂失穩(wěn),進(jìn)而切頂形成潰砂通道。

圖2 黃隴煤田某煤礦切頂壓架和潰水潰砂并發(fā)事故示意[16]Fig.2 Schematic diagram of concurrent accident of roof cutting,frame pressing and water and sand breaking in a coal mine of Huanglong coalfield[16]

3.1 覆巖結(jié)構(gòu)特征

圖3 事故煤礦覆巖共性結(jié)構(gòu)特征示意Fig.3 General structural characteristics of overlying rock in the accident coal mine

經(jīng)統(tǒng)計,發(fā)生弱膠結(jié)地層動力潰砂災(zāi)害的煤礦采場覆巖廣泛存在“下基本頂-中弱膠結(jié)地層-上硬巖層”的類似“夾心餅干”特征的地層結(jié)構(gòu)(圖3),其中弱膠結(jié)地層既是上硬巖層的基礎(chǔ),也是下基本頂?shù)妮d荷。如黃隴煤田煤層上覆白堊系洛河、宜君組孔隙-裂隙含水層厚度大(100~350 m)、富水性中等,地層呈明顯整體性巨厚層狀特征,多為砂、礫巖互層結(jié)構(gòu),泥鈣質(zhì)膠結(jié),強度較高,其破斷失穩(wěn)易造成強烈的礦壓顯現(xiàn)(上硬巖層);煤層與白堊系洛河組含水層之間主要為砂巖和泥巖,并呈現(xiàn)交互結(jié)構(gòu)(部分地層泥巖占比高達(dá)88%),由于沉積時間短、成巖環(huán)境為內(nèi)陸河湖相,巖石膠結(jié)物多為泥質(zhì),具有強度低、孔隙度高、膠結(jié)性差、黏土礦物含量高等特征,受水浸泡后易產(chǎn)生崩解、泥化等巖體劣化現(xiàn)象(弱膠結(jié)地層)。同樣,寧東煤炭基地煤層上覆廣泛發(fā)育有厚層侏羅系富水砂巖(俗稱七里鎮(zhèn)砂巖),其與煤層間主要發(fā)育侏羅系弱膠結(jié)泥巖類地層。因此,“中弱膠結(jié)地層”為侏羅系弱膠結(jié)砂泥巖地層、“上硬巖層”為白堊系厚層富水砂巖(黃隴煤田)或侏羅系厚層富水砂巖(寧東煤田),而且2者均在采動破壞范圍內(nèi),表明潰水潰砂和強礦壓顯現(xiàn)并發(fā)災(zāi)害中潰砂的物源和動力源分別來自于侏羅系弱膠結(jié)砂泥巖地層和上部砂巖破斷產(chǎn)生的礦山壓力。

3.2 弱膠結(jié)巖層遇水劣化特征及影響因素

弱膠結(jié)地層及其遇水劣化性質(zhì)與膠結(jié)成分、黏土礦物含量和空隙特征等密不可分。國外學(xué)者對弱膠結(jié)沉積地層性質(zhì)的研究相對較少,有研究表明塑性變形對膠結(jié)物的破壞是弱膠結(jié)砂巖力學(xué)性能退化的主要機制。與之相近的是對沉積巖性質(zhì)的研究,如研究得到砂巖性質(zhì)的演化與基質(zhì)中所識別的黏土相密切相關(guān),黏土礦物在水分含量較低時就能夠影響巖石的性能;沉積砂巖隨著飽和水平的增加,力學(xué)和斷裂韌性普遍下降;另外,石灰石的吸附行為主要受比表面積較大的蒙脫石層的數(shù)量決定,力學(xué)強度損失率與吸附能力成線性關(guān)系。

國內(nèi)關(guān)于弱膠結(jié)地層的研究相對較多,試驗研究表明西部礦區(qū)的弱膠結(jié)地層巖性主要為砂巖、砂質(zhì)泥巖及泥巖,膠結(jié)物大多為泥質(zhì),具有孔隙度大、膠結(jié)性差、黏土礦物含量高等特征,巖石強度普遍偏低,遇水后易崩解、泥化。而這與巖石的礦物組成和結(jié)構(gòu)特征密切相關(guān)。軟弱泥巖單軸抗壓強度和彈性模量隨黏土礦物含量增加而減小,泥巖遇水弱化指數(shù)隨著黏土礦物含量增加而增大;侏羅系弱膠結(jié)砂巖、泥巖骨架顆粒自身吸水膨脹軟化,骨架顆粒之間的黏連性變差,膠結(jié)程度降低;侏羅系弱膠結(jié)砂巖屬高孔隙度巖石,具有大孔孔喉及中孔孔喉分布頻率高的結(jié)構(gòu)特征。大量的實驗室測試表明侏羅系弱膠結(jié)煤系地層的完整砂巖和泥巖中的礦物組成與物理力學(xué)參數(shù)之間存在定量關(guān)系。

3.3 弱膠結(jié)巖層潰涌的動力特征

巖層破斷失穩(wěn)是煤層采場各種災(zāi)害形成的動力來源,弱膠結(jié)巖層動力潰砂的動力源主要來自巖層破斷產(chǎn)生的礦山壓力,而且弱膠結(jié)巖層劣化對巖層礦壓顯現(xiàn)特征具有重要影響。原因在于巖層下方支承條件和上覆載荷分布特征對采場上覆巖層破斷失穩(wěn)規(guī)律具有顯著影響。因此,劣化的弱膠結(jié)地層能夠?qū)ζ渖稀⑾聨r層的礦壓顯現(xiàn)和結(jié)構(gòu)失穩(wěn)產(chǎn)生重要影響。

(1)劣化弱膠結(jié)巖層對上方硬巖和下方基本頂?shù)挠绊憽;谟邢拊嬎愕难芯勘砻鞑蓜雍箨P(guān)鍵層上部巖層的作用是非均布的,工作面周圍垂直應(yīng)力呈現(xiàn)隆起分布形態(tài),且分布規(guī)律與軟弱夾層的厚度和硬度有關(guān),軟弱層越厚或越軟,關(guān)鍵層上方載荷和支承壓力的峰值就越低,且峰值位置越遠(yuǎn)離煤壁。其中,巖層的性質(zhì)、回采的深度和采空區(qū)懸頂長度決定了工作面前方支承壓力峰值大小和位置,而影響基本頂斷裂位置的因素為基本頂?shù)目估瓨O限、承受載荷、厚度及墊層的彈性模量等。因此,基礎(chǔ)類型對巖梁的運動規(guī)律、支承壓力隨采場推進(jìn)的變化發(fā)展規(guī)律及基本頂巖梁的內(nèi)力分布具有較為重要影響,相關(guān)研究可分為損傷基礎(chǔ)梁模型和軟化基礎(chǔ)梁模型。而如何描述基礎(chǔ)特征對巖梁的彎矩、剪力及支承壓力的高峰位置和大小均具有顯著影響。Weibull分布函數(shù)與隆起的增量載荷具有較好的一致性,可利用該函數(shù)模擬隆起增量載荷研究硬巖破斷規(guī)律,得到軟化地基支承的頂板彎矩峰值和彎矩峰超前煤壁的距離均有較大增加、煤壁前方應(yīng)變能儲存區(qū)域和儲存量也大幅增加及頂板撓度比全為彈性地基支承的頂板撓度大幅增加。

(2)上方硬巖破斷的動力特征和傳遞效應(yīng)。高位硬巖破斷失穩(wěn)時能夠釋放動能并產(chǎn)生向低位巖層傳遞的載荷,造成下位巖層失穩(wěn)或動力突水災(zāi)害。當(dāng)彈性基礎(chǔ)的堅硬頂板懸露到極限距離后,將在煤壁前方最大彎矩處斷裂,在斷裂兩側(cè)發(fā)生反彈、壓縮現(xiàn)象,對應(yīng)區(qū)域是產(chǎn)生沖擊的震源區(qū)域。而厚硬巖石在彎曲和壓縮中積累了大量彈性能,其破斷失穩(wěn)對下方煤巖體產(chǎn)生的能量和作用力明顯高于普通巖層破斷,因此,高位硬厚巖層破斷及運移過程中產(chǎn)生強微震活動,能夠釋放大量彈性能,造成礦壓顯現(xiàn)強烈。

另外,深埋煤層采場上方存在著一傾斜塊體承載區(qū),在承擔(dān)上覆巖層載荷的同時向低位巖層傳遞壓力,因此,上位巖層破斷的彈性能能夠向低位巖層傳遞。利用相似模擬試驗已得到厚砂土層下淺埋煤層頂板關(guān)鍵塊上的動態(tài)載荷傳遞規(guī)律。而這種傳遞載荷能夠造成采場支架阻力突然增大。例如,淺埋、近松散層或特大采高采場壓架切頂就是由于覆巖關(guān)鍵層破斷結(jié)構(gòu)上覆載荷過大而滑落失穩(wěn)。而且堅硬巖層失穩(wěn)破斷釋放大量動能可致使巖層附近含水層中產(chǎn)生超高水壓,并在含水層與采掘臨空面之間產(chǎn)生瞬間沖破的導(dǎo)水通道,形成動力突水現(xiàn)象。且高位硬厚巖層與下方巖層間易形成高負(fù)壓離層空間,若高位硬巖層為含水層時,在離層空間負(fù)壓和巖層水壓的作用下,巖層水迅速匯集到離層空間內(nèi),易誘發(fā)離層水災(zāi)害。

3.4 存在的問題

(1)前文所述相關(guān)研究采用掃描電鏡、X射線衍射、X射線熒光、常規(guī)力學(xué)試驗等手段取得了豐富成果,為深入研究弱膠結(jié)遇水劣化性質(zhì)奠定了基礎(chǔ)。但目前相關(guān)研究著重采用室內(nèi)細(xì)觀試驗和微觀觀察等方式,若結(jié)合地球物理測井等宏觀結(jié)果分析,引進(jìn)顯微CT、三維重構(gòu)技術(shù)和GCTS巖石力學(xué)綜合試驗系統(tǒng)等先進(jìn)手段加強細(xì)觀試驗研究,將進(jìn)一步完善弱膠結(jié)地層遇水劣化性質(zhì)對影響因素變化的反饋特征及響應(yīng)關(guān)系。

(2)已有研究為硬巖下方支承壓力和基本頂載荷分布隨地層劣化的響應(yīng)規(guī)律的深入分析奠定了良好基礎(chǔ),但對于軟化基礎(chǔ)下的硬巖破斷失穩(wěn)著重利用有限元計算和概率分布函數(shù)替代等方式研究支承壓力和載荷分布形態(tài),若對軟化地基的支承作用和巖層上覆隆起增量載荷分布規(guī)律進(jìn)行深入研究,并實現(xiàn)軟化地基性質(zhì)和巖層賦存特征的表征,將闡明弱膠結(jié)地層遇水劣化對上硬巖層下方支承壓力和基本頂上方載荷分布的影響。

(3)已有研究關(guān)于巖層破斷失穩(wěn)規(guī)律著重分析了固支、簡支或彈性基礎(chǔ)條件,表明巖層破斷存在對下方地層或水體的動力傳遞作用;目前關(guān)于淺埋、近松散層采場潰砂災(zāi)害和部分關(guān)于厚基巖頂板潰砂災(zāi)害的研究側(cè)重分析水壓、自重和通道對災(zāi)害的影響,尚未從礦山壓力作用角度進(jìn)行分析探討。相關(guān)成果為頂板動力潰砂災(zāi)害研究提供了良好借鑒,側(cè)面表明弱膠結(jié)地層遇水劣化誘發(fā)上部硬巖破斷失穩(wěn)效應(yīng)是頂板動力潰砂形成的關(guān)鍵,而下部基本頂失穩(wěn)形成的潰砂通道決定了潰砂危害程度和潰砂方量。因此,對于硬巖失穩(wěn)作用下劣化弱膠結(jié)地層潰涌動力和基本頂破斷產(chǎn)生的潰砂通道演化規(guī)律需深入分析和研究。

4 弱膠結(jié)巖層動力潰砂研究的關(guān)鍵科學(xué)問題及思路

針對采場頂板潰水潰砂與強礦壓顯現(xiàn)并發(fā)災(zāi)害,從災(zāi)害形成的覆巖結(jié)構(gòu)特征和地層條件出發(fā),分析災(zāi)害形成的動力源、表象和物源,提煉科學(xué)問題,調(diào)研分析以往研究不足,總結(jié)得到研究和解決的主要內(nèi)容和問題(圖4)。

4.1 關(guān)鍵科學(xué)問題

(1)硬巖下方支承壓力和基本頂載荷分布對弱膠結(jié)地層劣化的響應(yīng)規(guī)律。弱膠結(jié)地層遇水劣化導(dǎo)致其上部硬巖基礎(chǔ)軟化、下部基本頂載荷增大,而巖層支承條件和載荷分布是分析巖層內(nèi)力、彎矩、撓度、應(yīng)變能及結(jié)構(gòu)失穩(wěn)特征的重要條件,決定了巖層破斷的動力顯現(xiàn)規(guī)律,是揭示頂板動力潰砂機制的前提。

(2)硬巖破斷作用下劣化弱膠結(jié)地層潰涌的動力形成機制和通道演化規(guī)律。硬巖破斷產(chǎn)生的動能是劣化弱膠結(jié)地層潰涌、傳遞增量載荷和通道演化特征的主控因素,是揭示頂板動力潰砂形成機制的關(guān)鍵;通道是潰砂的必要條件,基本頂失穩(wěn)產(chǎn)生的通道的演化規(guī)律是動力潰砂機制的重要組成部分。

圖4 研究思路Fig.4 Research roadmap

4.2 研究思路

針對西部礦區(qū)黃隴、寧東2個大型煤炭基地采場頂板潰水潰砂和強礦壓顯現(xiàn)并發(fā)災(zāi)害頻發(fā)難題,聚焦災(zāi)害背后的基礎(chǔ)問題:采場頂板弱膠結(jié)巖層的動力潰砂機制,分析采場頂板特征,挖掘災(zāi)害發(fā)生的普遍客觀條件,研究災(zāi)害形成的動力源、通道、物源等必要條件的特征規(guī)律。因此,為深入理解采場頂板弱膠結(jié)巖層的動力潰砂機制,需研究解決以下主要問題:① 弱膠結(jié)地層遇水劣化的物理力學(xué)性質(zhì)隨自身黏土礦物含量、空隙率、承受載荷等影響因素變化而呈現(xiàn)的特征及響應(yīng)關(guān)系。② 上硬巖層和基本頂受力條件隨弱膠結(jié)地層遇水劣化的變化規(guī)律及表征。③ 硬巖失穩(wěn)作用下劣化弱膠結(jié)地層潰涌動力的形成機制和增量載荷作用下基本頂破斷產(chǎn)生的潰砂通道的演化規(guī)律。

5 結(jié)論與展望

5.1 結(jié) 論

(1)采場頂板弱膠結(jié)巖層動力潰砂是受回采擾動而劣化的頂板弱膠結(jié)巖層在其上方硬巖破斷和下方基本頂失穩(wěn)帶來的礦壓顯現(xiàn)效應(yīng)下而產(chǎn)生突涌的一種突發(fā)性強、破壞性大、沖擊力大的礦井災(zāi)害,其實質(zhì)是弱膠結(jié)頂板劣化誘發(fā)硬巖破斷失穩(wěn)效應(yīng)下的頂板動力潰砂。該類型災(zāi)害在動力源、潰涌物源、表象上均與以往淺埋、近松散層采場潰水潰砂或壓架切頂災(zāi)害不同,是亟待防控的一種新型頂板災(zāi)害。

(2)研究得到硬巖下方支承壓力和基本頂載荷分布對弱膠結(jié)地層劣化的響應(yīng)規(guī)律、硬巖破斷作用下劣化弱膠結(jié)地層潰涌的動力形成機制和通道演化規(guī)律等2個關(guān)鍵科學(xué)問題,形成了以解決弱膠結(jié)地層遇水劣化對影響因素的反饋特征及響應(yīng)關(guān)系、上硬巖層和基本頂受力條件隨弱膠結(jié)地層劣化的變化規(guī)律、劣化弱膠結(jié)地層潰涌動力機制和增量載荷作用下通道演化規(guī)律等3個主要問題的研究思路。

5.2 展 望

采場弱膠結(jié)頂部動力潰砂災(zāi)害具有潰水潰砂和強礦壓顯現(xiàn)疊加效應(yīng),相比以往采掘潰砂災(zāi)害危害性更大,因此,應(yīng)在探明災(zāi)害形成機制基礎(chǔ)上采取針對性防控措施,避免災(zāi)害再次發(fā)生。

筆者在分析黃隴煤田某煤礦頂板動力潰砂災(zāi)害形成機理時提出災(zāi)害防控可采用“查清客觀必要條件、避免和控制誘發(fā)因素”的技術(shù)路線,客觀必要條件包括物源(弱膠結(jié)地層)和動力源(上方硬巖),誘發(fā)因素包括上方富水含水層、較小支架工作面阻力、臨近工作面支承壓力疊加等。近幾年,隨著水平定向鉆在煤礦頂板硬巖強礦壓顯現(xiàn)防治和水害超前治理方面應(yīng)用的日益成熟,弱膠結(jié)頂板動力潰砂可采用硬巖超前預(yù)裂和弱膠結(jié)地層注漿改性的綜合主動防控技術(shù),從根本上改變?yōu)暮Πl(fā)生的客觀條件。

[1] 徐智敏,高尚,孫亞軍,等. 西部典型侏羅系富煤區(qū)含水介質(zhì)條件與水動力學(xué)特征[J]. 煤炭學(xué)報,2017,42(2):444-451.

XU Zhimin,GAO Shang,SUN Yajun,et al. A study of conditions of water bearing media and water dynamics in typical Jurassic coal rich regions in western China[J]. Journal of China Coal Society,2017,42(2):444-451.

[2] 柴肇云,張亞濤,張學(xué)堯. 泥巖耐崩解性與礦物組成相關(guān)性的試驗研究[J]. 煤炭學(xué)報,2015,40(5):1188-1193.

CHAI Zhaoyun,ZHANG Yatao,ZHANG Xueyao. Experimental investigations on correlation with slake durability and mineral composition of mudstone[J]. Journal of China Coal Society,2015,40(5):1188-1193.

[3] FAN Gangwei,CHEN Mingwei,ZHANG Dongsheng,et al. Experimental study on the permeability of weakly cemented rock under different stress states in triaxial compression tests[J]. Geofluids,2018:1-9.

[4] WANG Shuai,HAN Lijun,MENG Qingbin,et al. Investigation of pore structure and water imbibition behavior of weakly cemented silty mudstone[J]. Advances in Civil Engineering,2019:1-13.

[5] 魏久傳,吳復(fù)柱,謝道雷,等. 半膠結(jié)中低強度圍巖導(dǎo)水裂隙帶發(fā)育特征[J]. 煤炭學(xué)報,2016,41(4):974-983.

WEI Jiuchuan,WU Fuzhu,XIE Daolei,et al. Development characteristic of water flowing fractured zone under semi-cemented medium-low strength country rock[J]. Journal of China Coal Society,2016,41(4):974-983.

[6] 王渭明,趙增輝,王磊. 考慮剛度和強度劣化時弱膠結(jié)軟巖巷道圍巖的彈塑性損傷分析[J]. 采礦與安全工程學(xué)報,2013,30(5):679-685.

WANG Weiming,ZHAO Zenghui,WANG Lei. Elastic-plastic damage analysis for weakly consolidated surrounding rock regarding stiffness and strength cracking[J]. Journal of Mining & Safety Engineering,2013,30(5):679-685.

[7] YIN Jiadi,FU Baojie,ZHANG Hualei. Failure mechanism and control technology for a large-section roadway under weakly cemented formation condition[J]. Geofluids,2020:1-11.

[8] 蔡金龍,涂敏,張華磊. 侏羅系弱膠結(jié)軟巖回采巷道變形失穩(wěn)機理及圍巖控制技術(shù)研究[J]. 采礦與安全工程學(xué)報,2020,37(6):1114-1122.

CAI Jinlong,TU Min,ZHANG Hualei. Deformation and instability mechanism and control technology of mining gateway for Jurassic weak-cemented soft rock roadways[J]. Journal of Mining & Safety Engineering,2020,37(6):1114-1122.

[9] 紀(jì)洪廣,蔣華,宋朝陽,等. 弱膠結(jié)砂巖遇水軟化過程細(xì)觀結(jié)構(gòu)演化及斷口形貌分析[J]. 煤炭學(xué)報,2018,43(4):993-999.

JI Hongguang,JIANG Hua,SONG Zhaoyang,et al. Analysis on the microstructure evolution and fracture morphology during the softening process of weakly cemented sandstone[J]. Journal of China Coal Society,2018,43(4):993-999.

[10] 郝育喜,王炯,袁越,等. 沙吉海煤礦弱膠結(jié)膨脹性軟巖巷道大變形控制對策[J]. 采礦與安全工程學(xué)報,2016,33(4):684-691.

HAO Yuxi,WANG Jiong,YUAN Yue,et al. Large deformation control technology for expansive and weak-cemented soft rock roadways in Shajihai Coal Mine[J]. Journal of Mining & Safety Engineering,2016,33(4):684-691.

[11] 孫利輝,紀(jì)洪廣,楊本生. 西部典型礦區(qū)弱膠結(jié)地層巖石的物理力學(xué)性能特征[J]. 煤炭學(xué)報,2019,44(3):865-873.

SUN Lihui,JI Hongguang,YANG Bensheng. Physical and mechanical characteristic of rocks with weakly cemented strata in western representative mining area[J]. Journal of China Coal Society,2019,44(3):865-873.

[12] 呂玉廣,肖慶華,程久龍. 弱富水軟巖水-沙混合型突水機制與防治技術(shù)——以上海廟礦區(qū)為例[J]. 煤炭學(xué)報,2019,44(10):3154-3163.

Lü Yuguang,XIAO Qinghua,CHENG Jiulong. Mechanism and prevention of water-sand inrush in soft rock with weakly abundant water:A case study in Shanghai temple mining area[J]. Journal of China Coal Society,2019,44(10):3154-3163.

[13] 喬偉,王志文,李文平,等. 煤礦頂板離層水害形成機制、致災(zāi)機理及防治技術(shù)[J]. 煤炭學(xué)報,2021,46(2):507-522.

QIAO Wei,WANG Zhiwen,LI Wenping,et al. Formation mechanism,disaster-causing mechanism and prevention technology of roof bed separation water disaster in coal mines[J]. Journal of China Coal Society,2021,46(2):507-522.

[14] 潘俊鋒,簡軍峰,劉少虹,等. 黃隴侏羅紀(jì)煤田沖擊地壓地質(zhì)特征與防治[J]. 煤礦開采,2019,24(1):110-115.

PANG Junfeng,JIAN Junfeng,LIU Shaohong,et al. Geological characteristic and control of rock burst of Huanglong jurassic coal mine field [J]. Coal Mining Technology,2019,24(1):110-115.

[15] 任勝文. 大采深煤層弱膠結(jié)厚層礫巖突水潰沙災(zāi)害研究[J]. 煤炭科學(xué)技術(shù),2019,32(9):249-255.

REN Shengwen. Study on disaster of water and sand inrush of weakly cemented thick conglomerate on deep mining coal seam[J]. Coal Science and Technology,2019,32(9):249-255.

[16] 柳昭星,董書寧,靳德武,等. 深埋采場壓架切頂誘發(fā)井下泥石流形成機理與防控[J]. 煤炭學(xué)報,2019,44(11):3515-3528.

LIU Zhaoxing,DONG Shuning,JIN Dewu,et al. Formation mechanism and prevention and control of underground debris flow induced by roof-cutting of pressured support in deep-buried face[J]. Journal of China Coal Society,2019,44(11):3515-3528.

[17] 隋旺華,梁艷坤,張改玲,等. 采掘中突水潰砂機理研究現(xiàn)狀及展望[J]. 煤炭科學(xué)技術(shù),2011,39(11):5-9.

SUI Wanghua,LIANG Yankun,ZHANG Gailing,et al. Study status and outlook of risk evaluation on water inrush and sand inrush mechanism of excavation and mining[J]. Coal Science and Technology,2011,39(11):5-9.

[18] 隋旺華,劉佳維,高炳倫,等. 采掘誘發(fā)高勢能潰砂災(zāi)變機理與防控研究與展望[J]. 煤炭學(xué)報,2019,44(8):2419-2426.

SUI Wanghua,LIU Jiawei,GAO Binglun,et al. A review on disaster mechanism of quicksand with a high potential energy due to mining and its prevention and control[J]. Journal of China Coal Society,2019,44(8):2419-2426.

[19] 宋亞新. 哈拉溝煤礦22402工作面初采期潰水潰沙機理及防治技術(shù)[J]. 煤礦安全,2012,43(12):91-93.

SONG Yaxin. Water inrush and sand inrush mechanism and prevention technology during the initial mining period in 22402 working face of Halagou coal mine[J]. Safety in Coal Mines,2012,43(12):91-93.

[20] 郭小銘,董書寧,劉英鋒,等. 深埋煤層開采頂板泥砂潰涌災(zāi)害形成機理[J]. 采礦與安全工程學(xué)報,2019,36(5):889-897.

GUO Xiaoming,DONG Shuning,LIU Yingfeng,et al. Formation mechanism of mud and sand inrush disaster during the mining of deep-buried coal seam[J]. Journal of Mining & Safety Engineering,2019,36(5):889-897.

[21] 張華磊,涂敏,程樺,等. 淺埋薄基巖煤層采場頂板破斷機制研究[J]. 采礦與安全工程學(xué)報,2017,34(5):825-831.

ZHANG Hualei,TU Min,CHENG Hua,et al. Study on mechanism of stope roof fracture in deep-buried coal seam with thin bedrock [J]. Journal of Mining & Safety Engineering,2017,34(5):825-831.

[22] 繆協(xié)興,王長申,白海波. 神東礦區(qū)煤礦水害類型及水文地質(zhì)特征分析[J]. 采礦與安全工程學(xué)報,2010,27(3):285-291,298.

MIAO Xiexing,WANG Changshen,BAI Haibo. Hydrogeologic characteristics of mine water hazards in Shendong mining area[J]. Journal of Mining & Safety Engineering,2010,27(3):285-291,298.

[23] 李超峰. 黃隴煤田綜放采煤頂板導(dǎo)水裂縫帶高度發(fā)育特征[J]. 煤田地質(zhì)與勘探,2019,47(2):129-136.

LI Chaofeng. Characteristics of height of water flowing fractured zone caused during fully-mechanized caving mining in Huanglong coalfield [J]. Coal Geology & Exploration,2019,47(2):129-136.

[24] 劉英鋒,王世東,王曉蕾. 深埋特厚煤層綜放開采覆巖導(dǎo)水裂縫帶發(fā)育特征[J]. 煤炭學(xué)報,2014,39(10):1970-1976.

LIU Yingfeng,WANG Shidong,WANG Xiaolei. Development characteristics of water flowing fractured zone of overburden deep buried extra thick coal seam and fully-mechanized caving mining[J]. Journal of China Coal Society,2014,39(10):1970-1976.

[25] 孫慶先,牟義,楊新亮. 紅柳煤礦大采高綜采覆巖“兩帶”高度的綜合探測[J]. 煤炭學(xué)報,2013,38(S2):283-286.

SUN Qingxian,MOU Yi,YANG Xinliang. Study on“two-zone”height of overlying of fully-mechanized technology with high mining height at Hongliu Coal Mine[J]. Journal of China Coal Society,2013,38(S2):283-286.

[26] 杜鋒,李振華,姜廣輝,等. 西部礦區(qū)突水潰沙類型及機理研究[J]. 煤炭學(xué)報,2017,42(7):1846-1853.

DU Feng,LI Zhenhua,JIANG Guanghui,et al. Types and mechanism of water-sand inrush disaster in west coal mine[J]. Journal of China Coal Society,2017,42(7):1846-1853.

[27] 許家林,朱衛(wèi)兵,鞠金峰. 淺埋煤層開采壓架類型[J]. 煤炭學(xué)報,2014,39(8):1625-1634.

XU Jialin,ZHU Weibing,JU Jinfeng. Supports crushing types in the longwall mining of shallow seams[J]. Journal of China Coal Society,2014,39(8):1625-1634.

[28] 郭衛(wèi)彬,劉長友,吳鋒鋒,等. 堅硬頂板大采高工作面壓架事故及支架阻力分析[J]. 煤炭學(xué)報,2014,39(7):1212-1219.

GUO Weibin,LIU Changyou,WU Fengfeng,et al. Analyses of support crushing accidents and support working resistance in large mining height workface with hard roof[J]. Journal of China Coal Society,2014,39(7):1212-1219.

[29] 郭惟嘉,王海龍,陳紹杰,等. 采動覆巖涌水潰砂災(zāi)害模擬試驗系統(tǒng)研制與應(yīng)用[J]. 巖石力學(xué)與工程學(xué)報,2016,35(7):1415-1422.

GUO Weijia,WANG Hailong,CHEN Shaojie,et al. Development and application of simulation test system for water and sand inrush across overburden fissures due to coal mining[J]. Chinese Journal of Rock Mechanics and Engineering,2016,35(7):1415-1422.

[30] 張杰,侯忠杰. 淺埋煤層開采中的潰沙災(zāi)害研究[J]. 湖南科技大學(xué)學(xué)報(自然科學(xué)版),2005,20(3):15-18.

ZHANG Jie,HOU Zhongjie. Study on sand inrush disaster in shallow seam mining[J]. Journal of Hunan University of Science & Technology(Natural Science Edition),2005,20(3):15-18.

[31] 宣以瓊. 薄基巖淺埋煤層覆巖破壞移動演化規(guī)律研究[J]. 巖土力學(xué),2008,29(2):512-516.

XUAN Yiqiong. Research on movement and evolution law of breaking of overlying strata in shallow coal seam with a thin bedrock[J]. Rock and Soil Mechanics,2008,29(2):512-516.

[32] XU Yanchun,LUO Yaqi,LI Jianghua,et al. Water and sand inrush during mining under thick unconsolidated layers and thin bedrock in the Zhaogu No. 1 Coal Mine,China[J]. Mine Water and the Environment,2018,37:336-345.

[33] LI H J,LI J H,LI L,et al. Prevention of water and sand inrush during mining of extremely thick coal seams under unconsolidated Cenozoic alluvium[J]. Bulletin of Engineering Geology and the Environment,2020,79:3271-3283.

[34] 張蓓,張桂民,張凱,等. 鉆孔導(dǎo)致突水潰沙事故機理及防治對策研究[J]. 采礦與安全工程學(xué)報,2015,32(2):219-226.

ZHANG Bei,ZHANG Guimin,ZHANG Kai,et al. Water and sands bursting mechanism induced by geological borehole and control measures[J]. Journal of Mining & Safety Engineering,2015,32(2):219-226.

[35] 呂兆海,張藝耘,趙長紅,等. 富水砂層巷道潰水潰沙因素分析及防治對策[J]. 煤炭工程,2015,47(6):73-75.

Lü Zhaohai,ZHANG Yiyun,ZHAO Changhong,et al. Factor analysis and control strategy for roadway water inrush and sand inrush in water-rich sand stratum[J]. Coal Engineering,2015,47(6):73-75.

[36] 石磊. 弱膠結(jié)地層條件下工作面潰水潰砂規(guī)律模擬研究[J]. 煤炭科學(xué)技術(shù),2020,48(7):347-353.

SHI Lei. Numerical simulation study on law of water and sand inrush in working face undercondtion of weakly cemented stratum[J]. Coal Science and Technology,2020,48(7):347-353.

[37] 王寶賢. 任樓煤礦提高回采上限首采面突水潰砂原因分析[J]. 煤礦安全,2013,44(6):189-192.

WANG Baoxian. Cause analysis of water and sand inrush at the first working face of improving mining upper limit in Renlou Coal Mine[J]. Safety in Coal Mines,2013,44(6):189- 192.

[38] 楊偉峰,隋旺華,吉育兵,等. 薄基巖采動裂隙水砂流運移過程的模擬試驗[J]. 煤炭學(xué)報,2012,37(1):141-146.

YANG Weifeng,SUI Wanghua,JI Yubing,et al. Experimental research on the movement process of mixed water and sand flow across overburden fissures in thin bedrock induced by mining[J]. Journal of China Coal Society,2012,37(1):141-146.

[39] 鐘江城,周宏偉,趙宇峰,等. 淺埋煤層開采突水潰砂兩相流的耦合數(shù)值研究[J]. 工程力學(xué),2017,34(12):229-238.

ZHONG Jiangcheng,ZHOU Hongwei,ZHAO Yufeng,et al. The two-phase flow of water-sand inrush under shallow coal seam mining:A coupled numerical study[J]. Engineering Mechanics,2017,34(12):229-238.

[40] 隋旺華,蔡光桃,董青紅. 近松散層采煤覆巖采動裂隙水砂突涌臨界水力坡度試驗[J]. 巖石力學(xué)與工程學(xué)報,2007,26(10):2084- 2091.

SUI Wanghua,CAI Guangtao,DONG Qinghong. Experimental research on critical percolation gradient of quicksand across overburden fissures due to coal mining near unconsolidated soil layers[J]. Chinese Journal of Rock Mechanics and Engineering,2007,26(10):2084-2091.

[41] CHEN Jiarui,GU Wenhu,ZHANG Jihua,et al. Experimental study on flow characteristics of aeolian sand in fractures[J]. Advances in Civil Engineering,2021(9):1-12.

[42] 趙啟峰,張農(nóng),韓昌良,等. 淺埋薄基巖含水層下煤層開采突水潰砂相似模擬實驗研究[J]. 采礦與安全工程學(xué)報,2017,34(3):444-451.

ZHAO Qifeng,ZHANG Nong,HAN Changliang,et al. Simulation experiment of water-sand inrush during the mining of the shallow coal seam under roof aquifer with thin bedrock[J]. Journal of Mining & Safety Engineering,2017,34(3):444-451.

[43] 趙蘭春,王樹營,于建新. 軟弱薄基巖裂隙發(fā)育特征及抑突(潰)機理[J]. 安徽理工大學(xué)學(xué)報(自然科學(xué)版),2020,40(3):77-80.

ZHAO Lanchun,WANG Shuying,YU Jianxin. Fracture development characteristics of weak-thin bedrock and the inhibition mechaism of water and sand inrushing[J]. Journal of Anhui University of Science and Technonlogy(Natural Science),2020,40(3):77-80.

[44] 浦海,倪宏陽,肖成. 基于格子Boltzmann理論的弱膠結(jié)裂隙巖體水沙兩相流特性[J]. 煤炭學(xué)報,2017,42(1):162-168.

PU Hai,NI Hongyang,XIAO Cheng. Characteristics of water sediment two phase flows in weakly cemented fractured rock mass based on Lat-tice Boltzmann method[J]. Journal of China Coal Society,2017,42(1):162-168.

[45] 王家臣,楊敬虎. 水沙涌入工作面頂板結(jié)構(gòu)穩(wěn)定性分析[J]. 煤炭學(xué)報,2015,40(2):254-260.

WANG Jiachen,YANG Jinghu. Roof stability of the mining face under the condition of water and sand inrush[J]. Journal of China Coal Society,2015,40(2):254-260.

[46] 張杰,侯忠杰,馬礪. 淺埋煤層老頂巖塊回轉(zhuǎn)過程中的潰沙分析[J]. 西安科技大學(xué)學(xué)報,2006,26(2):158-160,166.

ZHANG Jie,HOU Zhongjie,MA Li. Sand inrush in roof rock’s rotating in shallow seam mining[J]. Journal of Xi’an University of Science and Technology,2006,26(2):158-160,166.

[47] 張玉軍,康永華,劉秀娥. 松軟砂巖含水層下煤礦開采潰砂預(yù)測[J]. 煤炭學(xué)報,2006,31(4):429-432.

ZHANG Yujun,KANG Yonghua,LIU Xiue. Predicting on inrush of sand of mining under loosening sandstone aquifer[J]. Journal of China Coal Society,2006,31(4):429-432.

[48] 許延春,王伯生,尤舜武. 近松散含水層潰砂機理及判據(jù)研究[J]. 西安科技大學(xué)學(xué)報,2012,32(1):63-69.

XU Yanchun,WANG Bosheng,YOU Shunwu. Mechanism and criteria of crushing sand near loosening sand stone aquifer[J]. Journal of Xi’an University of Science and Technology,2012,32(1):63-69.

[49] 張士川,李楊楊,李金平,等. 采動裂隙突水潰砂過程物理參量變化特征試驗研究[J]. 煤炭學(xué)報,2020,45(10):3548-3555.

ZHANG Shichuan,LI Yangyang,LI Jinping,et al. Experimental studies on variation characteristics of physical parameters during water and sand burst through mining fractures[J]. Journal of China Coal Society,2020,45(10):3548-3555.

[50] 楊斌,楊天鴻,徐曾和,等. 中國西部礦區(qū)厚松散層的潰沙臨界流速與水沙流動特征[J]. 東北大學(xué)學(xué)報(自然科學(xué)版),2018,39(11):1648-1652,1657.

YANG Bin,YANG Tianhong,XU Zenghe,et al. Critical velocity of sand inrush and flow characteristics of water-sand in thick unconsolidated formations of mine in western China[J]. Journal of Northeastern University(Natural Science),2018,39(11):1648-1652,1657.

[51] 許延春. 含黏砂土流動性試驗[J]. 煤炭學(xué)報,2008,33(5):496-499.

XU Yanchun. Fluidity test on sand blended with clay[J]. Journal of China Coal Society,2008,33(5):496-499.

[52] 伍永平,盧明師. 淺埋采場潰沙發(fā)生條件分析[J]. 礦山壓力與頂板管理,2004(3):57-58.

WU Yongping,LU Mingshi. Analysis of sand inrush genera-tion condition in coal mining of shallow coal seam[J]. Ground Pressure and Strata Control,2004,20(3):57-58.

[53] 楊鑫,徐曾和,楊天鴻,等. 西部典型礦區(qū)風(fēng)積沙含水層突水潰沙的起動條件與運移特征[J]. 巖土力學(xué),2018,39(1):21-28,35.

YANG Xin,XU Zenghe,YANG Tianhong,et al. Incipience condition and migration characteristics of aeolian-sand aquifer in a typical western mine[J]. Rock and Soil Mechanics,2018,39(1):21-28.

[54] MA D,DUAN H Y,LIU W T,et al. Water-sediment two-phase flow inrush hazard in rock fractures of overburden strata during coal mining[J]. Mine Water and the Environment,2020,39,308-319.

[55] 王世東,沈顯華,牟平. 韓家灣煤礦淺埋煤層富水區(qū)下潰砂突水性預(yù)測[J]. 煤炭科學(xué)技術(shù),2009,37(1):92-95.

WANG Shidong,SHEN Xianhua,MOU Ping. Prediction of sand and water inrush in seam with shallow depth and under rich water aquifer in Hanjiawan mine[J]. Coal Science and Technology,2009,37(1):92-95.

[56] 劉宏源,毛善君,王振榮,等. 基于GIS的礦井潰水潰沙預(yù)警方法[J]. 煤炭科學(xué)技術(shù),2010,38(4):86-89.

LIU Hongyuan,MAO Shanjun,WANG Zhenrong,et al. Water inrush and sand inrush pre-warning method based on GIS in mine[J]. Coal Science and Technology,2010,38(4):86-89.

[57] 范立民,馬雄德,蔣輝,等. 西部生態(tài)脆弱礦區(qū)礦井突水潰沙危險性分區(qū)[J]. 煤炭學(xué)報,2016,41(3):531-536.

FAN Limin,MA Xiongde,JIANG Hui,et al. Risk evaluation on water and sand inrush in ecologically fragile coal mine[J]. Journal of China Coal Society,2016,41(3):531-536.

[58] 隋旺華,董青紅. 近松散層開采孔隙水壓力變化及其對水砂突涌的前兆意義[J]. 巖石力學(xué)與工程學(xué)報,2008,27(9):1908-1916.

SUI Wanghua,DONG Qinghong. Variation of pore water pressure and its precursor significance for quicksand disasters due to mining near unconsolidated Formations[J]. Chinese Journal of Rock Mechanics and Engineering,2008,27(9):1908-1916.

[59] 周振方,曹海東,朱明誠,等. 水泥-水玻璃雙液漿在工作面頂板突水潰砂治理中的應(yīng)用[J]. 煤田地質(zhì)與勘探,2018,46(6):121-127.

ZHOU Zhenfang,CAO Haidong,ZHU Mingcheng,et al. Application of cement-sodium silicate mixed grout in control of water and sand bursting from roof of the working face[J]. Coal Geology & Exploration,2018,46(6):121-127.

[60] 趙慶彪,馬念杰,劉斯筠. 注漿治理沖積層放頂煤綜采工作面冒頂潰砂[J]. 煤礦安全,2002(10):33-35.

ZHAO Qingbiao,MA Nianjie,LIU Sijun. Grouting treatment of roof fall and sand break in fully mechanized mining face with top coal caving in alluvium[J]. Sefety in Coal Mines,2002(10):33-35.

[61] 王振榮. 厚松散含水層煤層開采突水潰沙防治技術(shù)[J]. 煤炭科學(xué)技術(shù),2016,44(8):46-51.

WANG Zhenrong. Water inrush and sand inrush prevention and control technology for coal mining in seam with thick and loose aquifer[J]. Coal Science and Technology,2016,44(8):46-51.

[62] 劉洋. 淺埋開采工作面水沙潰涌災(zāi)害預(yù)測及防治對策[J]. 西安科技大學(xué)學(xué)報,2016,36(6):775-781.

LIU Yang. Disaster prediction and prevention countermeasures of water-sand inrush in shallow mining face[J]. Journal of Xi’an University of Science and Technology,2016,36(6):775-781.

[63] 李德彬. 煤礦頂板含水層潰水潰沙災(zāi)害井下?lián)跛畨ㄔ旒夹g(shù)[J]. 礦業(yè)安全與環(huán)保,2019,46(3):74-77,81.

LI Debin. Construction technology of water-retaining wall after water and sand bursting in the aquifer of coal mine roof [J]. Mining Safety & Environmental Protection,2019,46(3):74- 77,81.

[64] 袁奇,王蓉蓉,袁鑫,等. 垮落帶下金屬網(wǎng)和雙抗網(wǎng)防潰砂機理試驗研究[J]. 煤炭工程,2017,49(6):82-84.

YUAN Qi,WANG Rongrong,YUAN Xin,et al. Experimental investigation on the mechanism of metal and double-antibody net for water and sand inrush prevention under caving zone[J]. Coal Engineering,2017,49(6):82-84.

[65] 林青,喬偉. 崔木煤礦頂板離層水防治技術(shù)[J]. 煤炭科學(xué)技術(shù),2016,44(3):129-134.

LIN Qing,QIAO Wei. Water prevention and control technology of roof bed separation in Cuimu Mine[J]. Coal Science and Technology,2016,44(3):129-134.

[66] MOJTABA Rahimi,DAVE Chan,ALIREZA Nouri. Constitutive model for monotonic and cyclic responses of loosely cemented sand formations[J]. Journal of Rock Mechanics and Geotechnical Engineering,2018,10(4):740-752.

[67] TIENNOT M,MERTZ J D,BOURGES A. Influence of clay minerals nature on the hydromechanical and fracture behaviour of stones[J]. Rock Mechanics and Rock Engineering,2019,52:1599-1611.

[68] ROY D G,SINGH T N,KODIKARA J,et al. Effect of water saturation on the fracture and mechanical properties of sedimentary rocks[J]. Rock Mechanics and Rock Engineering,2017,50:2585-2600.

[69] CHERBLANC F,BERTHONNEAU J,BROMBLET P,et al. Influence of water content on the mechanical behaviour of limestone:Role of the clay minerals content[J]. Rock Mechanics and Rock Engineering,2016,49:2033-2042.

[70] 李廷春,盧振,劉建章,等. 泥化弱膠結(jié)軟巖地層中矩形巷道的變形破壞過程分析[J]. 巖土力學(xué),2014,35(4):1077-1083.

LI Tingchun,LU Zhen,LIU Jianzhang,et al. Deformation and failure process analysis of rectangular roadway in muddy weakly cemented soft rock strata[J]. Rock and Soil Mechanics,2014,35(4):1077-1083.

[71] 李桂臣,孫長倫,何錦濤,等. 軟弱泥巖遇水強度弱化特性宏細(xì)觀模擬研究[J]. 中國礦業(yè)大學(xué)學(xué)報,2019,48(5):935-942.

LI Guichen,SUN Changlun,HE Jintao,et al. Macro and meso scale simulation study of the strength-weakening property of soft mudstone affected by water[J]. Journal of China University of Mining & Technology,2019,48(5):935-942.

[72] 宋朝陽,紀(jì)洪廣,劉志強,等. 飽和水弱膠結(jié)砂巖剪切斷裂面形貌特征及破壞機理[J]. 煤炭學(xué)報,2018,43(9):2444-2451.

SONG Zhaoyang,JI Hongguang,LIU Zhiqiang,et al. Morphology and failure mechanism of the shear fracture surface of weakly cemented sandstone with water saturation[J]. Journal of China Coal Society,2018. 43(9):2444-2451.

[73] 喬衛(wèi)國,韋九洲,林登閣,等. 侏羅白堊紀(jì)極弱膠結(jié)軟巖巷道變形破壞機理分析[J]. 山東科技大學(xué)學(xué)報,2013,32(4):1-6.

QIAO Weiguo,WEI Jiuzhou,LIN Dengge,et al. The deformation failure mechanism of very weakly cemented soft rock formed during Jurassic-Cretacenous period in road ways[J]. Journal of Shandong University of Science and Technology,2013,32(4):1-6.

[74] 劉欽,孫亞軍,徐智敏,等. 侏羅系弱膠結(jié)砂巖孔隙介質(zhì)特征及其保水采煤意義[J]. 煤炭學(xué)報,2019,44(3):857-864.

LIU Qin,SUN Yajun,XU Zhimin,et al. Pore media characteristics of Jurassic weak cemented sandstone and its significance for water-preserved coal mining[J]. Journal of China Coal Society,2019,44(3):857-864.

[75] 李回貴,李化敏,汪華君,等. 弱膠結(jié)砂巖的物理力學(xué)特征及定義[J]. 煤炭科學(xué)技術(shù),2017,45(10):1-7.

LI Huigui,LI Huamin,WANG Huajun,et al. Physical and mechanical characteristics and definition of weakly cemented sandstone[J]. Coal Science and Technology,2017,45(10):1-7.

[76] WANG Zhenkang,LI Wenping,WANG Qiqing,et al. Relationships between the petrographic,physical and mechanical characteristics of sedimentary rocks in Jurassic weakly cemented strata[J]. Environmental Earth Sciences,2019,78(5):131.

[77] 謝生榮,陳冬冬,孫顏頂,等. 基本頂彈性基礎(chǔ)邊界薄板模型分析(I)——初次破斷[J]. 煤炭學(xué)報,2016,41(6):1360-1368.

XIE Shengrong,CHEN Dongdong,SUN Yanding,et al. Analysis on thin plate model of basic roof at elastic foundation boundary(I):First breaking [J]. Journal of China Coal Society,2016,41(6):1360-01368.

[78] WHITTAKER B N. An appraisal of strata control practice[J]. Transactions of the Institution of Mining and Metallurgy,Section A:Mining Technology,1974,11(11):9-24.

[79] EVERLING G. Die Vorausberechnung des Gebirgsbrucks fur einen Abbauplan[J]. Gluckauf,1973,109(23):1131-1133.

[80] PARK D W,GALL V. Supercomputer assisted three-dimensional finite element analysis of a longwall panel[A]. Rock Mechanics as a Guide for Efficient Utilization of Natural Resources:Proc 30th U. S. Rock Mechanics. Symp. [C]. Morgan Town,1989,26(6):133-140.

[81] 錢鳴高,茅獻(xiàn)彪,繆協(xié)興. 采場覆巖中關(guān)鍵層上載荷的變化規(guī)律[J]. 煤炭學(xué)報,1998,23(2):25-29.

QIAN Minggao,MAO Xianbiao,MIAO Xiexing. Variation of loads on the key layer of the overlying strata above the workings[J]. Journal of China Coal Society,1998,23(2):25-29.

[82] BEHERA B,YADAV A,SINGH G S P,et al. Numerical modeling study of the geo-mechanical response of strata in longwall operations with particular reference to Indian geo-mining conditions[J]. Rock Mechanics and Rock Engineering,2020,53:1827-1856.

[83] 劉雙躍,錢鳴高. 老頂斷裂位置及斷裂后回轉(zhuǎn)角的數(shù)值分析[J]. 中國礦業(yè)大學(xué)學(xué)報,1989,18(1):34-39.

LIU Shuangyue,QIAN Minggao. The numerical analysis of the craeked position and inelination of the main roof[J]. Journal of China University of Mining & Technology,1989,18(1):34-39.

[84] 馬慶云,趙曉東,宋振騏. 采場老頂巖梁的超前破斷與礦山壓力[J]. 煤炭學(xué)報,2001,26(5):473-477.

MA Qingyun,ZHAO Xiaodong,SONG Zhenqi. Break of main roof ahead of workface and ground pressure[J]. Journal of China Coal Society,2001,26(5):473-477.

[85] 潘岳,顧士坦. 基于軟化地基和彈性地基假定的堅硬頂板力學(xué)特性分析[J]. 巖石力學(xué)與工程學(xué)報,2015,34(7):1402-1414.

PAN Yue,GU Shitan. Mechanical properties of hard roof based on assumptions of soften founation elastic founation[J]. Chinese Journal of Rock Mechanics and Engineering,2015,34(7):1402-1414.

[86] 李新元,馬念杰,鐘亞平,等. 堅硬頂板斷裂過程中彈性能量積聚與釋放的分布規(guī)律[J]. 巖石力學(xué)與工程學(xué)報,2007,26(S1):2786-2793.

LI Xinyuan,MA Nianjie,ZHONG Yaping,et al. Storage and release regular of elastic energy distribution in tight roof fracturing[J]. Chinese Journal of Rock Mechanics and Engineering,2007,26(S1):2786-2793.

[87] MONDAL D,ROY P,BEHERA P K. Use of correlation fractal dimension signatures for understanding the overlying strata dynamics in longwall coal mines[J]. International Journal of Rock Mechanics and Mining Sciences,2017,91:210-221.

[88] XU C,FU Q,CUI X Y,et al. Apparent-depth effects of the dynamic failure of thick hard rock strata on the underlying coal mass during underground mining[J]. Rock Mechanics and Rock Engineering,2019,52:1565-1576.

[89] 蔣金泉,張培鵬,聶禮生. 高位硬厚巖層破斷規(guī)律及其動力響應(yīng)分析[J]. 巖石力學(xué)與工程學(xué)報,2014,33(7):1366-1374.

JIANG Jinquan,ZHANG Peipeng,NIE Lisheng. Evolutionary characteristics of fracture laws of high-position hard thick strata with elastic foundaiton boundary[J]. Chinese Journal of Rock Mechanics and Engineering,2014,33(7):1366-1374.

[90] YARDIMCI A G,KARAKUS M. A new protective destressing technique in underground hard coal mining[J]. International Journal of Rock Mechanics and Mining Sciences,2020,130:14.

[91] 黃慶享,張沛. 厚砂土層下頂板關(guān)鍵塊上的動態(tài)載荷傳遞規(guī)律[J]. 巖石力學(xué)與工程學(xué)報,2004,23(24):4179-4182.

HUANG Qingxiang,ZHANG Pei. Study on dynamic load distribution on key roof blocks of under thick sandy soil stratum[J]. Chinese Journal of Rock Mechanics and Engineering,2004,23(24):4179-4182.

[92] 許家林,朱衛(wèi)兵,鞠金峰,等. 采場大面積壓架冒頂事故防治技術(shù)研究[J]. 煤炭科學(xué)技術(shù),2015,43(6):1-8,47.

XU Jialin,ZHU Weibing,JU Jinfeng,et al. Study on prevention and control technology of large area powered support jammed and roof falling accident occurred in coal mining face[J]. Coal Science and Technology,2015,43(6):1-8,47.

[93] 喬偉,李文平,孫如華,等. 煤礦特大動力突水動力沖破帶形成機理研究[J]. 巖土工程學(xué)報,2011,33(11):1726-1733.

QIAO Wei,LI Wenping,SUN Ruhua,et al. Formation mechanism of dynamic impact failure zone of super dynamic water inrush in coal mine[J]. Chinese Journal of Geotechnical Engineering,2011,33(11):1726-1733.

[94] 張培鵬,蔣力帥,劉緒峰,等. 高位硬厚巖層采動覆巖結(jié)構(gòu)演化特征及致災(zāi)規(guī)律[J]. 采礦與安全工程學(xué)報,2017,34(5):852-860.

ZHANG Peipeng,JIANG Lishuai,LIU Xufeng,et al. Mining induced overlying strata structure evolution characteristics and disaster triggering under high level hard thick strata[J]. Journal of Mining & Safety Engineering,2017,34(5):852-860.

[95] 朱衛(wèi)兵,王曉振,孔翔,等. 覆巖離層區(qū)積水引發(fā)的采場突水機制研究[J]. 巖石力學(xué)與工程學(xué)報,2009,28(2):306-311.

ZHU Weibing,WANG Xiaozhen,KONG Xiang,et al. Study of mechanism of stope water inrush caused by water accumulation in overburden separation areas[J]. Chinese Journal of Rock Mechanics and Engineering,2009,28(2):306-311.

[96] 柳昭星,董書寧,南生輝,等. 邯邢礦區(qū)中奧灰頂部空隙特征顯微CT分析[J]. 采礦與安全工程學(xué)報,2021,38(2):343-352.

LIU Zhaoxing,DONG Shuning,NAN Shenghui,et al. Micro-CT analysis of void characteristics at the top of middle ordovician limestone in Hanxing mining area[J]. Journal of Mining & Safety Engineering,2021,38(2):343-352.

主站蜘蛛池模板: 久久综合婷婷| 波多野衣结在线精品二区| 国产XXXX做受性欧美88| 一级毛片在线播放免费观看| 色综合网址| 狠狠综合久久| 中文字幕人妻av一区二区| 国产欧美视频在线| 国产va在线| 97久久人人超碰国产精品| 欧美精品v欧洲精品| 日韩精品一区二区三区大桥未久| 99久久国产综合精品2020| 麻豆精品视频在线原创| 无码人妻热线精品视频| 亚洲浓毛av| 欧亚日韩Av| 亚洲国产AV无码综合原创| 亚洲狼网站狼狼鲁亚洲下载| 91亚洲国产视频| 久久久精品国产亚洲AV日韩| 欧美另类一区| 中文字幕永久在线看| 国模视频一区二区| 一本无码在线观看| 高清久久精品亚洲日韩Av| 亚洲国产欧美目韩成人综合| 日韩不卡高清视频| 精品一区二区三区中文字幕| 国产成人综合网在线观看| 日本在线欧美在线| 日韩第九页| 美美女高清毛片视频免费观看| 欧美中出一区二区| 国产青榴视频在线观看网站| 欧美精品在线看| 亚洲aaa视频| 欧美精品二区| 伊人久久大香线蕉aⅴ色| 日a本亚洲中文在线观看| 国产打屁股免费区网站| 国产精品无码作爱| 国模在线视频一区二区三区| 国产精品女人呻吟在线观看| 亚洲人精品亚洲人成在线| 女人18毛片水真多国产| 成人久久18免费网站| 国产精品原创不卡在线| 香蕉精品在线| 91免费观看视频| 久久综合九色综合97网| 久久久受www免费人成| 蜜桃臀无码内射一区二区三区 | 无码av免费不卡在线观看| 日本高清免费不卡视频| 九九热视频精品在线| 综合天天色| 四虎精品免费久久| 午夜福利网址| 97se亚洲综合在线天天| 99爱在线| 久久精品国产999大香线焦| 国产免费观看av大片的网站| 亚洲一区二区成人| 欧美在线一级片| 亚洲动漫h| 国产精品jizz在线观看软件| 亚洲国产精品久久久久秋霞影院| 国产激爽大片高清在线观看| 亚洲欧美在线精品一区二区| 欧美日韩成人| 久久久国产精品无码专区| 亚洲另类色| 国产无码精品在线| 国产成人高清亚洲一区久久| 自拍偷拍欧美日韩| 激情无码视频在线看| 操操操综合网| 精品国产成人三级在线观看| 国产午夜福利片在线观看| 热这里只有精品国产热门精品| 亚洲性影院|