王青 葉明露 梁高翔 盛曉超 高帥
摘要: 為明確噴氣渦流紡紗的紡紗機理,研究噴嘴中噴孔數量、噴孔傾角和供氣壓力對噴氣渦流紡內流場的影響情況,文章采用Fluent軟件進行噴氣渦流紡的內流場模擬分析。通過結果對比分析發現:噴孔數量和供氣壓力對噴嘴內流場的氣流旋轉運動影響較為顯著,隨著噴孔數量和供氣壓力的增加,噴嘴內氣流的旋轉運動顯著增強,對紗線自由端纖維的加捻效果也增強;噴孔傾角大小對噴孔出口氣流速度影響較小,但隨著傾角增大,進入渦流管內的氣流切向速度分量增大,對自由端纖維的加捻效果增強,紗線包纏越緊密,其強度也越高;噴孔數量、傾角和供氣壓力的變化都不會改變流場速度分布規律,只是改變了其值的大小,且隨著氣流的螺旋推進運動,氣流速度不斷衰減,說明氣流在對紗線加捻的過程中要消耗大量的動能。
關鍵詞: 噴氣渦流紡;噴嘴參數;數值模擬;流場特性分析;紡紗機理;加捻效果
中圖分類號: TS103.2文獻標志碼: A文章編號: 10017003(2022)04003906
引用頁碼: 041106DOI: 10.3969/j.issn.1001-7003.2022.04.006(篇序)
噴氣渦流紡是一種在氣流加捻腔內利用高速旋轉氣流加捻自由端纖維成紗的新型紡紗技術,該紡紗技術相對傳統環錠紡,省去了粗紗環節,集細紗、絡筒、卷繞成形工序于一體,縮短了紡紗流程。因此,近年來日益受到紡紗企業的青睞,是目前世界上最先進的紡紗技術,也是一種非常具有市場前景的紡紗新技術。
針對噴氣渦流紡紗技術,國內外眾多學者開展了一系列研究工作。Tyagi等[1-2]采用正交分解實驗,研究了前羅拉鉗口到空心錠子入口距離與成紗結構的相關性;Ortlek等[3]和Kuthalam等[4-5],Basal等[6]研究了噴氣渦流紡空心錠子直徑對成紗性能的影響;Naylor等[7]分析了試紡纖維長度與氣流加捻過程中落纖率的相關性;Eldeed等[8]以瑞士立達噴氣渦流紡紗機的噴嘴結構為對象,采用數值方法對噴嘴內流場進行了分析。陳彩紅等[9],任玉斌[10]研究了噴孔數量、傾角對噴嘴內流場的影響;鄒專勇等[11-12]研究了噴嘴內流場特性,初步解釋了噴氣渦流紡紗機理;尚珊珊等[13-14]研究了初始引紗過程和正常穩定紡紗過程中流場流動特性,并通過對噴嘴內高速旋轉氣流動力學特性及紗體運動三維數值模擬分析,揭示了噴氣渦流紡紗過程中噴嘴內高速旋轉氣流的流動規律等;韓晨晨等[15-17]采用有限元方法分析了纖維在流場中的運動軌跡,且提出了一種自捻型噴氣渦流紡的創新技術;郭臻等[18]建立纖維的三維運動模型,分析了纖維在流場中的運動和變形情況。綜上分析,國內外學者對噴氣渦流紡進行了大量研究,主要集中于對噴氣渦流紡中噴嘴、空心錠子的部分結構和工藝參數對流場特性及成紗性能的影響分析,纖維在流場中的運動特性分析,以及單獨的噴孔數量、傾角對流場的影響分析,而同時針對噴孔傾角、數量和供氣壓力大小等參數對噴氣渦流紡內流場影響的研究較少。鑒于此,本文基于數值方法,詳細研究噴孔數量、噴孔傾角和供氣壓力大小對噴氣渦流紡內流場的影響情況,為噴氣渦流紡噴嘴的設計研究提供一定的理論參考。
1模型建立
1.1噴嘴結構建模
參考日本村田公司的MVS型噴氣渦流紡紗機噴嘴結構模型,本文建立噴嘴結構模型,包含噴氣孔(簡稱噴孔)、空心錠子、渦流管(噴嘴和空心錠子間形成的氣流流動空間)等結構,如圖1所示。高壓氣流經過噴孔進入噴嘴內部,在渦流管內部形成高速旋轉氣流,完成對紗線的加捻作用。
1.2網格劃分
本文采用ICEM軟件進行噴嘴內流場的網格劃分,考慮到噴孔、渦流管等結構比較復雜,因此劃分網格為非結構網格(即四面體網格),如圖2所示。同時對噴孔和渦流管等結構尺寸小、且內部流場變化最為劇烈的區域,為精確地捕獲紡紗過程中的氣流特性,本文采用密度盒加密方法進行局部網格加密處理,如圖3所示。
1.3邊界條件設置
根據氣流流動特點,設置噴嘴入口為壓力入口1,噴孔入口為壓力入口2;設置噴嘴出口為壓力出口1,空心錠出口為壓力出口2,如圖4所示。
2流場數值仿真和結果分析
設基準參數為:噴孔數量5、噴孔傾角(圖1中θ角)70°、供氣壓力0.5 MPa,采用單一變量法分別研究這三個參數對噴嘴內流場的影響情況。參考文獻[10,13],確定具體研究方案如表1所示。
根據表1中三種方案,本文針對七個狀態分別進行結構建模、網格劃分,以及數值模擬仿真。
2.1噴孔數量對噴嘴內流場的影響分析
噴孔數量不同對應的仿真結果如圖5—圖7所示。由氣流靜壓、動壓與速度之間的關系可知:氣流速度高時,氣流靜壓低,即由氣流速度分布可以間接得到靜壓分布,因此本文后續僅對氣流速度進行分析。
分析圖5—圖7發現:1) 由于噴孔內部和渦流管之間存在巨大壓力差,使得氣流在噴孔內加速,在噴孔出口處達到最大,且已達超音速,為463 m/s左右(圖5)。2) 噴孔數量從4個增加到6個時,噴孔出口處的氣流速度差很小,原因在于雖然噴孔數量增加,但是各噴孔的供氣壓力一樣大,且噴孔尺寸規模一樣大,因此氣流在各噴孔中加速性相當(圖6)。3) 噴孔數量從4個增加到6個時,噴嘴內氣流的旋轉運動顯著增強(圖7),對自由端纖維的加捻效果也增強。因此,在噴嘴結構強度滿足要求的前提下,可以盡量增加噴孔的數量。
2.2噴孔傾角對噴嘴內流場的影響分析
由于各種狀態的速度云圖、速度矢量圖等比較類似,且速度流線圖同時包含了較多速度云圖和速度矢量圖信息,因此限于篇幅,下文僅給出速度流線圖,而速度云圖和速度矢量圖不再給出。圖8為噴孔角度不同時渦流管內氣流的速度流線圖。
分析圖8發現:1) 當噴孔傾角逐漸增大時,噴孔內部流場的速度峰值在458~472 m/s逐漸增大,且增幅較小。分析其原因在于隨著噴孔傾角增大,噴孔長度略有增加,氣流加速段略有增長,噴嘴出口氣流速度隨之增大。2) 噴孔傾角越大,氣流從噴孔進入渦流場時沿著噴嘴周向的氣流速度分量越大,因此對紗線的加捻特性越好,紗線包纏的越緊密,紗線強度越高。但是噴孔傾角進一步增大,會導致氣流沿著噴嘴周向的氣流速度分量進一步增大,軸向氣流速度減小,紗線包纏更加緊密,使得紗線表現較硬,斷裂伸長率降低,紗線易斷裂。因此,傾角最佳數值的確定,應結合實驗,并綜合考慮噴孔數量、供氣壓力等參數的影響。
2.3供氣壓力對噴嘴內流場的影響分析
圖9為不同供氣壓力條件下,渦流管內氣流的速度流線圖。分析圖9可知:1) 當供氣壓力從0.3 MPa提高到0.5 MPa時,噴孔出口氣流速度從396 m/s增大到464 m/s,即隨著供氣壓力的增大,氣流速度峰值顯著增大。這是因為供氣壓力越大,噴孔內部和渦流管之間壓差越大,噴孔中氣流加速性越好。2) 供氣壓力越大,渦流管內氣流速度越高,氣流旋轉運動也越強,對紗線的加捻效果提高,因此供氣壓力對噴嘴內部的流場特性影響顯著,應該在考慮耗氣量的前提下盡可能提高供氣壓力。
此外,綜合分析圖7—圖9發現:隨著噴孔數量、傾角和供氣壓力大小的變化,渦流管中氣流速度分布規律基本不變;氣流在向噴嘴出口螺旋式推進的運動過程中,氣流速度逐漸衰減,說明氣流在對纖維加捻過程中,需要消耗大量的動能。
3結論
本文基于數值方法,采用單一變量法依次研究了噴孔數量、噴孔傾角和供氣壓力對噴氣渦流紡噴嘴內流場特性的影響情況,可得出結論:1) 氣體經噴孔進入渦流管之后,在噴嘴內部形成高速旋轉氣流,該旋轉氣流對自由端纖維實現了加捻作用,且旋轉氣流在向前推進運動過程中,速度不斷衰減,說明氣流在對纖維加捻的同時需要消耗大量的動能;2) 隨著噴孔傾角、噴孔數量和供氣壓力的不斷增大,渦流管中氣流的旋轉運動均增強,對自由端纖維的加捻效果提高。因此,在噴氣渦流紡紗機噴嘴結構設計時,在保證噴嘴結構強度的前提下,盡量設計較多的噴孔,同時增大噴孔傾角和供氣壓力,可有效提高對自由端纖維的加捻效果。
參考文獻:
[1]TYAGI G K, SHARMA D, SALHOTRA K R. Process structure property relationship of polyester-cotton MVS yarns-part Ⅰ: Influence of processing variables on the yarn structural parameters[J]. Indian Journal of Fiber & Textile Research, 2004, 29(12): 419-428.
[2]TYAGI G K, SHARMA D, SALHOTRA K R. Process structure property relationship of polyester-cotton MVS yarns-part Ⅱ: Influence of processing variables on the yarn characteristics[J]. Indian Journal of Fiber & Textile Research, 2004, 29(12): 429-435.
[3]ORTLEK H G, NAIR F, KILIK R, et al. Effect of spindle diameter and spindle working period on the properties of 100% viscose MVS[J]. Yarns Fibers and Textiles in Eastern Europe, 2008, 16(3): 17-20.
[4]KUTHALAM E S, SENTHILKUMA R P. Optimization of spinning parameters influencing the hairiness properties of polyester/cotton vortex yarn[J]. Journal of the Textile Institute, 2017, 108(3): 449-459.
[5]SENTHILKUMAR P, KUTHALAM E S. Optimization of spinning parameters influencing the tensile properties of polyester/cotton vortex yarn[J]. Indian Journal of Fiber & Textile Research, 2015, 40(9): 256-266.
[6]BASAL, GULDEMET. Effects of some process parameters on the structure and properties of vortex spun yarn[J]. Textile Research Journal, 2006, 76(6): 492-499.
[7]NAYLOR G, MURAT A. Vortex spinning: A new spin on textile processing[J]. The Australian Cotton Grower, 2002, 23(1): 26-30.
[8]MOAZ Eldeeb, EVA Mouckova. Numerical simulationof the yarn formation process in Rieter air jet spinning[J]. Journal of the Textile Institute, 2017, 108(7): 1219-1226.
[9]陳彩紅, 陳洪立. 噴氣渦流紡噴孔數量對噴嘴內氣流場的影響[J]. 輕工機械, 2017, 35(1): 64-66.CHEN Caihong, CHEN Hongli. Influences of orifice number of air jet vortex spinning[J]. Light Industry Machinery, 2017, 35(1): 64-66.
[10]任玉斌. 噴氣渦流紡噴嘴噴孔參數的分析[J]. 現代紡織技術, 2020, 28(1): 94-96.REN Yubin. Analysis of jet orifice parameters of air-jet vortex spinning nozzle[J]. Advanced Textile Technology, 2020, 28(1): 94-96.
[11]鄒專勇, 俞建勇, 薛文良, 等. 噴氣渦流紡噴嘴內部三維流場的數值研究[J]. 紡織學報, 2008, 29(2): 86-89.ZOU Zhuanyong, YU Jianyong, XUE Wenliang, et al. Numerical study of three-dimensional flow field inside the nozzle of air jet vortex spinning[J]. Journal of Textile Research, 2008, 29(2): 86-89.
[12]鄒專勇, 俞建勇, 薛文良, 等. 噴氣渦流紡工藝參數對氣流場影響的數值計算[J]. 紡織學報, 2008, 29(4): 32-36.ZOU Zhuanyong, YU Jianyong, XUE Wenliang, et al. Numerical computation of flow field effected by process parameters in air jet vortex spinning machine[J]. Journal of Textile Research, 2008, 29(4): 32-36.
[13]尚珊珊, 郁崇文, 楊建平, 等. 噴氣渦流紡紗過程中的氣流場數值模擬[J]. 紡織學報, 2019, 40(3): 160-167.SHANG Shanshan, YU Chongwen, YANG Jianping, et al. Numerical simulation of airflow field in vortex spinning process[J]. Journal of Textile Research, 2019, 40(3): 160-167.
[14]尚珊珊, 余子開, 郁崇文, 等. 噴氣渦流紡旋轉氣流場及紗體運動的數值模擬[J]. 東華大學學報(自然科學版), 2019, 45(5): 665-675.SHANG Shanshan, YU Zikai, YU Chongwen, et al. Numerical simulation of swirling airflow field and yarn motion in vortex spinning[J]. Journal of Donghua University (Natural Science), 2019, 45(5): 665-675.
[15]韓晨晨, 程隆棣, 高衛東, 等. 基于有限元模型的噴氣渦流紡纖維運動軌跡模擬[J]. 紡織學報, 2018, 39(2): 32-37.HAN Chenchen, CHENG Longdi, GAO Weidong, et al. Simulation of fiber trajectory in jet vortex spinning based on finite element model[J]. Journal of Textile Research, 2018, 39(2): 32-37.
[16]韓晨晨, 程隆棣, 高衛東, 等. 傳統型與自捻型噴氣渦流紡的對比[J]. 紡織學報, 2018, 39(1): 25-31.HAN Chenchen, CHENG Longdi, GAO Weidong, et al. Comparative analysis of conventional and self twist jet vortex spinning[J]. Journal of Textile Research, 2018, 39(1): 25-31.
[17]韓晨晨. 自捻型噴氣渦流紡成紗原理及其紗線結構的相關性研究[D]. 上海: 東華大學, 2016.HAN Chenchen. Study on the Correlation of Yarn Formation Mechanism and Yarn Structure in Self Twist Jet Vortex Spinning[D]. Shanghai: Donghua University, 2016.
[18]郭臻, 李新榮, 卜兆寧, 等. 噴氣渦流紡中纖維運動的三維數值模擬[J]. 紡織學報, 2019, 40(5): 131-135.GUO Zhen, LI Xinrong, BU Zhaoning, et al. Three-dimensional numerical simulation of fiber movement in nozzle of murata vortex spinning[J]. Journal of Textile Research, 2019, 40(5): 131-135.
Influence of nozzle parameters on the characteristics of the internal flow field in air-jet vortex spinningWANG Qing, YE Minglu, LIANG Gaoxiang, SHENG Xiaochao, GAO Shuai(School of Mechanical and Electrical Engineering, Xi’an Polytechnic University, Xi’an 710048, China)
Abstract: Air-jet vortex spinning is a new spinning technology, which uses high speed rotating airflow to twist free-end fibers into yarns in the air twisting chamber. This technology emitting the roving process integrates spinning, winding and winding molding processes, shortening the spinning process and making itself the most advanced and promising new spinning technology in the world. At present, air-jet vortex spinning machines are mainly imported from Japan. The main reason is that the twisting mechanism of air-jet vortex spinning has not been fully grasped by Chinese. Thus, many scholars have carried out relevant studies which mainly focus on the influence of structure and process parameters of nozzles and hollow spindles on the flow field characteristics and yarn forming performance, the motion characteristics of the fibers in the flow field, as well as the influence of the numbers and inclination angles of jet orifices on the flow field. There are few studies on the influence of numbers, inclination angles of jet orifices and air supply pressures on the internal flow field of air-jet vortex spinning. In view of this, the influence of these three parameters on the internal flow field of air-jet vortex spinning is studied in detail in this paper. It can provide a theoretical reference for the design of air-jet vortex spinning nozzles.
Based on numerical method and single variable method, the influence of numbers and inclination angles of jet orifices as well as air supply pressures on the internal flow field of nozzles and twist characteristics were studied. Values of the three parameters of the reference configuration selected in this study were 5, 70° and 0.5 MPa. And the three parameters could change as [4, 5, 6], [65°, 70°, 75°] and [0.3, 0.4, 0,5] MPa, respectively. The structure modeling, meshing and numerical simulation of the seven combined states were carried out respectively, and the velocity vector diagram and flow diagram obtained by simulation were compared and analyzed. There are four conclusions obtained. Firstly, as the number of jet orifice increases from 4 to 6, the velocity difference at the outlet of jet orifices is quite small. The reason is that: although the jet orifices increase, the air supply pressures, and the length of each jet orifice remain unchanged. As a result, the airflow accelerates equally in each jet orifice. However, with the increase of jet orifices, the rotational motion of airflow in the nozzle as well as the twisting effect on the free-end fiber are enhanced. Thus, the jet orifices can be increased as many as possible on the premise that nozzles have sufficient structure strength. Secondly, when the inclination angles increase, the speed of the internal flow field in the nozzle increases from 458 m/s to 472 m/s gradually. And the velocity component along the circumferential direction increases when the airflow enters the vortex tube from the jet orifice. Thus, the yarn twists better, wraps tighter and the strength of yarn is higher. Whereas, when the inclination angle further increases, the circumferential airflow velocity along the nozzle will further increase, and the axial airflow velocity will decrease. As a result, the yarn will be more tightly wrapped, which makes the yarn harder and easier to fracture. In consequence, the number of jet orifices, air supply pressures and other parameters should be considered comprehensively to determine the optimal value of inclination angle combined with the experiment. Thirdly, the higher the air supply pressure, the higher the airflow velocity in the vortex tube, the stronger the airflow rotation motion, and the better the yarn twisting effect. Therefore, the air supply pressure has a significant influence on the flow field characteristics inside the nozzle. And the air supply pressure should be increased as much as possible when considering the gas consumption. Fourthly, with the change of jet orifice numbers, inclination angles and air supply pressures, the flow velocity distribution in the vortex tube is basically unchanged.
In conclusion, when we design the nozzle structure of air-jet vortex spinning machines, jet orifices should be designed as many as possible on the premise of sufficient nozzle structure strength, and inclination angles of jet orifices and air supply pressures should be increased at the same time. In this way, the twisting effect of free-end fiber can be improved effectively.
Key words: air-jet vortex spinning; nozzle parameters; numerical simulation; flow field characteristic analysis; spinning mechanism; twisting effect