999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

木霉菌防控農業害蟲的研究綜述

2022-04-17 00:53:09付興飛胡發廣程金煥李貴平黃家雄
生物災害科學 2022年3期
關鍵詞:防控植物農業

付興飛,胡發廣,程金煥,李貴平,黃家雄

木霉菌防控農業害蟲的研究綜述

付興飛,胡發廣,程金煥,李貴平*,黃家雄

(云南省農業科學院 熱帶亞熱帶經濟作物研究所,云南 保山 678000)

害蟲對農作物的生產和儲藏構成了巨大威脅,過去主要以化學防治來控制害蟲,導致環境污染和人體健康等負面效應,由此,急需開發安全高效的生物替代劑。木霉菌不僅可以控制病原菌引起的病害,還可以通過寄生、產生殺蟲類次級代謝物、拒食化合物、驅避代謝產物直接防治害蟲或誘導植物激活系統性防御反應、吸引天敵、寄生害蟲共生微生物間接防控害蟲,被認為是未來可持續發展農業中一種比較理想的微生物劑。對木霉菌防控農業害蟲的直接和間接機制進行綜述,并對木霉菌的研究和利用趨勢進行展望。

木霉菌;昆蟲寄生;次級代謝物;揮發性有機化合物;真菌類殺蟲劑;農業害蟲

昆蟲作為生態系統的重要組成部分,在營養循環[1]、種子傳播[2]、土壤改良[3]、生物擾動[4]、作物授粉[5]及病蟲害防控[6]等生態系統服務功能中發揮重要作用。在國際糧食日益緊張的全球背景下,了解昆蟲在農業生態系統中的作用,對確保國家糧食安全和可持續發展戰略尤為關鍵。據統計,在北美洲,每年昆蟲在授粉及害蟲防控等生態系統服務功能的經濟價值就高達570億美元[7]。而害蟲作為昆蟲群落重要類群之一,也給農業安全生產和儲存造成了巨大壓力。在熱帶地區,每年70%的作物產量損失與害蟲相關聯[7]。害蟲與作物間的相互作用受多種生物和非生物因素影響。首先,昆蟲必須精準識別寄主植物的特定化學信號;其次,植物也會形成不同的物理結構或合成防御類化合物,抵御害蟲攻擊[8];然而,害蟲的長期進化顯然已經適應了寄主植物的這種防御反應,如通過取食不同植物部位[9]。此外,微生物群落在昆蟲與植物相互作用中也扮演關鍵角色,昆蟲內共生微生物有助于昆蟲對植物防御次級代謝物解毒,與植物相關聯的微生物則能夠激活植物系統性防御反應來抵御害蟲攻擊[10-13]。

害蟲作為導致農作物減產的重要因素,給作物的安全生產和存儲造成巨大負面影響。而部分特定害蟲在部分特定作物中的危害更為顯著,如鷹嘴豆[14]、番茄[15]、棉花[16]等受棉鈴蟲危害造成的損失更為嚴重;近年來,我國大范圍玉米產區,受草地貪夜蛾()危害導致玉米減產或無產[17]。直到20世紀初,隨著化學藥劑的應用才得以有效控制害蟲危害,但隨之環境污染、農殘、次要害蟲上升等負面效應也相繼報道[18]。由于害蟲導致的農業損失和化學農藥帶來的負面效應,尋找新的害蟲防治替代品已成為可持續農業發展的必然[19-20]。

1 真菌對害蟲的控制

微生物既可作為病原菌導致植物發生病害,也可作為有效生物防控劑防治不同的農業病蟲害[21-23],如細菌[24]、病毒[25]、線蟲[26]及真菌[22,27]等可通過產生毒素、殺蟲類次級代謝物或直接寄生等達到抑制害蟲的作用,并作為農業生物殺蟲劑廣泛應用。

真菌類群是生物技術和工業生產中廣泛使用的微生物類群,在抗生素、抗癌藥劑、工業酶生產中廣泛應用;同時,也可作為植物病蟲害生物控制劑、生物肥料或生物調節劑等[28-29]。在農業方面,由于環境友好型藥劑需求量的逐年增加,近十年來真菌類殺蟲劑已成為最廣泛的應用之一,推廣使用面積正逐年增加[30]。真菌作為寄生性微生物,也可作為昆蟲病原菌,具有感染和殺死農業害蟲的能力。目前,在農業領域研究中應用最廣泛的有綠僵菌屬()、白僵菌屬()、擬青霉屬()和叢枝菌屬()等屬的真菌[31-32]。通常,昆蟲病原菌通過直接穿透角質層來感染害蟲,而穿透角質層需要粘附素和溶解酶(幾丁質酶、蛋白酶和脂肪酶),當病原菌克服昆蟲免疫系統后,在昆蟲體內寄生,最終從致死的宿主體內形成并傳播新的分生孢子。在整個寄生過程中,病原真菌必須產生多種殺蟲類次生代謝產物,才能夠完成其完整的生命周期[31]。同時,部分昆蟲病原真菌也可作為植物內生菌,在植物組織中存活并完成部分生命周期,而不會對宿主植物產生負面效應。在過去,許多種內生真菌被發現可以降低植食性害蟲對植物的危害,這是由于不同作用機制導致,包括植物防御系統的激活,從初級代謝前體化合物中產生次級防御代謝產物的營養物質吸收增加或真菌殺蟲代謝產物產生[33]。此外,在農業上使用真菌殺蟲劑防治害蟲時,分析真菌殺蟲劑對天敵造成的危害也至關重要,這也符合農業害蟲綜合防控IPM發展的具體要求。

2 木霉菌在農業生態系統中的應用

全世界已鑒定木霉屬真菌約377種[34-35],目前主要用于農業生物防治劑和不同行業所需酶的生產[36]。近年,在其他行業的應用也不斷增加,如作為植物生長和對非生物脅迫耐受性的促進劑[37-38]、生物肥料[39]、生物技術基因源[40]等。

木霉菌與植物相互作用主要表現為根部內生真菌,受水楊酸SA介導的植物防御反應,木霉菌只能定植于植物的最外層,從而阻止病原菌到達維管束,表現為系統性病原體[41-42]。通過這種方式,木霉菌也可以激活植物的系統性防御反應,抵御害蟲和病原體的攻擊[42]。目前,應用最多的就是將木霉菌孢子用于作物種子或繁殖體的包衣劑,播種或移栽期間通過灌溉和拌土等方式達到最大化的成功定植,以控制病蟲害[43-44]。木霉菌基因組比較分析也表明了根際真菌病原菌的大量存在,加上分泌豐富的營養物質,導致木霉菌最終與根系相互作用,定植于根部[45-46]。木霉菌寄生需要多個信號來形成寄生的特異性結構和產生必要的酶,通常木霉菌通過識別病原體細胞壁寡甲殼素寡糖;然后,開始以一種針對性的方式向化學信號方向生長;菌絲接觸后,木霉菌菌絲纏繞在病原體菌絲周圍,開始分泌細胞壁降解酶(幾丁質酶、-1, 3-葡聚糖酶);隨著病原菌細胞壁的降解形成空隙,木霉菌通過空隙從真菌體內獲取生長所必須的營養物質[47-48]。此外,木霉菌還能寄生線蟲的卵、第1齡幼蟲[49-50]及昆蟲的全周期,甚至還可以抑制人體某些病害[51]。

3 木霉菌對害蟲的直接防控

木霉菌通過寄生或產生殺蟲次級代謝產物、拒食化合物和驅避代謝產物直接防控害蟲。與其他害蟲病原菌作用機制基本一致,木霉菌可以主動寄生昆蟲,并直接從昆蟲體內獲取各種營養物質。絕大多數木霉菌的研究仍處于室內研發階段,研究結果表明:木霉菌針對不同害蟲及不同作用時間,對害蟲的控制效率有差異。如:長枝木霉()和哈茨木霉()分別寄生于B型煙粉虱()和熱帶臭蟲(),5 d內均可導致40%的害蟲死亡[52],14 d后死亡率超過90%[53];同樣,不同種類木霉菌15 d后可導致90%椰子二疣犀甲()死亡[54]。此外,將長枝木霉孢子液噴施后,既可提高茄子56%的產量,還可導致50%茄黃斑螟()死亡[55]。而多種木霉菌均可產生殺蟲類次級代謝物,并將其釋放到環境中降低害蟲危害,如深綠木霉()[56]。研究最多的哈茨木霉產生代謝物peptaibols類抗菌肽(小陽離子肽家族)[57]在抑制病原體生長方面非常有效,在蘿卜、豌豆及番茄等作物上應用對赤擬谷盜()、棉蚜()[58]等害蟲的致死率高達100%;木霉菌還能產生揮發性殺蟲類次級代謝物,如6-戊基-α-吡喃酮,在48 h內對葉螨的致死率高達100%[59]。木霉菌產生的殺蟲類次生代謝物對飛蝗[60]、食心蟲()和粉紅色棉鈴蟲()[7]均有顯著的直接防控作用。

另一方面,綠色木霉()、桔綠木霉()和深綠木霉也可產生拒食性化合物,如幾丁質酶致使鱗翅目幼蟲取食量降低,從而導致外米綴蛾()[61]、棉鈴蟲[62]和家蠶()[63]在7 d內死亡率達50%;而其他具有拒食活性化合物如游離脂肪酸亞油酸甲酯和亞油酸,對半翅目昆蟲也有抑制作用[64];此外,木霉硒納米顆粒作為斜紋夜蛾()幼蟲的拒食劑,可顯著降低斜紋夜蛾的種群[65];深綠木霉通過水楊酸JA介導增加了玉米根部萜烯和6-戊基-2H-吡喃-2-酮的排放,而6-戊基-2H-吡喃-2-酮作為草地貪夜蛾的1種抗食性代謝物可明顯減少草地貪夜蛾對玉米的取食[66]。

此外,研究表明哈茨木霉、綠色木霉、橘綠木霉等揮發性有機化合物VOCs起到驅避害蟲的作用,有效降低了害蟲對植物資源的危害。通過真菌孢子在土壤中的應用,因木霉菌產生的驅避代謝產物導致臺灣乳白蟻()不能進行筑巢[67];在貯藏大豆種子中施用木霉菌孢子,也能使菜豆象()對大豆種子的損耗減少達10%[68]。

4 木霉菌對害蟲的間接防控

木霉菌可以激活植物系統防御反應、吸引天敵和寄生昆蟲共生微生物,間接的作為植物內生真菌或真菌的重寄生真菌。微生物與植物間的相互作用觸發了植物的2種防御機制,保護植物免受危害。第1種為系統獲得抗性SAR,這種機制由局部感染觸發,在整個植物中提供對不同病原體生物的長期抗性,這與致病相關蛋白PR的合成相關聯,PR由編碼水楊酸SA生物合成相關酶的基因上調介導[69];第2種為誘導系統抗性ISR,與茉莉酸JA和乙烯et的合成有關,由轉錄因子MYC2和ERF介導[70-71],這種抗性誘導了一種啟動狀態,當受到病原體攻擊時增強了植物防御基因的表達[72]。木霉菌誘導植物進入防御反應啟動狀態后,植物對病原體的攻擊反應更快,防御也更強,這主要是通過降低效應物觸發敏感性和增強效應物觸發免疫實現的[73]。與其他微生物相同,木霉菌在植物根部定植,能夠激活植物系統性防御反應,從而對病原菌和害蟲的防御,這主要由植物激素水楊酸SA和茉莉酸JA介導[74-75]。綠色木霉和甘氏木霉分別激活系統性植物防御系統,可使綠龜甲()[76]和擬尺蠖()[77]的攝食量分別減少25%。在番茄植株中,通過哈茨木霉激活在SA介導的防御系統,可以導致35%的B型煙粉虱死亡率[41]。深綠木霉可使棉葉片產生蛋白酶抑制劑,導致棉鈴蟲等鱗翅目幼蟲25 d內達100%死亡率[78]。類似地,在蘭花屬植物中JA介導反應刺激葉片中的鞣質、根皮鞣質、類黃酮、甾體、糖苷和生物堿的產生,從而阻止粉蚧(spp.)的取食[7]。

植物或大量與植物相關的生物群體間往往需要多營養級的協同作用,包括植食性昆蟲和土壤微生物,木霉菌作為營養級的重要組成部分[79],木霉菌根部定植激活植物的系統防御反應導致次生防御代謝產物在植物組織中積累。其中,一些代謝物可能具有趨避性的揮發性有機化合物,如萜烯(1-辛-3-醇、6-戊基-α-吡咯烷酮和4-戊基-α-吡咯烷酮等),可使草地貪夜蛾對玉米葉片的消耗減少75%[79];此外,木霉菌定植植物根系后也會產生針對害蟲的間接防御反應,此時植物會釋放有機化合物吸引害蟲的寄生蜂或捕食者,如6-戊基-α-吡咯烷酮和4-戊基-α-吡咯烷酮均對寄生蜂黑唇姬蜂()具有引誘作用[79],深綠木霉誘導玉米產生單-C10和C15倍半萜及其他揮發性有機化合物釋放,吸引黑唇姬蜂雌蟲[66]。通過在番茄根部定植誘導SA介導的系統抗性,哈茨木霉、長枝木霉及深綠木霉在25 d內可導致100%的馬鈴薯蚜蟲個體死亡,這是由于植物產生的揮發性有機化合物如水楊酸甲酯MeSA,吸引了特定的寄生蜂()[80]和捕食蚜蟲的盲蝽象()[81]。對于其他蚜蟲來說,田間條件下的哈茨木霉引起JA介導的系統抗性,產生釋放有機化合物(Z)-3-己烯-1-醇,吸引蚜蟲天敵異色瓢蟲(),使害蟲種群數量減少22%[82]。類似針對葡萄園中不同種類的桃金娘和瓢蟲,木霉菌引起JA介導的VOCs產生,從而吸引半翅目擬蠅科寄生蜂[83];受木霉菌誘導植物多種防御反應相關基因的轉錄變化,導致前期參與防御反應的基因上調或編碼保護酶(蛋白酶抑制劑、蘇氨酸脫氨酶、亮氨酸氨基肽酶、精氨酸酶及多酚氧化酶)在防御級聯下游被激活,最終改變了番茄的代謝途徑,導致揮發性有機化合物VOCs的產生和釋放吸引了阿爾蚜繭蜂(),降低了斜紋夜蛾、大戟長管蚜()的危害[78]。

為防治害蟲,木霉菌寄生昆蟲共生真菌的特性也可以利用。光滑足距小蠹()是危害榛子()的重要害蟲,雌蟲在寄主植物木質部形成通道,幼蟲和成蟲都只能以這些木腐菌為食,因此,它們需要這種共生營養關系才能生存,榛子枝接種哈茨木霉, 棘胞木霉()和深綠木霉通過直接寄生共生真菌顯著減少光滑足距小蠹的數量[84]。切葉蟻是熱帶和亞熱帶農林生態系統中一種重要的經濟害蟲,這些螞蟻利用葉片碎片培養真菌,木霉菌在體外對昆蟲共生真菌()[85]和(sp.)的寄生作用已得到證實。從離體培養結果來看,()在小麥麩皮上寄生共生真菌()導致40 d內100%的螞蟻因饑餓而死亡[86]。

此外,木霉菌可以作為昆蟲腸道微生物群的有效拮抗劑。康氏木霉()可使亞洲玉米螟腸道菌群減少,最終導致亞洲玉米螟第4齡幼蟲12 d內達30%死亡率[87]。最近,相關研究表明哈茨木霉會導致玉米釋放揮發性有機化合物(Z)-3-己烯-1-醇,該化合物也可作為植食性昆蟲的拮抗劑[88]。

5 展 望

農業害蟲作為農作物減產的重要因素,過去一直依賴化學殺蟲劑來降低害蟲危害,對生態環境和食品安全造成了巨大壓力,開發和利用環保型生物制劑已成為可持續農業發展的重要趨勢。目前,多種真菌類防治劑應用于農業有害生物防控試驗中,均獲得比較理想的防控試驗效果,但在實際生產應用中使用份額占比還比較小,這與農業種植和生產者對化學農藥長期使用形成依賴性及對新型生物農藥認識不足和接受程度低有關。近年來,伴隨著真菌類殺蟲劑使用率逐年上升,化學殺蟲劑使用率開始呈現下降趨勢,如木霉菌,由于其對植物病原真菌的寄生等作用機制,作為生物防治劑在農業有害生物防治上被廣泛研究和應用。近年來,研究表明木霉菌對農業害蟲具有比較理想的防控效果,對多種農業害蟲室內防控效率高達100%,其作用方式具有直接寄生、產生殺蟲次級代謝物、拒食化合物和驅避代謝產物的直接防控作用,也具有通過激活植物系統防御反應、吸引天敵、抑制害蟲生長和寄生害蟲共生微生物的間接防控作用,因此,木霉菌類生物制劑被認為是一種比較理想的生物防治劑。

然而,值得注意的是用木霉菌作為真菌類殺蟲劑進行的絕大多數試驗研究結果,都是在可調控的室內實驗條件下進行的,實際生產應用效果需在田間進行更多的試驗調查來加以驗證。木霉菌等真菌類生物防治劑在野外應用較少的原因,可能是野外實地應用試驗的防控效果不明顯或與室內試驗結果差異顯著,因此,關于木霉菌野外應用的報道較少。這也間接說明可調控的室內實驗條件,不能準確地反映野外田間的土壤質地、溫濕變化和附生微生物群落等條件。此外,還應開展平行試驗來驗證木霉菌對天敵或非有害昆蟲及本地昆蟲內生真菌的安全性,這也符合農業害蟲綜合防控IPM發展的具體要求。

綜上所述,利用木霉菌的直接和間接防控效果,有望成為農業有害生物綠色防控的重要可持續替代品,但其作為農業有害生物的生物防治劑對非有害生物的影響,仍需更多的野外和田間試驗加以驗證。

[1] WELTI E A R, ROEDER K A, DE BEURS K M, et al. Nutrient dilution and climate cycles underlie declines in a dominant insect herbivore[J]. Proceedings of the national academy of sciences, 2020, 117(13): 7271-7275.

[2] DETRAIN C, BOLOGNA A. Impact of seed abundance on seed processing and dispersal by the red ant: Seed dispersal by ants[J]. Ecological entomology, 2018, 44(3): 12713.

[3] HOKKANEN H M T, MENZLER-HOKKANEN I. Insect pest suppressive soils: buffering pulse cropping systems against outbreaks of[J]. Annals of the entomological society of America, 2018, 111(4):139-143.

[4] ROBINS R, ROBINS A. The antics of ants: ants as agents of bioturbation in a midden deposit in southeast Queensland[J]. Environmental archaeology, 2011, 16(2): 151-161.

[5] PRADO A, MAROLLEAU B, VAISSIèRE BE, et al. Insect pollination: an ecological process involved in the assembly of the seed microbiota[J]. Scientific reports, 2020, 10: 3575.

[6] COCK M J W, MURPHY S T, KAIRO M T K, et al. Trends in the classical biological control of insect pests by insects: an update of the BIOCAT database[J]. Biological control, 2016, 61(4): 349-363.

[7] POVEDA J. Trichoderma as biocontrol agent against pests: new uses for a mycoparasite[J]. Biological control, 2021, 159: 104634.

[8] VARELLA A C, WEAVER D K, PETERSON R K D, et al. Host plant quantitative trait loci affect specific behavioral sequences in oviposition by a stem?mining insect[J]. Theoretical and applied genetics, 2017, 130(1): 187-197.

[9] OMKAR, KUMAR B. Insects and pests, ecofriendly pest management for food security[M]. NY: Academic press, 2016.

[10]FRANCIS F, JACQUEMYN H, DELVIGNE F, et al. From diverse origins to specific targets: role of microorganisms in indirect pest biological control[J]. Insects, 2020, 11(8): 533.

[11]SHARMA G, MALTHANKAR P A, MATHUR V. Insect–plant interactions: a multilayered relationship[J]. Annals of the entomological society of America, 2021, 114(1): 1-16.

[12]WIELKOPOLAN B, OBRE?PALSKA-STE?PLOWSKA A. Three-way interaction among plants, bacteria, and coleopteran insects[J]. Planta, 2016, 244(2): 313-332.

[13] WINK M. Plant secondary metabolites modulate insect behavior-steps toward addiction?[J]. Frontiers in physiology, 2018, 9, 364-372.

[14]FITE T, DAMTE T, TEFERA T, et al. Hymenopteran and dipteran larval parasitoid species of the cotton bollworm,(Hubner) (Lepidoptera: Noctuidae) in chickpea growing districts of Ethiopia[J]. Biocontrol science and technology, 2020, 108(1): 541-545.

[15]SOUSA N C M, FILHO M M, SILVA P A, et al. Determination of an economic injury level for old world bollworm (Lepidoptera: Noctuidae) in processing tomato in Brazil[J]. Journal of economic entomology, 2020, 113(4):1881-1887.

[16]LIU Y B, LUO Z L, ZHAO Y M, et al. The selective feeding of cotton bollworms () on transgenic and nontransgenic cotton leaves from consecutive cultivation fields[J]. International journal of pest management, 2020, 66(3): 1-6.

[17]郭井菲, 韓海亮, 何康來, 等. 草地貪夜蛾在玉米單作及玉米大豆間作田的擴散規律[J]. 植物保護, 2022, 48(1): 110-115.

[18]RANI L, THAPA K, KANOJIA N, et al. An extensive review on the consequences of chemical pesticides on human health and environment[J]. Journal of cleaner production, 2021, 283, 124657.

[19]IRITI M, VITALINI S. Sustainable crop protection, global climate change, food security and safety-plant immunity at the crossroads[J]. Vaccines, 2020, 8(1): 42-48.

[20] VAN LENTEREN J C, BOLCKMANS K, K?HL J, et al. Biological control using invertebrates and microorganisms: plenty of new opportunities[J]. Biological control, 2017, 9: 1-21.

[21]李曉輝, 盧葉青, 吳明德, 等. 核盤菌菌核圍微生物群落分析及其對盾殼霉重寄生的影響[J]. 植物病理學報, 2021, 51(2): 258-267.

[22]SALCEDO S, AUCIQUE-PéREZ C E, SILVEIRA P R, et al. Elucidating the interactions between the rustand a Calonectria mycoparasite and the coffee plant[J]. iScience, 2021, 24(4): 102352.

[23]SINDH S S, SEHRAWAT A, SHARMA R, et al. Biological control of insect pests for sustainable agriculture[M]. Singapore: Springer, 2017.

[24]LIU Q X, SU Z P, LIU H H, et al. The effect of gut bacteria on the physiology of red palm weevil,olivier and their potential for the control of this pest [J]. Insects, 2021, 12(7): 594.

[25]ANNA K, TANING C N T, GUY S, et al. Viral delivery of dsRNA for control of insect agricultural pests and vectors of human disease: prospects and challenges[J]. Frontiers in physiology, 2017, 8: 399.

[26]LABAUDE S, GRIFFIN C T. Transmission success of entomopathogenic nematodes used in pest control[J]. Insects, 2018, 9(2): 72.

[27]ZHAO Q, YE L, LI Y F, et al. Sustainable control of the rice pest,, using the entomopathogenic fungus[J]. Pest management science, 2021, 77(3): 1452-1464.

[28]HYDE, K D, XU J, RAPIOR S, et al. The amazing potential of fungi: 50 ways we can exploit fungi industrially[J]. Fungal diversity, 2019, 97, 1-136.

[29]?ZKALE E. Trichoderma–based products and metabolites used in agricultural production[J]. International journal of secondary metabolite, 2017, 4(2): 123-126.

[30]MANIVEL S B, RAJKUMAR G S. Mycopesticides: fungal based pesticides for sustainable agriculture[M]. Singapore: Springer, 2018.

[31]LITWIN A, NOWAK M, RO′ZALSKA S. Entomopathogenic fungi: unconventional applications[J]. Reviews in environmental science and biogical/technology, 2020, 19(6): 23-42.

[32]JACKSON D, SKILLMAN J, VANDERMEER J. Indirect biological control of the coffee leaf rust,, by the entomogenous fungusin a complex coffee agroecosystem[J]. Biological control, 2012, 61(1): 89-97.

[33]BAMISILE B S, DASH C K, AKUTSE K S, et al. Fungal endophytes: beyond herbivore management[J]. Frontiers in microbiology, 2018, 9: 544.

[34]DRUZHININA I S, SEIDL-SEIBOTH V, HERRERA-ESTRELLA A, et al. Trichoderma: the genomics of opportunistic success[J]. Nature reviews microbiology, 2011, 9(10):749-759.

[35]CAI F, DRUZHININA I S. In honor of John Bissett: authoritative guidelines on molecular identification of Trichoderma[J]. Fungal divers, 2021, 107:1-69.

[36]ANGIR M, PATHAK R, SHARMA S. Trichoderma and its potential applications[M]. Plant-microbe interactions in agroecological perspectives, 2017.

[37]POVEDA J.favors the tolerance of rapeseed (L.) to salinity and drought due to a chorismate mutase[J]. Agronomy , 2020, 10: 118.

[38]HARMAN G E, HOWELL C R, VITERBO A, et al. Trichoderma species--opportunistic, avirulent plant symbionts[J]. Nature reviews microbiology, 2004, 2(1):43-56.

[39]LIU Q, MENG X H, LI T, et al. The growth promotion of peppers (L.) byNJAU4742-Based biological organic fertilizer: possible role of increasing nutrient availabilities[J]. Microorganisms, 2020, 8(9): 1296.

[40]POVEDA J, HERMOSA R, MONTE E, et al. TheKelch protein ThKEL1 plays a key role in root colonization and the induction of systemic defense in Brassicaceae plants[J]. Frontiers in plant science, 2019, 10: 1478.

[41]JAFARBEIGI F, SAMIH M A, ALAEI H, et al. Induced tomato resistance againsttriggered by salicylic acid, β-aminobutyric acid, and trichoderma[J]. Neotropical entomology, 2020, 49(3): 13744.

[42]YUAN M, HUANG Y Y, GE W, et al. Involvement of jasmonic acid, ethylene and salicylic acid signaling pathways behind the systemic resistance induced byH9 in cucumber[J]. BMC Genomics, 2019, 20: 144.

[43]CONINCK E , SCAUFLAIRE J , GOLLIER M , et al.as a promising biocontrol agent in seed coating for reducing Fusarium damping-off on maize[J]. Journal of applied microbiology, 2020, 129(3): 637-651.

[44]WOO S L, RUOCCO M, VINALE F, et al. Trichoderma-based products and their widespread use in agriculture[J]. Open mycological, 2014, 8(1): 71-126.

[45]KUBICEK C P, HERRERA-ESTRELLA A, SEIDL-SEIBOTH V, et al. Comparative genome sequence analysis underscores mycoparasitism as the ancestral life style of[J]. Genome biology, 2011,12(4): 1-15.

[46]KUBICEK C P, STEINDORFF A S, CHENTHAMARA K, et al. Evolution and comparative genomics of the most commonspecies[J]. BMC genomics, 2019, 20: 485.

[47]ANABELL U S , INCA-TORRES A R , FALCON-GARCIA G, et al. Chitinase production bygrown on a Chitin-rich mushroom byproduct formulated medium[J]. Waste and biomass valorization, 2019, 10(10): 2915-2923.

[48]SOOD M, KAPOOR V, KUMAR V, et al. Trichoderma: the “secrets” of a multitalented biocontrol agent[J]. Plants, 2020, 9(6): 762.

[49]TARIQHAVEED M, FAROOQ T, AL-HAZMI A S, et al. Role ofas a biocontrol agent (BCA) of phytoparasitic nematodes and plant growth inducer[J]. Journal of invertebrate pathology, 2021, 183: 107626.

[50]KHAN B A A, NAJEEB S, MAO Z C, et al. Bioactive secondary metabolites fromspp. against phytopathogenic bacteria and root-knot nematode[J]. Microorganisms, 2020, 8(3): 401.

[51]HATVANI L, HOMA M, CHENTHAMARA K, et al. Agricultural systems as potential sources of emerging human mycoses caused by: a successful, common phylotype ofin the frontline[J]. FEMS microbiology letters , 2019, 366(21): 246.

[52]ANWAR W, SUBHANI M N, HAIDER M S, et al. First record ofas entomopathogenic fungi againstin Pakistan[J]. Pakistan journal of phytopathology, 2016, 28(2): 287-294.

[53]ZULAIKHA Z, NOR NMIM, DIENG H, et al. Laboratory efficacy of mycoparasitic fungi (and) against tropical bed bugs () (Hemiptera: Cimicidae)[J]. Asian Pacific journal of tropical biomedicine, 2017, 7: 288-293.

[54]NASUTION L, CORAH R, SIREGAR A Z. Effectivenessandon Larvae ofon palm oil plant (Jacq.) in vitro[J]. International journal of environment, agriculture and biotechnology, 2018, 3(1): 239050.

[55]GHOSH S K, PAL S. Entomopathogenic potential ofand its comparative evaluation with malathion against the insect pest[J]. Environmental monitoring & assessment, 2016, 188(1):37.

[56]ATRIZTAN K, MORENO-PEDRAZA A, WINKLER R, et al.from predator to prey: role of the mitogen-activated protein kinase Tmk3 in fungal chemical defense against fungivory by[J]. Applied and environmental microbiology, 2019, 85(2): e01825-01843.

[57]VAN BOHEMEN A, RUIZ N, ZALOUK-VERGNOUX, et al. Exploring enhanced insecticidal activity of mycelial extract ofagainstand[J]. Journal of natural products, 2021, 84: 1271-1282.

[58]RETIMDE S, IQBAL M. Exploring enhanced insecticidal activity of mycelial extract ofagainstand[J]. Sarhad journal of agriculture, 2019, 35(3): 757-762.

[59]SALWA E, METWALLY K. Bioactivity of(6-Pentyl α-pyrone)againstKoch (Acari: Tetranychidae)[J]. Egyptian academic journal of biological sciences a entomology, 2017, 10(3): 29-34.

[60]LAIB D E, BENZARA A, AKKAL S, et al. The anti-acetylcholinesterase, insecticidal and antifungal activities of the entophytic fungussp. isolated fromL. againstL. andPers[J]. Fundamental research acta scientific nature, 2020, 7: 112-125.

[61]VIJAYAKUMAR N, ALAGAR S. Consequence of chitinase fromintegrated feed on digestive enzymes in(Stainton)and antimicrobial potential[J]. Biosciences biotechnology research asia, 2017, 14(2):513-519.

[62]CHINNAPERUMAL K, GOVINDASAMY B, PARAMASIVAM D, et al. Bio-pesticidal effects offormulated titanium dioxide nanoparticle and their physiological and biochemical changes on(Hub.)[J]. Pesticide biochemistry & physiology, 2018, 149: 26-36.

[63]BERINI F, CACCIA S, FRANZETTI E, et a. Effects ofchitinases on the peritrophic matrix of epidoptera[J]. Pest management science, 2016, 72(5):980-989.

[64]KAUSHIK N, DíAZ C E, CHHIPA H, et al. Chemical composition of an aphid antifeedant extract from an endophytic fungus,sp. EFI671[J]. Microorganisms, 2020, 8(3): 420.

[65]ARUNTHIRUMENI M, VEERAMMAL V, SHIVAKUMAR M S. Biocontrol efficacy of mycosynthesized selenium nanoparticle usingsp. on insect pest spodoptera litura[J]. Journal of cluster science, 2021, 297(2):1-9.

[66]CONTRERAS-CORNEJO H A, MACíAS-RODRíGUEZ L, DEL-VAL E, et al. The root endophytic fungusinduces foliar herbivory resistance in maize plants[J]. Applied soil ecology, 2018, 124: 45-53.

[67]XIONG H, XUE K, QIN W, et al. Does soil treated with conidial formulations ofspp. attract or repel subterranean termites?[J]. Journal of economic entomology, 2018, 111(2):808-816.

[68]RODRíGUEZ-GONZáLEZ A, CASQUERO P A, CARDOZA R E, et al. Effect of trichodiene synthase encoding gene expression instrains on their effectiveness in the control of[J]. Pest management science, 2016, 72(5):980-989.

[69]ZHANG Y, XU S, DING P, et al. Control of salicylic acid synthesis and systemic acquired resistance by two members of a plant-specific family of transcription factors[J]. Proceedings of the national academy of sciences, 2010, 107(42):18220-18225.

[70]SHORESH M, YEDIDIA I, CHET I. Involvement of jasmonic acid/ethylene signaling pathway in the systemic resistance induced in cucumber byT203[J]. Phytopathology, 2005, 95(1):76-84.

[71]MARTíNEZ-MEDINA A, FERNANDEZ I, LOK G B, et al. Shifting from priming of salicylic acid- to jasmonic acid-regulated defences byprotects tomato against the root knot nematode[J]. New phytologist, 2017, 213: 1363-1377.

[72]SEGARRA G, CASANOVA E, BELLIDO D, et al. Proteome, salicylic acid, and jasmonic acid changes in cucumber plants inoculated withstrain T34[J]. Proteomics, 2010, 21(7): 3943-3952.

[73]MAUCH-MANI B, BACCELLI I, LUNA E, et al. Defense priming: an adaptive part of induced resistance[J]. Annual review of plant biology, 2017, 68: 485-512.

[74]POVEDA J, ABRIL-URIAS P, ESCOBAR C. Biological control of plant-parasitic nematodes by filamentous fungi inducers of resistance: trichoderma, mycorrhizal and endophytic fungi[J]. Frontiers in microbiology, 2020, 11: 992.

[75]KOROLEV N, DAVID D R, ELAD Y. The role of phytohormones in basal resistance and Trichoderma-induced systemic resistance toin[J]. Biological control, 2008, 53: 667-683.

[76]GANGE A C, RENé E, WEARN J A , et al. Differential effects of foliar endophytic fungi on insect herbivores attacking a herbaceous plant[J]. Oecologia, 2012, 168(4):1023-1031.

[77]ZHOU D, HUANG X F, GUO J, et al.affected herbivore feeding behavior onby modifying the leaf metabolome and phytohormones[J]. Microbial biotechnology, 2018, 16(6): 1195-1206.

[78]COPPOLA M, CASCONE P, LELIO I D, et al.P1 colonization of tomato plants enhances both direct and indirect defense barriers against insects[J]. Frontiers in physiology, 2019, 10: 813.

[79]CONTRERAS-CORNEJO H A, DEL-VAL E, MACíAS-RODRíGUEZ L, et al., a maize root associated fungus, increases the parasitism rate of the fall armywormby its natural enemy[J]. Soil biology and biochemistry, 2018, 122: 196-202.

[80]COPPOLA M, DIRETTO G, DIGILIO M, et al. Transcriptome and metabolome reprogramming in tomato plants bystrain T22 primes and enhances defense responses against aphids[J]. Frontiers in physiology, 2019, 10: 745.

[81]BATTAGLIA D, BOSSI S, CASCONE P, et al. Tomato below ground-above ground interactions:affects the performance ofand its natural antagonists[J]. Molecular plant-microbe interactions: MPMI, 2013, 26: 1249-1256.

[82]CONTRERAS-CORNEJO H A, VIVEROS-BREMAUNTZ F, DEL-VA E, et al. Alterations of foliar arthropod communities in a maize agroecosystem induced by the root-associated fungus[J]. Journal of pest science, 2021, 94: 363-374.

[83]PARRILLI M, SOMMAGGIO D, TASSINI C, et al. The role ofspp. and silica gel in plant defence mechanisms and insect response in vineyard[J]. Bulletin of entomological research, 2019, 109(6):1-10.

[84]KUSHIYEV R, TUNCER C, ERPER S, et al. The utility ofspp. isolates to control ofBlandford (Coleoptera: Curculionidae: Scolytinae)[J]. Journal of plant diseases and protection, 2020, 128: 153-160.

[85]CASTRILLO M L, BICH G A, ZAPATA P D, et al. Biocontrol ofof leaf-cutting ants with the mycoparasitic agent[J].Guizhou academy of agricultural sciences, 2016, 7(6):810-819.

[86]ORTIZ A, ORDUZ S. In vitro evaluation ofandagainst the symbiotic fungus of the leaf-cutting ant[J]. Mycopathologia, 2001, 150(2):53-60.

[87]LI Y , FU K , GAO S , et al. Impact on bacterial community in midguts of the Asian Corn Borer Larvae by transgenic trichoderma strain overexpressing a heterologous chit42 gene with chitin-binding domain[J]. Plos one, 2013, 8(2): e55555.

[88]CONTRERAS-CORNEJO H A, VIVEROS-BREMAUNTZ F, DEL-VAL E, et al. Alterations of foliar arthropod communities in a maize agroecosystem induced by the root associated fungus[J]. Journal of pest science, 2021, 94: 363-374.

A Review of the Research ofin Controlling Agricultural Pests

FU Xingfei, HU Faguang, CHEN Jinhuan, LI Guiping*, HUANG Jiaxiong

(Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Baoshan, Yunnan 678000, China)

Pests cause a great harm to the production and storage of crops. In the past, chemicals were mainly used to control pests. However, with the recognition of negative effects of environmental pollution and human health, it is urgent to develop a safe and efficient biological substitute.can control the diseases caused by pathogenic bacteria, and can also directly control pests by parasitizing, producing insecticidal secondary metabolites and antifeedant compounds, as well as driving away metabolites, or indirectly control pests by inducing plants to activate systemic defense response, attract natural enemies, parasitic pests and symbiotic microorganisms. So,is considered to be an ideal microbial agent in sustainable agriculture in the future. This paper reviews the direct and indirect mechanisms ofin controlling agricultural pests, and looks forward to the research and utilization trend of.

; insect parasitism; secondary metabolites; volatile organic compounds; mycopesticides; agricultural pest

S476.1

A

2095-3704(2022)03-0266-09

付興飛, 胡發廣, 程金煥, 等. 木霉菌防控農業害蟲的研究綜述[J]. 生物災害科學, 2022, 45(3): 266-274.

10.3969/j.issn.2095-3704.2022.03.45

2022-06-08

2022-07-04

國家重點研發計劃咖啡可可產業鏈一體化示范項目(2020YFD1001202)和云南省隆陽區咖啡產業科技特派團項目(202004BI090136)

付興飛(1992—),男,碩士生,主要從事熱帶亞熱帶經濟作物病蟲害綜合防控研究,1161003575@qq.com;*通信作者:李貴平,副研究員,lgp7007@163.com。

猜你喜歡
防控植物農業
國內農業
今日農業(2022年1期)2022-11-16 21:20:05
國內農業
今日農業(2022年3期)2022-11-16 13:13:50
國內農業
今日農業(2022年2期)2022-11-16 12:29:47
配合防控 人人有責
環球時報(2022-04-25)2022-04-25 17:20:21
擦亮“國”字招牌 發揮農業領跑作用
今日農業(2021年14期)2021-11-25 23:57:29
豬常見腹瀉病癥狀及防控
今日農業(2021年15期)2021-10-14 08:20:18
守牢防控一線 靜待春暖花開
人大建設(2020年3期)2020-07-27 02:48:40
夏季羊中暑的防控
今日農業(2019年14期)2019-09-18 01:21:44
哦,不怕,不怕
將植物穿身上
主站蜘蛛池模板: 日韩国产 在线| 日韩欧美国产另类| 国产无遮挡裸体免费视频| 欧洲av毛片| 亚洲精品视频在线观看视频| 国产成人综合亚洲欧美在| 国产精品无码一二三视频| www.国产福利| 亚洲国产精品国自产拍A| 日韩国产另类| 亚洲综合天堂网| 亚洲欧洲日产国产无码AV| 国产高清无码麻豆精品| 国产无码制服丝袜| 色综合a怡红院怡红院首页| 中国精品自拍| 伊在人亚洲香蕉精品播放| 亚洲精品爱草草视频在线| 91精品国产91久无码网站| 精品国产污污免费网站| 久久国产亚洲偷自| 22sihu国产精品视频影视资讯| 午夜日b视频| 99热这里只有精品免费| 大学生久久香蕉国产线观看| 日韩在线影院| 国产成a人片在线播放| 国产成人亚洲无吗淙合青草| 91丝袜乱伦| 精品偷拍一区二区| 日韩欧美视频第一区在线观看| 国产亚洲视频播放9000| 国产乱人伦偷精品视频AAA| 乱人伦视频中文字幕在线| 亚洲免费毛片| 精品国产免费观看| 毛片在线区| 日韩精品欧美国产在线| 不卡午夜视频| 欧美啪啪网| 美女无遮挡免费网站| av在线人妻熟妇| 99精品国产电影| 54pao国产成人免费视频| 亚洲精品无码AV电影在线播放| 中文字幕亚洲另类天堂| 狠狠色婷婷丁香综合久久韩国 | 国产中文一区a级毛片视频| 3p叠罗汉国产精品久久| 国产成人精品优优av| 久久人与动人物A级毛片| 国产区在线观看视频| 亚洲国产成人精品青青草原| www精品久久| 国产精品99久久久久久董美香 | 成人精品在线观看| 四虎国产永久在线观看| 福利在线免费视频| 色婷婷在线播放| 亚洲天堂在线免费| 国产香蕉一区二区在线网站| 在线免费观看AV| 青草娱乐极品免费视频| 日韩无码白| 精品国产乱码久久久久久一区二区| 一级毛片网| 亚洲女同一区二区| 国产1区2区在线观看| 日韩欧美国产区| 91成人在线观看| 国产亚洲成AⅤ人片在线观看| 无码精油按摩潮喷在线播放| 国产日产欧美精品| 69视频国产| 日韩麻豆小视频| 欧美亚洲综合免费精品高清在线观看| 久久9966精品国产免费| 免费一级毛片在线播放傲雪网| 国产a v无码专区亚洲av| 看你懂的巨臀中文字幕一区二区| 精品伊人久久久香线蕉 | 99视频精品全国免费品|