張清宇,李曉如,蕭锘瑩,陳漢城,范小平
果蔬包裝用可生物降解材料的制備與應用研究進展
張清宇1,李曉如1,蕭锘瑩1,陳漢城2,范小平1
(1.華南農業大學 食品學院,廣州 510642;2.廣東安德力新材料有限公司,廣東 汕頭 515800)
可生物降解材料具有高效和環保的特點,可以減輕傳統石油基材料過度使用帶來的環境污染問題,總結可生物降解材料及其制備技術的特點為進一步促進其在果蔬包裝中的應用提供參考和基礎。首先對現有的可生物降解材料進行分類,其次探究其制備方法,然后對近年來可生物降解材料在生鮮果蔬包裝中的應用,以及對生鮮果蔬保質期和質量的影響相關的研究進行總結和分析,最后對可生物降解材料的特點和應用前景進行歸納、分析和展望。可生物降解材料具有良好的性能,適當的透氣性和透濕性,較高的CO2/O2選擇透過性,可大幅度地提高果蔬的貨架期。可生物降解材料相較于現有的保鮮包裝材料有更好的保鮮效果,高效環保,能減輕不可降解材料對環境造成的污染問題。
果蔬包裝;可生物降解材料;制備;應用;進展
近年來,伴隨著食物消費結構的演變和膳食結構的破壞,加工程度最低的生鮮果蔬消費迅速增長[1]。生產鮮切果蔬時,通過剝皮、切割、洗滌、用消毒劑殺菌、干燥等處理改變了其物理完整性,使其比原料更易腐爛[2]。這是由于收獲和加工后果蔬活組織的呼吸作用、蒸騰作用加劇,酶活性增強,同時腐敗菌和病原菌大量增殖[3]。據統計,發達國家果蔬產品的損耗率不到5%,而我國果蔬的腐爛率高達25%~30%[4]。包裝可以阻礙果蔬的定性腐敗,一般來說,果蔬的品質與氧氣的濃度和儲存溫度有關,適合的條件可以降低其呼吸速率,從而限制新鮮質量的損失[5],因此,果蔬保鮮特性和包裝薄膜滲透率密切相關。
目前,生鮮果蔬包裝普遍采用的材料仍是石油基聚合物膜,比如聚乙烯、聚丙烯、聚苯乙烯膜等,由于這些石油基包裝膜的非生物可降解性,已經導致了嚴重的生態問題。從2021年1月起,隨著我國“禁塑令”全面實施,以更環保的可生物降解材料取代傳統石油基包裝薄膜則顯得越來越有必要[6]。生物降解性不僅是一種功能要求,也是一種重要的環境屬性。
可生物降解材料是由淀粉和生物衍生單體等可再生原料生產得到[7],能夠回收利用,也可以被微生物降解。因為與傳統石油基材料相比,可生物降解材料的成本高、整體性能差,所以導致其市場占額還遠遠不夠,各方面的研究還有待進一步深入和完善。基于此,文中首先對目前果蔬包裝用的可生物降解材料進行分類,然后對其制備方法和應用進展進行歸納、總結和分析,并對今后該領域的進一步研究進行展望。
可生物降解材料包括微生物合成降解材料、化學合成降解材料和天然高分子共混降解材料三大類,見表1。微生物合成降解材料為一類聚酯,它是以脂肪族結構和酯基為主鏈構成的,由某些不常見的微生物以糖和有機酸為原料經發酵合成而成[8];化學合成降解材料由2種或2種以上的組分(親水膠體或脂質)組成,以產生比單個組分具有更 好特性的混合;天然高分子共混降解材料主要是全淀粉材料,是一種將淀粉與增塑劑加熱混合而成的材料[9]。
2.1.1 流延法
流延法是指在陶瓷粉料中加入溶劑、分散劑、粘結劑、增塑劑等成分,得到均勻分散的穩定料漿,然后在流延機上制得一定厚度薄膜的成型方法。流延法在塑料和涂料工業上應用廣泛,如制備薄膜、塑料袋等,常見的有用于果蔬包裝的PVA緩釋薄膜等。流延法加工設備簡單、成本低、所制備的產品性能好,常用于在高溫下加工易降解或熔融黏度高的聚合物,在制備聚合物基功能材料方面已得到了較為廣泛的應用[10]。
葉青青等[11]采用流延法制備了結構均勻的殼聚糖/聚賴氨酸復合膜,將其用于柑橘的保鮮,結果表明該膜減緩了柑橘VC含量和含糖量的流失速度,抑制了柑橘的損失和腐敗。Ponnudurai等[12]從香蕉中提取出一種纖維素NFC,并以NFC、聚乙烯醇和聚丙烯酸為原料,通過流延法制備納米纖維膜,發現該膜可以防紫外線,具有強交聯,高隔氧能力和較高的抗拉強度等特點。用該納米薄膜包裝的西紅柿的保質期可以維持15 d,比傳統薄膜延長了7 d。蔣金勇[13]通過流延法制備了PLA-PBSA/生姜精油/茶樹精油活性薄膜,發現2種精油可以和PLA-PBSA相容,使薄膜的抗氧化性能、氧氣透過率和水蒸氣透過率均得到進一步提升;該薄膜適合應用于強呼吸躍變型果蔬的保鮮(如西蘭花),可以在保持水果較高抗壞血酸含量的同時有效抑制丙二醛(MDA)含量的上升。
2.1.2 靜電紡絲法
靜電紡絲技術具有成本效益高、效率高等優點,用于制造功能性微尺度和納米尺度的聚合物纖維。主要利用電勢運行,釋放導電溶液,泰勒錐形成,在各種力(如靜電、阻力和重力)的作用下獲得超細纖維線,最后,通過不同形狀的裝置收集纖維[14]。可以根據電紡纖維的特性和具體應用進行調整,包括改變其厚度、長度、面積體積比、表面化學和成分的能力。此外,電紡纖維具有密度低、比表面積大、孔隙率高、孔徑可調等優點。基于這些原因,靜電紡絲常被用于制造多種用途的功能材料,包括組織工程、藥物遞送、傷口敷料、過濾、電極設計、酶固定和食品包裝[15]。歸納了靜電紡絲聚合物在果蔬包裝中的應用情況,見表2。
靜電紡納米纖維具有許多優點,與傳統的成膜方法相比有著巨大的進步。目前的靜電紡絲技術在食品包裝行業中的應用大部分還限于實驗室規模,而要普遍應用于工業層面上促進產業化和作為食品包裝薄膜,則必須在商業規模上生產纖維。總之,食品包裝用靜電紡納米纖維的穩定性、阻隔性能、功能性和力學性能仍有待進一步研究和優化。
2.1.3 復合涂膜
大多數研究表明,復合涂膜是提高鮮切果蔬品質較有前景的方法,因為它能夠將抗氧化劑、抗菌劑、保健品、顏色和風味作為納米載體進行封裝。該方法能夠作為活性化合物的儲存庫,保護活性化合物并調節其受控釋放,以響應某些觸發因素[22]。歸納分析了復合涂膜在果蔬包裝中的應用情況,見表3。
表1 可生物降解材料分類

Tab.1 Classification of biodegradable plastics
表2 靜電紡絲聚合物在果蔬包裝中的應用

Tab.2 Application of electrospun polymer in fruit and vegetable packaging
表3 復合涂膜在果蔬保鮮中的應用

Tab.3 Application of nano emulsion film in preservation of fruits and vegetables
目前,應用于果蔬復合涂膜合成方法主要是共混法,簡單的共混法所制備的薄膜在膜與膜之間存在著明顯的界面,為一個熱力學不穩定體系,而表3的3種制備方法可以有效地減小不穩定程度,降低界面張力。天然來源的抗菌劑、抗氧化劑和織構增強劑是化學添加劑的潛在替代品,代表了滿足消費者要求的一種有前途的策略。相較于傳統的乳液型食用涂膜,使用天然活性化合物配制的納米乳液型涂膜可以提高鮮切果蔬的安全性和保質期。
微膠囊技術指將化合物封裝在微球或微膠囊內,其平均直徑為1 mm到幾百μm。許多不同的活性材料,如藥物、酶、維生素、殺蟲劑、香料和催化劑,已成功地封裝在由多種聚合物和非聚合物材料制成的微球或微膠囊中,包括聚乙二醇、聚甲基丙烯酸甲酯、纖維素、明膠等。這些微膠囊通過不同的釋放機制在適當的時間釋放其內容物。該技術在醫藥、農業、食品、印刷等多個領域得到廣泛應用[33]。
微膠囊技術可以有效防止有害物質直接與鮮切果蔬接觸,減緩果蔬的氧化速度和腐敗速率,從而有效地延長其貨架期。Cui等[34]制備了石榴多酚的殼聚糖納米顆粒,將其加入玉米醇溶蛋白制備活性膜,能有效抑制單核李斯特菌的生長,能夠有效地抑制微生物的活性。
雖然近年來微膠囊技術得到快速發展,但為了克服方法的局限性,提高微膠囊的利用率,在某些領域仍有許多需要進一步研究的問題,而工程技術對改善微膠囊的各種制備工藝和提高其性能至關重要。
目前,市面上的果蔬包裝多為疏水性石油基聚合物材料,其在制作中添加的增塑劑和溶劑影響了果蔬的風味揮發性成分的吸附和轉移,導致包裝內部風味特性的整體不平衡,比如聚丙烯會吸收各種風味化合物,包括酯、酮和醛等,而可生物降解材料能夠完全避免此問題。其次相較于傳統的石油基薄膜,可生物降解薄膜具有更優的氣體透過性和水蒸氣透過性,故具有長遠的推廣意義[35]。
3.1.1 聚乳酸的應用
聚乳酸(Polylactice Acid,PLA)是一種熱塑性脂肪族聚酯,來源于玉米、木薯根和甘蔗等可再生材料。PLA具有良好的透明性,力學性能,生物相容性,熱穩定性等,其產業化工藝技術成熟,產量大,價格低廉,應用廣,易降解;被歸類為GRAS(一般被美國食品藥品監督管理局認定為安全的并經歐盟委員會授權用于與食品接觸),因此,它常常被用于制備可生物降解包裝膜,用于延長各種農產品的貨架期,包括藍莓、芹菜、菠菜、甜瓜等,見表4。
3.1.2 聚羥基脂肪酸酯的應用
聚羥基脂肪酸酯(Holyhydroxyalkanoates,PHA)是通過發酵工程技術制備的生物材料[50]。PHA的制備是一個低能耗和低CO2排放的過程,具有許多可調節的材料性能,易于降解,從制備過程到使用后都有利于對環境的保護;其隨著成本的進一步降低,以及高附加值應用的開發,將成為一種成本可被市場接受的多領域應用的生物材料。
Moreno等[51]通過靜電紡絲技術在PHA薄膜上制備了富含酚類物質的玉米醇溶蛋白纖維,并將其應用于食品包裝的內涂層。結果表明,交聯延遲了酚類化合物(迷迭香酸、咖啡酸及其衍生物)在2種溶劑中的釋放,并保持了它們的抗氧化性能,有助于親水性和親脂性食品的保存。
Yang等[52]制備了一系列緩釋藥速率可調的PHA微球或支架。研究發現,以Ci為載體的PHA微球對革蘭氏陽性菌和革蘭氏陰性菌均表現出優異的抗菌活性。通過果實保鮮實驗,證實了負載型Ci微球具有良好的防腐性能和優良的抗菌保鮮性能。Ci微球和支架具有良好的生物相容性和緩釋性能,將在農業和食品領域得到廣泛應用。
3.2.1 聚己內酯的應用
聚己內酯(Polycactone,PCL)是一種可生物降解的聚酯,由ε-己內酯開環聚合而成。PCL具有很好的柔性和加工性,但其熔點較低,阻隔性較差,因其具有良好的生物相容性,所以可作為改性劑提高其他高聚物的性能。PCL常被應用于卷心菜、花椰菜、西紅柿、甜玉米和藍莓等果蔬的包裝和貯藏,歸納了PCL在果蔬包裝中的應用,見表5。
3.2.2 聚乙烯醇的應用
聚乙烯醇(Polyvinyl alcoholr,PVA)是一種性能良好的合成聚合物,具有良好水溶性、黏度和熱穩定性,廣泛應用于化工工業[62]。研究表明,一些微生物可以把PVA當作碳和能源。盡管如此,大部分的工作都集中在細菌上,只有少數研究涉及真菌降解聚合物。真菌菌株能夠生長和降解各種化合物,如有機污染物、高分子材料[63]。
Min等[64]制備了HACC/PVA復合涂層,發現其對大腸桿菌、金黃色葡萄球菌和灰霉病菌的抑制率可達99%,對草莓有良好的抑菌效果。Lan等[65]制備 了PVA/茶多酚復合膜用于草莓的保鮮,發現其可以 有效地延緩草莓果體重和硬度下降。此外,PVA/ 茶多酚復合膜顯著地延緩了果可滴定酸和可溶性固形物流失和有限的微生物增殖,其能延長草莓的保質期。
表4 PLA在果蔬包裝中的應用

Tab.4 Application of PLA in fruit and vegetable packaging
表5 PCL在果蔬包裝中的應用

Tab.5 Application of PCL in fruit and vegetable packaging
Fahma等[66]采用溶劑蒸發澆鑄法制備了熱塑性淀粉-PVA-纖維素納米復合材料。將其應用于冷藏和常溫下的紅辣椒包裝。發現用納米復合薄膜包裝的紅辣椒在室溫下貯藏12 d,而在冷藏溫度下,紅辣椒的儲藏期長達15 d。
杜運鵬[67]制備了PVA抗氧復合薄膜,并進一步對其進行納米改性,將其應用于鮮切山藥的保鮮。在常溫下,測定了不同包裝天數鮮切山藥的質量損失率、VC含量、硬度、可溶性固形物、色差和多酚氧化酶活性等指標,發現相較于對照組,納米改性PVA抗氧復合薄膜保鮮效果更好。從綜合抗氧保鮮分析來看,含有質量分數為0.3%的4-HR和質量分數為0.3%的CA納米改性PVA抗氧復合薄膜的保鮮效果最優。
3.2.3 聚己二酸/對苯二甲酸丁二酯的應用
聚己二酸/對苯二甲酸丁二酯(Poly (butyleneadipate-co-terephthalate),PBAT)是目前比較熱門的可生物降解材料之一,其韌性、熱穩定性和透氣性良好。因其分子鏈兩側存在苯環,故力學性能和耐沖擊性能較強。PBAT的結晶度和熔點相對較低,PBAT包裝膜不僅廣泛應用于果蔬的保鮮、冷凍食品的儲運等,在農業上也應用廣泛,例如地面覆蓋薄膜除草[68]。歸納分析了PBAT在果蔬包裝中的應用情況,見表6。
3.3.1 蛋白質型材料的應用
蛋白質是由肽鍵連接在一起的氨基酸組成的動植物細胞的結構和功能成分,動植物來源的蛋白質已被廣泛用于薄膜制備。蛋白質型材料具有良好的韌性與阻隔性,高效的生物降解性,但抗拉強度不足,耐高溫能力差,可與其他聚合物進行改進加工,提高其性能。大豆蛋白、小麥面筋蛋白、玉米醇溶蛋白和乳清蛋白是常用的植物蛋白,常用于制作薄膜的動物蛋白有明膠、膠原蛋白和角蛋白。當蛋白質基薄膜應用于食品保鮮時,必須考慮食物過敏、小麥面筋不耐癥(乳糜瀉)、牛奶蛋白不耐癥和宗教信仰/禁令等[75]。
有研究制備了乳清蛋白薄膜,將其用于包裝草莓,發現在7~10 ℃的條件下草莓的保質期延長至12 d,還發現面筋膜比面筋基涂料的防腐效果更 好[76]。Takala等[77]制備了玉米醇溶蛋白膜,并用油酸對其增塑,以延長西蘭花的貨架期。新鮮的西蘭花在低溫下貯藏6 d后,用玉米醇溶蛋白膜密封在玻璃瓶中,保持了原來的硬度和顏色。Vimala等[78]制備了玉米醇溶蛋白基保鮮膜用于蘋果切片的保鮮,發現其防褐變效果與普通保鮮膜相當,但能更好地防止蘋果切片的質量損失。
3.3.2 殼聚糖型材料的應用
殼聚糖是由D-氨基葡萄糖和N-乙酰-D-氨基葡萄糖組成的共聚物[79]。以甲殼素為原料,經堿脫乙酰制得的線形多糖。與其他中性或帶負電的多糖相比,殼聚糖具有獨特的陽離子性質,使其具有強而廣譜的抗菌性能[80];殼聚糖型材料具有良好的成膜性,生物可降解性與生物相容性,對人體無毒無害等優點。歸納分析了殼聚糖型材料在果蔬包裝中的應用情況,見表7。
表 6 PBAT在果蔬包裝中的應用

Tab.6 Application of PBAT in fruit and vegetable packaging
表7 殼聚糖在果蔬包裝中的應用

Tab.7 Application of chitosan in fruit and vegetable packaging
一方面,果蔬產品行業處于高速發展階段,對包裝材料的需求旺盛,而另一方面,石油基包裝材料導致了嚴重的環境污染問題,因此,尋找高效、環保的果蔬保鮮包裝材料已成為當下的熱點。在過去的幾十年里,人們對可生物降解材料進行了大量的研究并探討其提高果蔬產品貨架期的可行性。相較于傳統的石油基材料,可生物降解包裝材料有以下特點:可生物降解材料有適當的透氣性和透濕性;有較高的CO2/O2選擇透過性;有更好的保鮮效果;高效環保,能減輕不可降解材料對環境造成的污染問題。
近年來,可生物降解材料在市場上的應用占比正在逐步提高,但是目前大部分制備研究技術還僅停留于實驗室階段,要在工業上進一步擴大生產及應用規模,還需要致力于降低可生物降解材料的成本,提高其產量,并對已有材料進行改性,改善其制備方法,以便其在適用性方面超越傳統的石油基材料。雖然可生物降解材料仍存在一些技術問題,但是可以預見。隨著人們環保意識的不斷增強和世界環保組織頒發《環境保護法》等政策,可生物降解材料將逐步廣泛地應用到各個領域。
[1] AHMAD T, CAWOOD M, IQBAL Q, et al. Phytochemicals in Daucus Carota and Their Health Benefits-Review Article[J]. Foods, 2019, 8(9): 424.
[2] PISCOPO A, ZAPPIA A, PRINCI M P, et al. Quality of Shredded Carrots Minimally Processed by Different Dipping Solutions[J]. Journal of Food Science and Technology, 2019, 56(5): 2584-2593.
[3] HUSSEIN Z, FAWOLE O A, OPARA U L. Preharvest Factors Influencing Bruise Damage of Fresh Fruits a Review[J]. Scientia Horticulturae, 2018, 229: 45-58.
[4] 石珂. 果蔬干燥加工新技術[J]. 農村新技術, 2019(8): 56-57.
SHI Ke. New Drying Technology of Fruits and Vegetables[J]. New Rural Technology, 2019(8): 56-57.
[5] SOLTANI F M, FARAHMANDI A, HOSSEINPOUR S. Recent Advances in Ultrasound Application as a Novel Technique in Analysis, Processing and Quality Control of Fruits, Juices and Dairy Products Industries: A review[J]. Ultrason Sonochem, 2019, 57: 73-88.
[6] MORALES-JIMéNEZ M, GOUVEIA L, Yá?EZ-FERNá- NDEZ J, et al. Production, Preparation and Characterization of Microalgae-Based Biopolymer as a Potential Bioactive Film[J]. Coatings (Basel), 2020, 10(2): 120.
[7] VOET V S D, GUIT J, LOOS K. Sustainable Photopolymers in 3D Printing: A Review on Biobased, Biodegradable, and Recyclable Alternatives[J]. Macromolecular Rapid Communications, 2021, 42(3): 2000475.
[8] KABIR E, KAUR R, LEE J, et al. Prospects of Biopolymer Technology as an Alternative Option for Non-Degradable Plastics and Sustainable Management of Plastic Wastes[J]. Journal of Cleaner Production, 2020, 258: 120536.
[9] GERE D, CZIGANY T. Future Trends of Plastic Bottle Recycling: Compatibilization of PET and PLA[J]. Polymer Testing, 2020, 81: 106160.
[10] 方曉霞, 溫變英. 溶液流延法制備聚合物基功能材料研究進展[J]. 塑料, 2014, 43(2): 30-33.
FANG Xiao-xia, WEN Bian-ying. Research Progress on Preparation of Polymer-Based Functional Materials by Solution Casting[J]. Plastics, 2014, 43(2): 30-33.
[11] 葉青青, 李亞娜, 候溫甫. 殼聚糖/聚賴氨酸對柑橘的保鮮性研究[J]. 包裝工程, 2017, 38(17): 52-57.
YE Qing-qing, LI Ya-na, HOU Wen-fu. Freshness of Citrus by Chitosan/Poly-Lysine[J]. Packaging Engineering, 2017, 38(17): 52-57.
[12] PONNUDURAI P K S S G, SUBRAMANIAN J. Synthsis of Nano-Film from Nanofibrillated Cellulose of Banana Pseudostem(Musa Spp) to Extend the Shelf Life of Tomato[J]. Nanotechnology Weekly, 2021, 15: 2.
[13] 蔣金勇. 聚乳酸可降解活性包裝在果蔬保鮮中的應用研究[D]. 上海: 上海海洋大學, 2020: 46-48.
JIANG Jin-yong. Polylactic Acid(PLA) Biodegradable Active Packaging and Its Application in Fruits and Vegetables[D]. Shanghai: Shanghai Ocean University, 2020: 46-48.
[14] ZHANG Cen, LI Yang, WANG Peng, et al. Electrospinning of Nanofibers: Potentials and Perspectives for Active Food Packaging[J]. Comprehensive Reviews in Food Science and Food Safety, 2020, 19(2): 479-502.
[15] WEN Peng, ZHU Ding-he, WU Hong, et al. Encapsulation of Cinnamon Essential Oil in Electrospun Nanofibrous Film for Active Food Packaging[J]. Food Control, 2016, 59: 366-376.
[16] LIU Yao-wen, WANG Shu-yao, LAN Wei-jie, et al. Fabrication of Polylactic Acid/Carbon Nanotubes/Chitosan Composite Fibers by Electrospinning for Strawberry Preservation[J]. International Journal of Biological Macromolecules, 2019, 121: 1329-1336.
[17] LI Sen, YAN Yan, XIAO Guan. Preparation of a Hordein Antioxidant Electrospun Nanofibre Film for Food Packaging and Improvement of the Film Hydrophobic Properties Byheat Treatment[J]. Food Packaging and Shelf Life, 2020: 100466.
[18] RANJAN S, CHANDRASEKARAN R, PALIYATH G, et al. Effect of Hexanal Loaded Electrospun Fiber in Fruit Packaging to Enhance the Post Harvest Quality of Peach[J]. Food Packaging and Shelf Life, 2020, 23: 100447.
[19] BISWAL B, SUBRAMANIAN K S. Slow Release of Hexanal by Biodegradable Electrospun Nanofibres for Increasing Shelf-Life of Harvested Mango Fruits[J]. Madras Agricultural Journal, 2019, 106(10-12): 633-642.
[20] PAN Jie-feng, AI Fang-mi, SHAO Ping, et al. Development of Polyvinyl Alcohol/β-Cyclodextrin Antimicrobial Nanofibers for Fresh Mushroom Packaging[J]. Food Chemistry, 2019, 300: 125249.
[21] MAFTOONAZAD N, RAMASWAMY H. Design and Testing of an Electrospun Nanofiber Mat as a pH Biosensor and Monitor the pH Associated Quality in Fresh Date Fruit (Rutab)[J]. Polymer Testing, 2019, 75: 76-84.
[22] ACEVEDO-FANI A, SOLIVA-FORTUNY R, MARTíN-BELLOSO O. Nanostructured Emulsions and Nanolaminates for Delivery of Active Ingredients: Improving Food Safety and Functionality[J]. Trends in Food Science & Technology, 2017, 60: 12-22.
[23] 薛瓊, 鄧靖, 付艷琪, 等. 改性納米SiO2微球的制備及其在果蔬保鮮中的應用[J]. 包裝學報, 2018, 10(2): 16-22.
XUE Qiong, DENG Jing, FU Yan-qi, et al. Preparation of Modified Nano-SiO2Microspheres and Its Application in FreshKeeping of Fruits and Vegetables[J]. Packaging Journal, 2018, 10(2): 16-22.
[24] KUMAR N, PRATIBHA, NEERAJ, et al. Effect of Chitosan-Pullulan Composite Edible Coating Functionalized with Pomegranate Peel Extract on the Shelf Life of Mango (Mangifera indica)[J]. Coatings, 2021, 11(764): 1-20.
[25] ASAD R, MUHAMMAD A R, ABDOU A, et al. Application of Chitosan-Based Apple Peel Polyphenols Edible Coating on the Preservation of Strawberry (Fragaria Ananassa Cv Hongyan) Fruit[J]. Journal of Food Processing and Preservation, 2020, 45(1): 7-8.
[26] XING Ya-ge, YANG Hua, GUO Xun-lian, et al. Effect of Chitosan/Nano-TiO2Composite Coatings on the Postharvest Quality and Physicochemical Characteristics of Mango Fruits[J]. Scientia Horticulturae, 2020, 263: 109135.
[27] DAVE R K, RAMANA R T V, NANDANE A S. Improvement of Post-Harvest Quality of Pear Fruit with Optimized Composite Edible Coating Formulations[J]. Journal of Food Science and Technology, 2017, 54(12): 3917-3927.
[28] 高燕利, 徐丹, 任丹, 等. 納米氧化鋅復合涂膜中鋅的遷移及其對采后紅橘的影響[J]. 食品與發酵工業, 2020, 46(15): 154-161.
GAO Yan-li, XU Dan, REN Dan, et al. Migration of Zn in Nano Zinc Oxide Composite Coatings and Its Effects on Postharvest Tangerine Fruits[J]. Food and Fermentation Industries, 2020, 46(15): 154-161.
[29] 劉巧, 羅進旭, 付星, 等. 基于聚乙烯醇-溶菌酶復合抗菌涂膜劑的雞蛋保鮮研究[J]. 食品工業科技, 2018, 39(8): 251-256.
LIU Qiao, LUO Jin-xu, FU Xing, et al. Application of Polyvinyl Alcohol-Chitosan Composite Antimicrobial Coating Agent in Preservation of Fresh Eggs[J]. Science and Technology of Food Industry, 2018, 39(8): 251-256.
[30] 李芳菲, 馬文瑤, 李艷梅, 等. 殼聚糖涂膜處理對鮮切桃的保鮮效果[J]. 海南師范大學學報(自然科學版), 2018, 31(1): 44-49.
LI Fang-fei, MA Wen-yao, LI Yan-mei, et al. Effect of Chitosan Coating on Quality Maintenance of Fresh-Cut Peach[J]. Journal of Hainan Normal University (Natural Science), 2018, 31(1): 44-49.
[31] RADI M, AKHAVAN D S, AKHAVAN H R, et al. The Use of Orange Peel Essential Oil Microemulsion and Nanoemulsion in Pectin-Based Coating to Extend the Shelf Life of Fresh-Cut Orange[J]. Journal of Food Processing and Preservation, 2018, 42(2): 13441.
[32] GARCíA-BETANZOS C I, HERNáNDEZ-SáNCHEZ H, BERNAL-COUOH T F, et al. Physicochemical, Total Phenols and Pectin Methylesterase Changes on Quality Maintenance on Guava Fruit (Psidium Guajava L) Coated with Candeuba Wax Solid Lipid Nanoparticles-Xanthan Gum[J]. Food Research International (Ottawa, Ont), 2017, 101: 218-227.
[33] MONALISHA P, POOJA P, MARTIN G J O, et al. Innovative Technologies for Extraction and Microencapsulation of Bioactives from Plant-Based Food Waste and Their Applications in Functional Food Development[J]. Foods, 2021, 10(2): 279.
[34] CUI Hai-ying, SURENDHIRAN D, LI Chang-zhu, et al. Biodegradable Zein Active Film Containing Chitosan Nanoparticle Encapsulated with Pomegranate Peel Extract for Food Packaging[J]. Food Packaging and Shelf Life, 2020, 24: 100511.
[35] 董同力嘎, 張靳, 胡健, 等. 硅橡膠材料、生物可降解材料和微孔材料在果蔬氣調保鮮中的應用與進展[J]. 內蒙古農業大學學報(自然科學版), 2020, 41(6): 96-100.
DONG Tong-li-ga, ZHANG Jin, HU Jian, et al. Application and Research Progress of Silicone Rubber, biodegradable, and Microporous Materials in Modified Atmosphere Packaging of Fresh Fruits and Vegetables[J]. Journal of Inner Mongolia Agricultural University (Natural Science Edition), 2020, 41(6): 96-100.
[36] FRINé V, NELSY G, ROSA P, et al. Effect of PLA Active Packaging Containing Monoterpene-Cyclodextrin Complexes on Berries Preservation[J]. Polymers, 2021, 13(9): 1399.
[37] 沈春華, 李立, 杜云飛. PLA/PHA活性抗菌薄膜對藍莓低溫保鮮效果的影響[J]. 食品與機械, 2018, 34(7): 121-126.
SHEN Chun-hua, LI Li, DU Yun-fei. Effect of PLA/PHA Active Films on Preservation of Blueberries during Cold Storage[J]. Food & Machinery, 2018, 34(7): 121-126.
[38] 吳韜, 袁旭, 王慶慧, 等. AIT生物包裝調控藍莓貨架品質及抗氧化活性研究[J]. 西華大學學報(自然科學版), 2018, 37(3): 11-16.
WU Tao, YUAN Xu, WANG Qing-hui, et al. Effect of AIT-Bio-Film on the Quality and Antioxidant Activity of Blueberry during the Cold Shelf-Life[J]. Journal of Xihua University (Natural Science Edition), 2018, 37(3): 11-16.
[39] GONZáLEZ-BUESA J, PAGE N, KAMINSKI C, et al. Effect of Non-Conventional Atmospheres and Bio- Based Packaging on the Quality and Safety of Listeria Monocytogenes-Inoculated Fresh-Cutcelery(Apium Graveolens L) During Storage[J]. Postharvest Biology and Technology, 2014, 93: 29-37.
[40] 蔣佳男, 李海登, 李繼蘭, 等. 可降解高透CO2透濕果蔬保鮮膜的研制與應用[J]. 食品工業, 2019, 40(11): 138-141.
JIANG Jia-nan, LI Hai-deng, LI Ji-lan, et al. Development and Application of Biodegradable Films with Degradable High CO2Moisture Permeability[J]. The Food Industry, 2019, 40(11): 138-141.
[41] 張琪, 張偉陽, 陳曉東, 等. 聚乳酸薄膜真空包裝對金針菇保鮮效果的研究[J]. 食品工業, 2014, 35(3): 91-95.
ZHANG Qi, ZHANG Wei-yang, CHEN Xiao-dong, et al. Research of Polylactide Film Vacuum Packaging on Preservation of Flammulina Velutipes[J]. The Food Industry, 2014, 35(3): 91-95.
[42] 晏宸然. 用于食品包裝的聚乳酸膜的制備及性能研究[D]. 成都: 成都大學, 2020: 11-16.
YAN Chen-ran. Preparation and Study on Polylactic Acid Film for Food Preservation Packaging[D]. Chengdu: Cheng'du University, 2020: 11-16.
[43] BOTONDI R, BARTOLONI S, BACCELLONI S, et al. Biodegradable PLA (Polylactic Acid) Hinged Trays Keep Quality of Fresh-Cut and Cooked Spinach[J]. Journal of Food Science and Technology, 2015, 52(9): 5938-5945.
[44] 李丹, 李中華, 金林宇, 等. 水降解聚乳酸保鮮袋對綠葉蔬菜的保鮮性能研究[J]. 上海包裝, 2019(10): 42-47.
LI Dan, LI Zhong-hua, JIN Lin-yu, et al. Study on Fresh-keeping Performance of Water Degradable Polylactic Acid Fresh-keeping Bag for Green Leafy Vegetables[J]. Shanghai Packaging, 2019(10): 42-47.
[45] ZHOU Hui-juan, KAWAMURA S, KOSEKI S, et al. Comparative Quality Changes of Fresh-Cut Melon in Bio-Based and Petroleum-Based Plastic Containers during Storage[J]. Environmental Control in Biology, 2016, 54(2): 93-99.
[46] BOTONDI R, MOSCETTI R, MASSANTINI R. A Comparative Study on the Effectiveness of Ozonated Water and Peracetic Acid in the Storability of Packaged Fresh-Cut Melon[J]. Journal of Food Science and Technology, 2016, 53(5): 2352-2360.
[47] LORITE G S, ROCHA J M, MIILUM?KI N, et al. Evaluation of Physicochemical/Microbial Properties and Life Cycle Assessment (LCA) of PLA-Based Nanocomposite Active Packaging[J]. LWT-Food Science and Technology, 2017, 75: 305-315.
[48] 李偉, 張一珠, 付正義, 等. 聚乳酸薄膜對西蘭花的保鮮效果分析[J]. 食品科學, 2016, 37(14): 270-273.
LI Wei, ZHANG Yi-zhu, FU Zheng-yi, et al. Effect of Polylactic Acid Film Packaging on Preservation of Broccoli[J]. Food Science, 2016, 37(14): 270-273.
[49] 何依謠. 聚乳酸/納米纖維素可降解食品包裝薄膜的研究及其在西蘭花保鮮中的應用[D]. 杭州: 浙江大學, 2018: 61-64.
HE Yi-yao. Study on Poly(Lactic Acid)/Nanocrystalline Cellulose Biodegradable Food Packaging Films and the Application of Broccoli Preservation[D]. Hangzhou: Zhejiang University, 2018: 61-64.
[50] 張雪姣, 馬曉軍. PHAs/纖維素復合材料研究進展[J]. 上海包裝, 2017(4): 61-65.
ZHANG Xue-jiao, MA Xiao-jun. Research Progress of PHAs/Cellulose Composites[J]. Shanghai Packaging, 2017(4): 61-65.
[51] MORENO M A, ORQUEDA M E, GóMEZ- MASCARAQUE L G, et al. Crosslinked Electrospun Zein-Based Food Packaging Coatings Containing Bioactive Chilto Fruit Extracts[J]. Food Hydrocolloids, 2019, 95: 496-505.
[52] YANG Shen-yu, MIAO Qiu-ju, HUANG Yi-ping, et al. Preparation of Cinnamaldehyde-Loaded Polyhydroxyalkanoate/Chitosan Porous Microspheres with Adjustable Controlled-Release Property and Its Application in Fruit Preservation[J]. Food Packaging and Shelf Life, 2020, 26: 100596.
[53] ESPINOZA-GARCíA K, MARCOS-FERNáNDEZ A, NAVARRO R, et al. Polymerization of Ε-Caprolactone with Degraded PET for Its Functionalization[J]. Journal of Polymer Research, 2019, 26(8): 1-12.
[54] TAKALA P N, SALMIERI S, BOUMAIL A, et al. Antimicrobial Effect and Physicochemical Properties of Bioactive Trilayer Polycaprolactone/Methylcellulose- Based Films on the Growth of Foodborne Pathogens and Total Microbiota in Fresh Broccoli[J]. Journal of Food Engineering, 2013, 116(3): 648-655.
[55] CHENG Pei-fang, LIANG Min, YUN Xue-yan, et al. Biodegradable Blend Films of Poly(ε-Caprolactone)/ Poly(Propylene Carbonate) for Shelf Life Extension of Whole White Button Mushrooms[J]. Journal of Food Science and Technology, 2022, 59(1): 144-156.
[56] QIN Yu-yue, LIU Dong, WU Yan, et al. Effect of PLA/PCL/Cinnamaldehyde Antimicrobial Packaging on Physicochemical and Microbial Quality of Button Mushroom (AgaricusBisporus)[J]. Postharvest Biology and Technology, 2015, 99: 73-79.
[57] YUN Xue-yan, WANG Yu, LI Meng-ting, et al. Application of Permselective Poly(ε-Caprolactone) Film for Equilibrium-Modified Atmosphere Packaging of Strawberry in Cold Storage[J]. Journal of Food Processing and Preservation, 2017, 41(6): 13247.
[58] YUN Xue-yan, LI Xiao-fang, EERDUNBAYAER, et al. Controllable Poly(L-Lacticacid) Soft Film with Respirability and its Effect on Strawberry Preservation[J]. Polymer Science, Series A, 2021, 63: 77-90.
[59] 成培芳, 董同力嘎, 春艷, 等. 聚己內酯自發氣調包裝薄膜對菠菜貯藏品質的影響[J]. 食品與機械, 2018, 34(2): 133-137.
CHENG Pei-fang, DONG Tong-li-ga, CHUN Yan, et al. Effect of Poly(ε-Caprolactone)modified Atmosphere Packaging Film on Postharvest Quality of Spinach[J]. Food & Machinery, 2018, 34(2): 133-137.
[60] 張燁. 新型果蔬保鮮包裝功能材料的設計及應用[D]. 保定: 河北大學, 2020: 33-54.
ZHANG Ye. Design and Application of New Functional Materials for Preservation Packaging of Fruits and Vegetables[D]. Baoding: Hebei University, 2020: 33-54.
[61] YUN Xue-yan, QI Xiao-jing, ZHANG Yu-qin, et al. Application of SiO-Coated Poly (ε-Caprolactone) Film for Preservation of Cherry Tomato[J]. Polymers and Polymer Composites, 2020, 28(5): 309-319.
[62] MěRKOVá M, JULINOVá M, HOUSER J, et al. An Effect of Salt Concentration and Inoculum Size on Poly(Vinyl Alcohol) Utilization by Two Sphingomonas Strains[J]. Journal of Polymers and the Environment, 2018, 26(6): 2227-2233.
[63] ULLAH M, LI Hui, SUN Shi-wei, et al. Polyvinyl Alcohol Degradation byRA23 from Oil Sludge Sample[J]. 3 Biotech, 2019, 9(10): 350.
[64] MIN Tian-tian, ZHU Zhu, SUN Xiao-li, et al. Highly Efficient Antifogging and Antibacterial Food Packaging Film Fabricated by Novel Quaternary Ammonium Chitosan Composite[J]. Food Chemistry, 2020, 308: 125682.
[65] LAN Wei-jie, ZHANG Rong, AHMED S, et al. Effects of Various Antimicrobial Polyvinyl Alcohol/Tea Polyphenol Composite Films on the Shelf Life of Packaged Strawberries[J]. LWT, 2019, 113: 108297.
[66] FARAH F, PRIYA W O, NURMALISA L, et al. Thermoplastic Starch-PVA-Cellulose Nanocomposite Film for Extending the Shelf Life of Red Chili[J]. IOP Conference Series: Earth and Environmental Science, 2020, 460(1): 012036.
[67] 杜運鵬. 納米改性聚乙烯醇(PVA)抗氧復合包裝薄膜的制備及對鮮切山藥保鮮的應用[D]. 上海: 上海海洋大學, 2017: 50-56.
DU Yun-peng. Preparation of Nano Modified Polyvinyl Alcohol (PVA) Anti Oxygen Composite Packaging Film and Its Application in Fresh Cut Yam[D]. Shanghai: Shanghai Ocean University, 2017: 50-56.
[68] 魏風軍, 武明毅, 吳靜茹. 可生物降解PBAT材料在蔬果類阻隔性包裝中的應用探析[J]. 今日印刷, 2020(2): 54-56.
WEI Feng-jun, WU Ming-yi, WU Jing-ru. Application of Biodegradable PBAT Material in Barrier Packaging of Fruits and Vegetables[J]. Print Today, 2020(2): 54-56.
[69] CAO Cheng-lin, WANG Yu-yuan, ZHENG Shao-ming, et al. Poly (Butylene Adipate-co-Terephthalate)/Titanium Dioxide/Silver Composite Biofilms for Food Packaging Application[J]. LWT-Food Science and Technology, 2020, 132: 109874.
[70] BLACK-SOLIS J, VENTURA-AGUILAR R I, CORREA-PACHECO Z, et al. Preharvest Use of Biodegradable Polyester Nets Added with Cinnamon Essential Oil and the Effect on the Storage Life of Tomatoes and the Development of Alternaria Alternata[J]. Scientia Horticulturae, 2019, 245: 65-73.
[71] 劉孟禹. 改性PBS薄膜的制備及對櫻桃番茄氣調保鮮效果的研究[D]. 呼和浩特: 內蒙古農業大學, 2019: 23-38.
LIU Meng-yu. Preparation of Modified PBS Film and Its Effect on Fresh-Keeping of Cherry Tomato[D]. Hohhot: Inner Mongolia Agricultural University, 2019: 23-38.
[72] VERDI A G, SOUZA A G, ROCHA D B, et al. Biodegradable Films Functionalized with Moringa Oleifera Applied in Food Packaging[J]. Iranian Polymer Journal, 2021, 30(3): 235-246.
[73] 許兵. 高透濕性聚乙烯薄膜的制備及其對小黃瓜保鮮效果的研究[D]. 呼和浩特: 內蒙古農業大學, 2018: 20-36.
XU Bing. Study on the Preparation of High Permeability Polyethylene Film and the Effect of Minicucumber Preservation[D]. Hohhot: Inner Mongolia Agricultural University, 2018: 20-36.
[74] 春艷. 基于金針菇保鮮的可呼吸型包裝薄膜的制備及其應用研究[D]. 呼和浩特: 內蒙古農業大學, 2019: 14-35.
CHUN Yan. Study on the Preparation and Application of Breathable Packaging Films Based on the Preservation of Mushroom[D]. Hohhot: Inner Mongolia Agricultural University, 2019: 14-35.
[75] ABDUL KHALIL H P S, BANERJEE A, SAURABH C K, et al. Biodegradable Films for Fruits and Vegetables Packaging Application: Preparation and Properties[J]. Food Engineering Reviews, 2018, 10(3): 139-153.
[76] MULEY A B, SINGHAL R S. Extension of Postharvest Shelf Life of Strawberries (Fragaria Ananassa) Using a Coating of Chitosan-Whey Protein Isolate Conjugate[J]. Food Chemistry, 2020, 329: 127213.
[77] TAKALA P N, VU K D, SALMIERI S, et al. Antibacterial Effect of Biodegradable Active Packaging on the Growth of Escherichia Coli, Salmonella Typhimurium and Listeria Monocytogenes in Fresh Broccoli Stored at 4 ℃[J]. Food Science & Technology, 2013, 53(2): 499-506.
[78] VIMALA B S K, MARIA L M, MOSES J A, et al. Zein-Based Anti-Browning Cling Wraps for Fresh-Cut Apple Slices[J]. International Journal of Food science & Technology, 2020, 55(3): 1238-1245.
[79] PINEM M P, WARDHONO E Y, NADAUD F, et al. Nanofluid to Nanocomposite Film: Chitosan and Cellulose-Based Edible Packaging[J]. Nanomaterials, 2020, 10(4): 660.
[80] RADWAN-PRAG?OWSKA J, PI?TKOWSKI M, DEINEKA V, et al. Chitosan-Based Bioactive Hemostatic Agents with Antibacterial Properties-Synthesis and Characterization[J]. Molecules (Basel, Switzerland), 2019, 24(14): 2629.
[81] KAEWKLIN P, SIRIPATRAWAN U, SUWANAGUL A, et al. Active Packaging from Chitosan-Titanium Dioxide Nanocomposite Film for Prolonging Storage Life of Tomato Fruit[J]. International Journal of Biological Macromolecules, 2018, 112: 523-529.
[82] HAJAR O S, LIYANA O N F, AHMAD S R, et al. Corn Starch/Chitosan Nanoparticles/Thymol Bio-Nanocomposite Films for Potential Food Packaging Applications[J]. Polymers, 2021, 13(3): 390.
[83] SUGANYA A, SHANMUGVELAYUTHAM G, HIDALGO-CARRILLO J. Plasma Surface Modified Polystyrene and Grafted with Chitosan Coating for Improving the Shelf Lifetime of Postharvest Grapes[J]. Plasma Chemistry and Plasma Processing, 2018, 38(5): 1151-1168.
[84] SABIR F K, SABIR A, UNAL S. Chitosan Coating and UV-C Irradiation to Maintain Postharvest Quality of Minimally Processed Table Grapes Cv 'Michele Palieri'[J]. Erwerbs-Obstbau, 2020, 62(1): 35-42.
[85] SANGSUWAN J, SUTTHASUPA S. Effect of Chitosan and Alginate Beads Incorporated with Lavender, Clove Essential Oils, and Vanillin Against Botrytis Cinerea and their Application in Fresh Table Grapes Packaging System[J]. Packaging Technology & Science, 2019, 32(12): 595-605.
[86] KEYDIS M, MARTA O, ALBERTO A, et al. The Effect of Edible Chitosan Coatings Incorporated with Thymus Capitatus Essential Oil on the Shelf-Life of Strawberry (Fragaria x Ananassa) during Cold Storage[J]. Biomolecules, 2018, 8(4): 155.
[87] PAGLIARULO C, SANSONE F, MOCCIA S, et al. Preservation of Strawberries with an Antifungal Edible Coating Using Peony Extracts in Chitosan[J]. Food and Bioprocess Technology, 2016, 9(11): 1951-1960.
[88] WANG Yue, LI Rui, LU Rui, et al. Preparation of Chitosan/Corn Starch/Cinnamaldehyde Films for Strawberry Preservation[J]. Foods, 2019, 8(9): 423.
[89] ROKAYYA S, KHOJAH E, ELHAKEM A, et al. Investigating the Nano-Films Effect on Physical, Mechanical Properties, Chemical Changes, and Microbial Load Contamination of White Button Mushrooms During Storage[J]. Coatings (Basel), 2021, 11(44): 44.
[90] LIU Jun, LIU Shuang, ZHANG Xin, et al. Effect of Gallic Acid Grafted Chitosan Film Packaging on the Postharvest Quality of White Button Mushroom (Agaricus Bisporus)[J]. Postharvest Biology and Technology, 2019, 147: 39-47.
[91] ZHANG Li-ming, LIU Zhan-li, SUN Yang, et al. Combined Antioxidant and Sensory Effects of Active Chitosan/Zein Film Containing α-Tocopherol on Agaricus Bisporus[J]. Food Packaging and Shelf Life, 2020, 24: 100470.
Preparation and Application Progress of Biodegradable Materials for Fruit and Vegetable Packaging
ZHANG Qing-yu1, LI Xiao-ru1, XIAO Nuo-ying1, CHEN Han-cheng2, FAN Xiao-ping1
(1.College of Food Science, South China Agricultural University, Guangzhou 510642, China; 2.Guangdong Andelie New Material Co., Ltd., Guangdong Shantou 515800, China)
Biodegradable materials have the characteristics of high-efficiency and environmental protection. They can solve the problem of environment pollution for overuse of petroleum-based packaging materials. The work aims to summarize the characteristics of biodegradable materials and their preparation technology to provide reference for their further application in fruit and vegetable packaging. Firstly, the existing biodegradable materials were classified. Secondly, the preparation methods of biodegradable materials were introduced. And then the application of biodegradable materials in fresh fruit and vegetable packaging and their impact on the quality of fresh fruits and vegetables in recent years were summarized and analyzed. Finally, the characteristics and application prospects of biodegradable materials were summarized, analyzed and prospected. Biodegradable materials had good properties, proper air permeability and moisture permeability, and high CO2/O2selective permeability, which can greatly improve the shelf life of fruits and vegetables. Compared with the existing fresh-keeping packaging materials, biodegradable materials have better fresh-keeping effect, high efficiency and environmental protection, and can reduce the environmental pollution caused by non-degradable materials.
fruit and vegetable packaging; biodegradable materials; preparation; application; progress
TB484.3
A
1001-3563(2022)07-0075-12
10.19554/j.cnki.1001-3563.2022.07.009
2021-08-03
2021年廣東省科技創新戰略專項(pdjh2021b0087);2020年廣東省級大學生創新訓練項目;2021年華南農業大學大學生創新創業訓練計劃(X202110564035);2021年廣東省科技專項資金項目(210714116891352);2020年廣東省科技創新戰略專項資金項目(2020B121202008)
張清宇(1997—),男,華南農業大學碩士生,主攻食品加工與包裝。
范小平(1981—),男,博士,華南農業大學副教授,主要研究方向為食品加工與包裝。
責任編輯:曾鈺嬋