馬 鑫, 但 衛(wèi), 王 強, 楊亞楠, 唐國榮, 唐功建*
中帕米爾塔什庫爾干早白堊世二云母花崗巖與中?基性包體的巖石成因及其地質(zhì)意義
馬 鑫1, 2, 但 衛(wèi)1, 3, 王 強1, 3, 楊亞楠1, 3, 唐國榮1, 2, 唐功建1, 3*
(1. 中國科學(xué)院 廣州地球化學(xué)研究所, 同位素地球化學(xué)國家重點實驗室, 廣東 廣州 510640; 2. 中國科學(xué)院大學(xué), 北京 100049; 3. 中國科學(xué)院深地科學(xué)卓越創(chuàng)新中心, 廣東 廣州 510640)
中?南帕米爾在早白堊世發(fā)生了巖漿爆發(fā)事件, 出露的花崗質(zhì)巖基規(guī)模巨大并且分布廣泛。這些白堊紀(jì)花崗質(zhì)巖石為鈣堿性系列, 具有弧巖漿巖的微量元素特征, 可能形成于Shyok洋和/或新特提斯洋的北向俯沖環(huán)境, 但其巖石成因與動力過程仍然不清楚。本文對中帕米爾塔什庫爾干地區(qū)的二云母花崗巖與中?基性包體開展了二次離子質(zhì)譜(SIMS)鋯石U-Pb年代學(xué)、巖相學(xué)、全巖主微量元素和Sr-Nd同位素地球化學(xué)研究。塔什庫爾干二云母花崗巖與中?基性包體形成時代分別為112.8±2.7 Ma和116.1±4.2 Ma, 與早白堊世巖漿爆發(fā)期同期。二云母花崗巖具有高的SiO2(71.79%~72.91%)、 K2O(4.60%~6.03%)和低的MgO(0.30%~0.53%)含量, 總體顯示弱過鋁質(zhì)特征(A/CNK=1.04~1.11)。巖石富集輕稀土元素和大離子親石元素, 虧損Nb、Ta、Ti, 具有弧巖漿巖微量元素特征, 以及富集的Sr-Nd同位素組成((87Sr/86Sr)i=0.707916~ 0.721691,Nd()=–10.4~–10.1)。巖相學(xué)與地球化學(xué)特征表明其為S型花崗巖, 源區(qū)主要為變雜砂巖, 通過水致白云母部分熔融形成。中?基性包體的主量元素含量變化較大(SiO2=44.91%~56.61%, MgO=4.75%~9.80%); 輕重稀土分異明顯, 無Eu異常; 微量元素組成顯示不同程度的虧損Nb和Ta; 具有較為富集并且變化較大的Sr-Nd同位素特征((87Sr/86Sr)i=0.703927~ 0.707694;Nd()=–5.9~–0.7)。通過分析認(rèn)為Shyok洋和/或新特提斯洋的俯沖沉積物發(fā)生部分熔融, 熔體與上覆的新生巖石圈地幔發(fā)生交代反應(yīng), 交代的輝石巖經(jīng)歷部分熔融形成具洋島玄武巖微量元素特征的基性巖漿, 巖漿上升形成基性包體。基性巖漿在侵位過程中同化混染了大陸下地殼, 形成閃長質(zhì)包體。推測中?南帕米爾地區(qū)早白堊世巖漿爆發(fā)可能與地幔楔熔體的底侵作用所導(dǎo)致的地殼廣泛熔融有關(guān)。
二云母花崗巖; 大陸邊緣弧; 巖漿爆發(fā); 塔什庫爾干; 帕米爾
大陸邊緣弧是地殼生長與消亡的關(guān)鍵場所(Annen et al., 2006), 也是殼?幔相互作用的主要區(qū)域(Chen et al., 2016), 出露大量的花崗巖質(zhì)巖石, 這些巖漿巖整體上與大陸地殼的成分一致(Gómez-Tuena et al., 2018)。大陸邊緣弧花崗質(zhì)巖石的形成是否代表新生組分的加入, 還是僅僅代表地殼物質(zhì)的再循環(huán), 也就是大陸邊緣弧是否存在大陸地殼的凈生長目前仍然存在爭論。因此, 研究大陸邊緣弧花崗質(zhì)巖石成因, 對于理解大陸地殼的生長與演化具有重要的意義。另外, 大陸邊緣弧往往具有幕式巖漿活動特征(Ducea et al., 2015), 目前對于大陸邊緣弧巖漿爆發(fā)的機制仍然缺乏深入了解。作為青藏高原的西部延伸(Chapman et al., 2018a), 帕米爾高原從古生代到新生代經(jīng)歷了多個周期性的俯沖與增生過程, 伴隨著多期幕式巖漿活動, 以及特提斯洋的消亡(Schwab et al., 2004; Robinson, 2015; Chapman et al., 2018b)。
一般認(rèn)為中?南帕米爾在白堊紀(jì)處于大陸邊緣弧構(gòu)造背景(Li et al., 2016; Aminov et al., 2017; Chapman et al., 2018b; Liu et al., 2020), 自南部的喀喇昆侖到北部的中帕米爾地區(qū), 發(fā)育大量白堊紀(jì)中酸性巖漿巖。這些巖漿巖SiO2(53.7%~74.6%)和高K2O(2.1%~6.6%)含量高, 為鈣堿性系列, 并具有弧巖漿巖的微量元素特征(Schwab et al., 2004; Ravikant et al., 2009; Jiang et al., 2013; Li et al., 2016; Aminov et al., 2017; Liu et al., 2020)。早白堊世中?南帕米爾存在高通量的巖漿爆發(fā)事件(Chapman et al., 2018b), 深成巖基規(guī)模巨大, 在俯沖帶以北500 km外的區(qū)域仍有分布, 這些花崗巖基是否形成于同一動力學(xué)背景下仍不清楚, 可能受到Shyok洋俯沖影響(Aminov et al., 2017; Liu et al., 2020), 或者是新特提斯洋平板俯沖影響(Jiang et al., 2013)。
本文對中帕米爾的塔什庫爾干地區(qū)二云母花崗巖和中?基性包體進(jìn)行了精確的SIMS鋯石U-Pb定年, 并對樣品的巖相學(xué)、全巖地球化學(xué)、Sr-Nd同位素組成進(jìn)行研究, 揭示了塔什庫爾干二云母花崗巖和中?基性包體的巖石成因和形成的動力學(xué)過程, 探討了帕米爾幕式巖漿活動以及大陸弧巖漿爆發(fā)的形成機制。
帕米爾高原位于青藏高原西側(cè), 其南、北邊界分別是Shyok 縫合帶和主帕米爾逆沖斷裂, 內(nèi)部被Tanymas 斷裂和Rushan-Pshart 縫合帶分隔成北帕米爾、中帕米爾和南帕米爾?喀喇昆侖地塊(圖1)。南帕米爾?喀喇昆侖內(nèi)部的Wakhan-Tirich邊界帶分隔南帕米爾和喀喇昆侖, 可能代表陸內(nèi)小洋盆(Zanchi et al., 2000)。北帕米爾與中帕米爾之間的Tanymas縫合帶閉合時代可能為晚三疊世(Dewey et al., 1988)。關(guān)于中帕米爾和南帕米爾之間的Rushan-Pshart縫合帶的閉合時限, 主要有兩種觀點: 一種觀點認(rèn)為Rshan-Pshart縫合帶的閉合時間為晚三疊世?早侏羅世(Robinson, 2015), 南帕米爾東部強烈變形的晚古生代和三疊紀(jì)沉積地層被侏羅紀(jì)紅色礫巖和砂巖不整合覆蓋, 之后整合覆蓋白堊紀(jì)砂巖組之上(Angiolini et al., 2013); 另一種觀點認(rèn)為Rshan-Pshart 縫合帶的閉合時間為晚侏羅世?早白堊世(Pashkov and Shvol’man, 1979; Schwab et al., 2004), 這種關(guān)觀點主要基于中?南帕米爾白堊紀(jì)陸相砂巖和礫巖覆蓋在變形的侏羅紀(jì)碳酸鹽巖之上(Shvol’man, 1978)以及Rushan-Pshart帶具有弧巖漿巖性質(zhì)的巖漿巖時代為侏羅紀(jì)(200~160 Ma)(Schwab et al., 2004)。Rshan- Pshart洋閉合之后, 南帕米爾?喀喇昆侖地區(qū)受到Shyok洋北向俯沖作用處于大陸弧的背景。科希斯坦洋內(nèi)弧與南帕米爾?喀喇昆侖之間Shyok洋的閉合時代一般認(rèn)為在80 Ma(Schwab et al., 2004), 但也有可能發(fā)生在更晚的始新世(Bouilhol et al., 2013)??葡K固寡髢?nèi)弧以南的新特提斯洋在50~55 Ma拼合到歐亞大陸南緣, 標(biāo)志著印度?歐亞板塊在該地區(qū)完成碰撞(Jain et al., 2002)。

①阿尼瑪卿縫合帶; ②西金烏蘭縫合帶; ③ 龍木錯-雙湖縫合帶; ④班公-怒江縫合帶; ⑤ 松多縫合帶; ⑥ 雅魯藏布江縫合帶; ⑦ 改則–里塘縫合帶; ⑧金沙縫合帶。
中?南帕米爾地區(qū)存在早白堊世與晚白堊世兩期巖漿爆發(fā), 在90~78 Ma之間存在巖漿間歇期(Chapman et al., 2018b)(圖2)。早白堊世巖漿爆發(fā)期出露的花崗質(zhì)巖基規(guī)模巨大并且廣泛分布于中?南帕米爾地區(qū)。通過整理中?南帕米爾地區(qū)白堊紀(jì)巖漿巖的年代學(xué)資料, 早白堊世花崗質(zhì)巖石形成時代大致相同, 巖漿活動時代峰期集中在112~92 Ma(Schwabet al., 2004; Li et al., 2016; Aminov et al., 2017; Chapman et al., 2018b; Liu et al., 2020)。出露的巖石類型主要為花崗閃長巖、二長花崗巖、英安巖、安粗巖, 巖石具有富集的Sr-Nd同位素特征((87Sr/86Sr)i=0.7069~ 0.7116;Nd()=–6.2~–11.0)(Malz et al., 2012; Aminov et al., 2017; Liu et al., 2020)。晚白堊世(76~68 Ma)發(fā)生小規(guī)模的巖漿爆發(fā), 出露的花崗質(zhì)巖石稀少, 僅在Rushan-Pshart縫合帶的附近有分布, 巖石類型有二長巖、白云母花崗巖, 巖石具有較為富集的Sr-Nd同位素特征((87Sr/86Sr)i=0.7080~0.7097;Nd()=–4.6~ –6.5)(Malz et al., 2012)。

數(shù)據(jù)來源: Schwab et al., 2004; Li et al., 2016; Aminov et al., 2017; Chapman et al., 2018b; Liu et al., 2020。
中帕米爾的塔什庫爾干侵入雜巖體位于Rushan- Pshart縫合帶以北, 處于大陸邊緣弧的東北角。該雜巖體呈NW-SE向分布, 主要由白堊紀(jì)和新生代花崗質(zhì)巖石組成(圖3)。其中, 白堊紀(jì)二云母花崗巖出露于塔什庫爾干侵入雜巖體的西南部, 出露面積廣闊,侵入于周圍的二疊系與三疊系。在二云母花崗巖中發(fā)現(xiàn)了與其伴生的中?基性包體, 外形不均一, 形狀從球狀到不規(guī)則狀, 大小從幾厘米到十幾厘米不等。

圖3 塔什庫爾干二云母花崗巖分布區(qū)域地質(zhì)簡圖(據(jù)1∶25萬塔什庫爾干塔吉克自治縣地質(zhì)圖, J43C003003)
本次研究的樣品采自中帕米爾的塔什庫爾干巖基, 巖石類型為二云母花崗巖以及與其伴生的中?基性包體。在野外觀察中, 中?基性包體常見于寄主二云母花崗巖中, 兩者之間的接觸面通常為圓形、無規(guī)則或彌散狀(圖4a、b)。
塔什庫爾干二云母花崗巖整體為灰白色, 塊狀構(gòu)造, 不等粒結(jié)構(gòu), 主要由斜長石(35%~40%), 石英(25%~30%), 黑云母(15%~20%)和白云母(8%~10%)等礦物組成(圖4c)。斜長石通常以自形?半自形板條狀出現(xiàn), 發(fā)育聚片雙晶。石英以間隙相的形式出現(xiàn), 偶爾表現(xiàn)出波狀消光。黑云母呈它形?半自形片狀。白云母為自形或半自形, 顆粒較大(直徑0.3~1 mm), 與其他礦物的接觸界面平直, 因此, 判斷其為原生的。
塔什庫爾干閃長質(zhì)包體為深灰色, 呈橢圓形, 細(xì)粒結(jié)構(gòu), 塊狀構(gòu)造, 主要由斜長石(45%~55%), 黑云母(15%~20%), 陽起石(15%~20%)和石英(<5%)等礦物組成。副礦物有針狀磷灰石和鐵鈦氧化物(圖4d)。
塔什庫爾干基性包體為深灰色, 呈橢圓形,細(xì)粒結(jié)構(gòu), 主要由斜長石(45%~60%), 單斜輝石(20%~30%)和黑云母(5%~10%)等礦物組成。副礦物有針狀磷灰石和鐵鈦氧化物。斜長石表面有輕微蝕變(圖4e、f)。
本次研究所有測試分析均在中國科學(xué)院廣州地球化學(xué)研究所同位素地球化學(xué)國家重點實驗室完成。
采用常規(guī)的重液和磁選技術(shù)從二云母花崗巖和閃長質(zhì)包體中分選了鋯石顆粒。利用JEOL JXA-8100電子探針對鋯石進(jìn)行陰極發(fā)光(CL)圖像分析, 以觀察鋯石內(nèi)部結(jié)構(gòu), 指導(dǎo)選擇目標(biāo)位置進(jìn)行U-Pb定年。SIMS U-Pb定年使用Cameca IMS-1280HR二次離子質(zhì)譜儀, 分析方法見Li et al. (2009)。所測數(shù)據(jù)使用鋯石標(biāo)樣Ple?ovice (Sláma et al., 2008)進(jìn)行校正, Qinghu鋯石作為監(jiān)控校正結(jié)果的工作標(biāo)樣。采用Isoplot/Ex v.3.0程序繪制年齡諧和圖并計算加權(quán)平均年齡(Ludwig, 2003)。所測Qinghu鋯石獲得諧和年齡為157.5±1.5 Ma(MSWD=0.19,=10), 與推薦值159.5±0.2 Ma的在誤差范圍內(nèi)一致(Li et al., 2013)。

礦物代號: Qz. 石英; Pl. 斜長石; Bt. 黑云母; Ms. 白云母; Act. 陽起石; Cpx. 單斜輝石; Ap. 磷灰石。
使用Rigaku RIX 2000 X射線熒光光譜儀在熔融玻璃片上分析主量元素氧化物。熔融玻璃是由樣品粉末和偏硼酸鋰(Li2B4O7)按1∶5的比例混合制成的。分析不確定度在1%~5%之間。使用Agilent 7500a電感耦合等離子體質(zhì)譜(ICP-MS)儀器分析微量元素, 詳細(xì)見Li et al. (2006), 大多數(shù)元素的分析精度<3%RSD(相對標(biāo)準(zhǔn)偏差)。
通過Neptune Plus多接受器電感耦合等離子體質(zhì)譜儀(MC-ICPMS)完成全巖Sr-Nd同位素比值的分析測試, 測試方法詳見Li et al. (2004)。Sr以及稀土元素分離和富集是通過使用特效Sr柱和AGW50-X12陽離子交換樹脂柱完成的, Nd的分離和富集是用專用的陽離子交換樹脂柱(HDEHP)實現(xiàn)。用86Sr/88Sr=0.1194和146Nd/144Nd=0.7219分別對測試的87Sr/86Sr和143Nd/144Nd值進(jìn)行校正。在樣品分析過程中, 該儀器測定的Sr同位素國際標(biāo)準(zhǔn)樣品NBS987的87Sr/86Sr=0.710247±9(2σ), Nd同位素國際標(biāo)準(zhǔn)樣品JNdi-1的143Nd/144Nd= 0.512103±5(2σ)。
二云母花崗巖的大多數(shù)鋯石顆粒呈自形、棱柱狀、無色透明。鋯石粒徑長100~300 μm, 且長/寬為2∶1~4∶1, 具有清晰的振蕩環(huán)帶(圖5a), Th/U值為0.01~0.49(表1), 表明鋯石為巖漿成因。二云母花崗巖樣品18KL12-5共進(jìn)行了10個鋯石點位分析, 有兩顆鋯石分析點(18KL12-5@1和18KL12-5@5)誤差范圍過大, 不參與諧和年齡計算。3顆鋯石為繼承鋯石, 年齡分別為135.6 Ma, 228.7 Ma和619.0 Ma。其余5個鋯石分析點的諧和年齡為112.8±2.7 Ma(圖5a), 代表了巖漿結(jié)晶年齡。
閃長質(zhì)包體中的鋯石顆粒為半自形, 具有伸長狀形狀, 長/寬為2∶1 ~3∶1。在CL圖像中振蕩環(huán)帶發(fā)育較差(圖5b), 具變化的Th(30~249 μg/g)和U(823~1159 μg/g)含量以及較高的Th/U值(0.03~0.30) (表1),表明為巖漿鋯石。大多數(shù)鋯石呈黑色, 海綿狀結(jié)構(gòu), 可能受流體蝕變或熱液影響, 最終僅得到了3個諧和的鋯石分析點, 得出諧和年齡為116.1±4.2 Ma(MSWD=3.9)(圖5b), 代表了閃長質(zhì)包體巖漿結(jié)晶年齡。二云母花崗巖與閃長質(zhì)包體具有相似的形成時代, 意味著它們形成于同一個巖漿爆發(fā)事件中, 具有成因聯(lián)系。
9個樣品(5個二云母花崗巖與4個中–基性包體)的全巖主微量元素和Sr-Nd同位素組成見表2。
塔什庫爾干二云母花崗巖樣品具有極為相似的主微量元素特征, SiO2(71.79%~72.99%)與K2O(4.56%~ 6.03%)變化不大, 并具有相對高的全堿(K2O+Na2O= 7.67%~9.24%), 在TAS圖中(圖6a)均投點于花崗巖區(qū)域, 屬于高鉀鈣堿性系列(圖6b), 具弱過鋁質(zhì)特征(A/CNK=1.04~1.11)(圖6c)。巖石具有極低的MgO (0.30%~0.53%)、Mg#(34.7~37.7)、Cr(1.96~14.2 μg/g)和Ni(1.22~2.73 μg/g)。球粒隕石標(biāo)準(zhǔn)化稀土元素配分模式圖顯示樣品富集輕稀土元素, 虧損重稀土元素((La/Yb)N=20.6~40.4), Eu負(fù)異常明顯(Eu/Eu*= 0.41~0.52),其中樣品18KL12-5比其他4個二云母花崗巖具有更明顯的重稀土元素分異程度((Dy/Yb)N=3.14)(圖7a)。原始地幔標(biāo)準(zhǔn)化微量元素蛛網(wǎng)圖顯示二云母花崗巖富集Rb、Th、U、Pb, 虧損Nb、Ta、P、Ti(圖7b)。

圖5 塔什庫爾干二云母花崗巖(a)和閃長質(zhì)包體(b)SIMS鋯石U-Pb年齡諧和圖

表1 塔什庫爾干二云母花崗巖與閃長質(zhì)包體鋯石SIMS U-Pb同位素分析結(jié)果

表2 塔什庫爾干二云母花崗巖與中-基性包體主量(%)、微量元素(μg/g)和Sr-Nd同位素分析結(jié)果

續(xù)表2:
注: LOI. 燒失量; A/CNK=Al2O3/(CaO+Na2O+K2O)摩爾比; Fe2O3T. 指全鐵含量;Zr(℃). 鋯飽和溫度, 計算方法見Watson and Harrison, 1983。
塔什庫爾干中?基性包體的主量元素成分變化較大, SiO2(44.91%~56.61%), MgO(4.75%~9.80%), Mg#(62.4~67.3)。在TAS圖中樣品分別位于二長輝長巖(18KL12-6, 18KL12-8)、二長閃長巖(18KL12-9)和閃長巖(18KL12-7)區(qū)域(圖6a), 屬于高鉀鈣堿性與鉀玄巖系列(圖6b)。4個中?基性包體具有相似的稀土元素配分模式, 富集輕稀土元素, 虧損重稀土元素((La/Yb)N=26.82~62.94), Eu異常不明顯(Eu/Eu*=0.82~ 1.03)(圖7c)。原始地幔標(biāo)準(zhǔn)化微量元素蛛網(wǎng)圖表現(xiàn)出兩種不同的微量元素特征(圖7d): 基性包體樣品(18KL12-6和18KL12-8)輕微虧損Nb和Ta, 富集Ba, U、Th、Rb、Pb無明顯富集, 類似于洋島玄武巖。閃長質(zhì)包體樣品(18KL12-7和18KL12-9)則具有弧巖漿巖的微量元素特征, 富集U、Th、Rb、Pb, 虧損Nb、Ta、Ti。

數(shù)據(jù)來源: 喜馬拉雅二云母花崗巖(水致熔融)據(jù)Gao and Zeng, 2014; 喜馬拉雅二云母花崗巖(脫水熔融)據(jù)Gao et al., 2013。

原始地幔和球粒隕石標(biāo)準(zhǔn)化值據(jù)Sun and McDonough, 1989。中?南帕米爾早白堊世花崗巖質(zhì)巖石數(shù)據(jù)來源: Schwab et al., 2004; Ravikant et al., 2009; Jiang et al., 2013; Li et al., 2016; Liu et al., 2020。
花崗巖成因類型復(fù)雜多樣, 根據(jù)源區(qū)巖石以及礦物組成的差異, 可將花崗巖分為I、S、A、M型花崗巖(Whalen et al., 1987; Chappell and White, 1992)。大多數(shù)I型花崗巖是由殼內(nèi)中基性的變質(zhì)火成巖部分熔融形成的(Chappell and Stephens, 1988), 通常具有高Na2O含量(>3.2%), 屬偏鋁質(zhì)或弱過鋁質(zhì)(A/CNK<1.1), 出現(xiàn)角閃石是判別I型花崗巖的特征礦物。S型花崗巖主要來自于變質(zhì)沉積巖的部分熔融, 一般具有低Na2O含量(<3.2%), 高K2O/Na2O(>1), 過鋁質(zhì)(A/CNK>1.1)特征, 白云母、堇青石、石榴石常常作為判別S型花崗巖的特征礦物(Chappell and White, 2001; Ghani et al., 2013)。A型花崗巖出現(xiàn)堿性暗色礦物(如鈉閃石、霓輝石和鈉角閃石)(Collins et al., 1982; Clemens et al., 1986)。M型花崗巖可由洋殼發(fā)生部分熔融形成(White, 1979), 也可由拉斑玄武質(zhì)巖漿分離結(jié)晶形成(Whalen, 1985)。
塔什庫爾干二云母花崗巖具有高SiO2(71.79%~ 72.99%), 高K2O(4.56%~6.03%), 高K2O/Na2O值(1.46~1.88),相對低Na2O(3.11%~3.25%), 低CaO (0.93%~1.74%), 屬于高鉀鈣堿性系列, 具弱過鋁質(zhì)特征(A/CNK=1.04~1.11), 符合S型花崗巖的主量元素特征(Chappell and White, 2001; Ghani et al., 2013), 與沉積物部分熔融形成的喜馬拉雅淡色花崗巖相似(Gao et al., 2013; Gao and Zeng, 2014)(圖6)。相比于南帕米爾的早白堊世I型花崗巖的Sr-Nd同位素組成((87Sr/86Sri)=0.7076~0.7106和Nd()=–8.4~ –7.4) (Liu et al., 2020), 塔什庫爾干二云母花崗巖具有更為富集的同位素特征((87Sr/86Sri)=0.707916~ 0.721691和Nd()=–10.4~–10.1)(圖8)。結(jié)合特征礦物白云母的出現(xiàn)以及鋯石中保留有古老繼承核, 可以證實塔什庫爾干二云母花崗巖為S型花崗巖。
前人實驗結(jié)果表明, 富斜長石和貧泥質(zhì)的變質(zhì)雜砂巖和變質(zhì)火成巖部分熔融形成的過鋁質(zhì)花崗巖具有高的CaO/Na2O值(>0.3), 相反, 由貧斜長石和富泥質(zhì)的變泥質(zhì)巖部分熔融所形成的過鋁質(zhì)花崗巖具有相對低的CaO/Na2O值(<0.3)(Sylvester, 1998)。塔什庫爾干二云母花崗巖具有高CaO/Na2O值(0.3~0.5) (圖9a),低Rb/Ba(0.55~0.61)與Rb/Sr值(0.98~2.78), 樣品點落在富集斜長石并且貧泥質(zhì)的變雜砂巖區(qū)域, 僅有一個樣品(18KL12-5)位于泥質(zhì)巖與砂質(zhì)巖源區(qū)交界處(圖9b), 這意味著其源區(qū)成分主要是變雜砂巖, 與水致白云母部分熔融所形成的喜馬拉雅二云母花崗巖源區(qū)成分相似(Gao and Zeng, 2014)。

數(shù)據(jù)來源: 南帕米爾早白堊世I型花崗巖據(jù)Liu et al., 2020; 南帕米爾早白堊世中酸性火山巖據(jù)Aminov et al., 2017; 南帕米爾?喀喇昆侖早白堊世閃長質(zhì)包體據(jù)Li et al., 2016; Liu et al., 2020; 南帕米爾早白堊世輝長巖據(jù)李杭等, 2020; 虧損地幔(DM)((87Sr/86Sr)i=0.7030, εNd(t)=9)據(jù)Zindler et al., 1984。
值得注意的是, 實驗巖石學(xué)結(jié)果表明變沉積巖部分熔融形成的熔體具有強過鋁質(zhì)特征(A/CNK>1.1) (Pati?o and Harris, 1998), 但塔什庫爾干二云母花崗巖具有弱過鋁質(zhì)特征(A/CNK=1.04~1.11)。沉積物部分熔融形成的喜馬拉雅淡色花崗巖(Gao et al., 2013; Gao and Zeng, 2014)的Sr-Nd同位素組成((87Sr/86Sr)i= 0.7285~0.7482和Nd()=–14.1~–13.4)比塔什庫爾干二云母花崗巖更富集。由于在寄主二云母花崗巖中發(fā)現(xiàn)了與其伴生的基性包體, 認(rèn)為少量準(zhǔn)鋁質(zhì)幔源鎂鐵質(zhì)巖漿混入到變雜砂巖的源區(qū), 從而部分熔融產(chǎn)生具有弱過鋁質(zhì)特征的S型花崗巖。綜上所述, 塔什庫爾干二云母花崗巖的源區(qū)主要是變雜砂巖并含有少量的幔源巖漿。
根據(jù)源區(qū)中存在的水含量, 變質(zhì)沉積巖發(fā)生部分熔融的方式分為兩種, 較低溫度下的水致部分熔融和較高溫度下的脫水部分熔融, 兩種方式形成的熔體在主量、微量和同位素組成上表現(xiàn)出明顯的差異(Gao et al., 2013, 2017; Gao and Zeng, 2014)。Rb、Sr、Ba等微量元素是判別變沉積巖部分熔融方式的理想示蹤元素(Gao et al., 2017)。Sr主要寄存在長石中, 而且Ca是組成斜長石的必要元素, Ba、Eu可以通過類質(zhì)同象的方式替換Ca, 因此, Sr、Ba、Ca、Eu等元素大量富集在長石中(Knesel and Davidson, 2002); 而Rb則主要寄存在云母中(Douce, 1998)。變沉積巖部分熔融過程中, 水的存在具有穩(wěn)定含水相的作用, 水致部分熔融比脫水部分熔融反應(yīng)消耗更少的云母和更多的斜長石(Conrad et al., 1988; Douce, 1996), 因此, 水致熔融所形成的熔體具有更高的Sr、Ba、Ca含量, 較低的Rb含量以及Rb/Sr值, 并具有相對虧損的Sr同位素特征。與白云母脫水部分熔融產(chǎn)生喜馬拉雅淡色花崗巖相比, 塔什庫爾干二云母花崗巖具有較高的Sr(111~276 μg/g)(圖10a)、Ba(424~507 μg/g)(圖11a)、CaO(0.93%~1.74%) (圖10c)含量, 較低的Rb(248~308 μg/g)含量(圖10a)、Rb/Sr值(0.98~2.78)(圖11a、b), 相對虧損的Sr同位素特征((87Sr/86Sr)i=0.707916~0.721691)(圖10b), 符合水致部分熔融特征(圖10)。高場強元素同樣可以作為判別部分熔融方式的有效途徑, Nb和Ta由于具有相似的電荷和離子半徑而被認(rèn)為是地球化學(xué)孿晶, 兩者均相容于富Ti礦物相和云母中, 在過鋁質(zhì)花崗巖類巖石中由于云母的出現(xiàn)發(fā)生Nb-Ta元素的分異作用(Stepanov and Hermann, 2013)。由于水致部分熔融相比于脫水部分熔融消耗更少的云母(Gao et al., 2017), 導(dǎo)致熔體具有更少的Nb、Ta含量(圖10d)。在Rb/Sr-Ba與Rb/Sr-Sr圖解中(圖11), 樣品具有變化的Ba和Sr含量, 但Rb/Sr值幾乎保持一致, 沿著水致白云母部分熔融趨勢線。除此之外, 塔什庫爾干二云母花崗巖的鋯飽和溫度為728~762 ℃, 佐證了二云母花崗巖產(chǎn)生于低溫水致熔融條件下。

圖9 塔什庫爾干二云母花崗巖CaO/Na2O-Al2O3/TiO2(a)和Rb/Ba-Rb/Sr(b)圖解(底圖據(jù)Patiňo and Harris, 1998; Sylvester, 1998。數(shù)據(jù)來源同圖6)

數(shù)據(jù)來源: 喜馬拉雅二云母花崗巖(水致熔融)據(jù)Gao and Zeng, 2014; 喜馬拉雅二云母花崗巖(脫水熔融) 據(jù)Gao et al., 2013; 水致熔融據(jù)脫水熔融據(jù)Gao et al., 2013; Gao and Zeng, 2014; 王曉先等, 2015。
Fig.10 SrRb (a), (87Sr/86Sr)iSr (b), CaONa2O (c) and TaNb (d) plots for the Taxkorgan two-mica granites

圖11 塔什庫爾干二云母花崗巖Rb/Sr-Ba(a)和Rb/Sr-Sr(b)圖解(底圖據(jù)Inger and Harris, 1993; Weinberg and Hasalová, 2015。數(shù)據(jù)來源同圖6)
綜上所述, 塔什庫爾干二云母花崗巖形成于早白堊世巖漿爆發(fā)時期, 為弱過鋁質(zhì)S型花崗巖, 具有富集的Sr-Nd同位素特征。其源區(qū)主要是由變雜砂巖構(gòu)成, 是在相對低溫條件下發(fā)生水致白云母部分熔融的產(chǎn)物。
塔什庫爾干基性包體具有低SiO2(44.91%~45.26%),高M(jìn)gO(9.29%~9.80%)、Cr(424~426 μg/g)和Ni(224~ 249 μg/g)含量, 表明來自于超基性地幔的部分熔融。正常的軟流圈地幔部分熔融形成的基性熔體通常虧損輕稀土元素與大離子親石元素, 具有虧損的同位素特征(Salters and Stracke, 2004; Workman and Hart, 2005)。塔什庫爾干基性包體富集大離子親石元素與輕稀土元素, 無Nb、Ta虧損, 具有略虧損的Sr-Nd同位素特征((87Sr/86Sr)i=0.703927~0.703942;Nd()=–0.8~–0.7)。這些地球化學(xué)特征的差異表明軟流圈地幔并不是塔什庫爾干基性包體的源區(qū)。大陸下巖石圈地幔是基性巖的地幔源區(qū)之一(Barry et al., 2003; Xu et al., 2012), 考慮到中?南帕米爾在早白堊世處于大陸弧背景, 巖石圈地幔楔是塔什庫爾干基性包體最可能的地幔源區(qū)。塔什庫爾干基性包體的Nb/U值(33.1~35.7)明顯的高于大陸地殼的Nb/U值(9±3) (Rudnick and Gao, 2003), 并且基性包體與寄主二云母花崗巖具有明顯不同的Sr-Nd同位素特征(圖8)。因此, 基性巖漿在侵位過程中并未受到明顯的地殼混染作用, 塔什庫爾干基性包體的地球化學(xué)特征主要受控于源區(qū)成分, 具略虧損的Sr-Nd同位素特征, Nd同位素一階段模式年齡非常年輕(709~711 Ma), 表明其來源于相對新生的巖石圈地幔。
為了更清晰地認(rèn)識原油組分對CO2驅(qū)混相的影響,通過室內(nèi)實驗開展原油中具有代表性的典型組分MMP的研究,不同碳數(shù)的烷烴、環(huán)烷烴、芳香烴與CO 2的MMP實驗結(jié)果如圖2所示。
塔什庫爾干閃長質(zhì)包體具有相對高的SiO2(53.14%~56.61%), 低MgO(4.75%~5.29%)、Cr(124~ 142 μg/g)和Ni(22~46 μg/g)含量, 富集輕稀土元素與大離子親石元素, 虧損重稀土元素與高場強元素, 具有弧巖漿巖微量元素特征, 并具有明顯富集的同位素特征((87Sr/86Sr)i=0.7077;Nd()=–5.9)和更古老的Nd同位素一階段模式年齡(1104 Ma)。以上差異表明塔什庫爾干閃長質(zhì)包體與基性包體的母巖漿成分有所差異。其Sr-Nd同位素組成與來自大陸下地殼的部分熔融的南帕米爾早白堊世I型花崗巖(Liu et al., 2020)比較接近。綜上表明基性巖漿在侵位過程中同化混染了大陸下地殼, 最終形成閃長質(zhì)包體的母巖漿。
Shyok洋和/或新特提斯洋的俯沖沉積物發(fā)生部分熔融, 所形成的熔體交代上覆地幔楔橄欖巖, 根據(jù)交代作用的強弱程度, 形成富硅型與貧硅型兩種輝石巖(Hirschmann et al., 2003; Herzberg, 2006, 2011; Lambart et al., 2013), 均可能是基性熔體的巖漿源。富硅輝石巖由地幔橄欖巖與大量的殼源熔體反應(yīng)形成, 貧硅輝石巖一般由地幔橄欖巖與少量殼源熔體反應(yīng)生成, 后者部分熔融所形成的基性熔體具有更高的MgO與CaO含量。塔什庫爾干基性包體具有較高的MgO(9.29%~9.80%)與CaO(8.68%~8.86%)含量, 與貧硅輝石巖部分熔融來源的熔體成分相似(Keshav et al., 2004; Sobolev et al., 2007), 與富硅輝石巖(Pertermann and Hirschmann, 2003)和橄欖巖部分熔融來源的熔體(Herzberg, 2011)明顯不同(圖12), 表明其源區(qū)為貧硅輝石巖。

數(shù)據(jù)來源: 貧硅輝石巖來源熔體據(jù)Keshav et al., 2004; Sobolev et al., 2007; 富硅輝石巖來源熔體據(jù)Pertermann and Hirschmann, 2003; 橄欖巖來源熔體據(jù)Herzberg, 2011。
綜上所述, Shyok洋和/或新特提斯洋的俯沖沉積物發(fā)生部分熔融, 熔體與上覆的新生巖石圈地幔發(fā)生交代反應(yīng)產(chǎn)生貧硅輝石巖。貧硅輝石巖經(jīng)歷部分熔融形成具洋島玄武巖微量元素特征的基性熔體, 侵位過程中并未受到明顯下地殼混染作用的基性熔體最終形成了塔什庫爾干基性包體; 而受到下地殼同化混染作用的基性熔體形成了具有弧巖漿巖微量元素特征的閃長質(zhì)包體。
中?南帕米爾早白堊世大型巖基主要以中酸性巖漿巖為主, 高SiO2(53.7%~74.6%)、高K2O(2.1%~6.6%),為鈣堿性系列, 屬準(zhǔn)鋁質(zhì)?過鋁質(zhì)(A/CNK=0.77~1.21), 具有弧巖漿的微量元素特征以及富集的Sr-Nd同位素組成(Schwab et al., 2004; Li et al., 2016; Chapman et al., 2018b; Liu et al., 2020)。平行于Shyok洋或新特提斯大洋板片的匯聚邊緣, 在中?南帕米爾弧系中發(fā)現(xiàn)了大量的白堊紀(jì)深成巖基(Aminov et al., 2017; Chapman et al., 2018b)。帕米爾在白堊紀(jì)時期存在兩期巖漿爆發(fā), 即早白堊世和晚白堊世(Chapman et al., 2018b)(圖2)。其中, 早白堊世巖漿爆發(fā)期具有更強烈的巖漿活動, 花崗質(zhì)巖基規(guī)模巨大, 并且廣泛分布于整個中?南帕米爾區(qū)域。通過整理前人關(guān)于帕米爾巖漿巖的年代學(xué)資料, 中?南帕米爾早白堊世花崗巖類巖石形成時代大致相同, 巖漿活動時代峰期為112~92 Ma(Schwab et al., 2004; Li et al., 2016; Aminov et al., 2017; Chapman et al., 2018b; Liu et al., 2020)。塔什庫爾干二云母花崗巖以及中?基性包體形成于早白堊世這期巖漿爆發(fā)活動。
關(guān)于大陸邊緣弧巖漿爆發(fā)的觸發(fā)機制目前仍然存在激烈爭論(Ducea, 2001; Ducea and Barton, 2007)。盡管大陸邊緣弧巖漿的產(chǎn)生與俯沖作用密切相關(guān), 但是巖漿爆發(fā)不能簡單歸因于大洋板片俯沖速率增加或者俯沖角度的改變, 也不僅僅是因為地幔楔熔體底侵作用的程度更大(Ducea, 2001; Chapman et al., 2017)。巖漿在爆發(fā)過程中發(fā)生的地球化學(xué)成分與同位素特征的變化是研究巖漿爆發(fā)觸發(fā)機制的關(guān)鍵線索。從區(qū)域構(gòu)造的角度來看, 觸發(fā)大陸邊緣弧巖漿爆發(fā)的機制主要分為兩類: 一類是地殼增厚與上板塊易熔組分通過弧后逆沖輸送至弧巖漿源區(qū)。大陸弧的區(qū)域同位素研究通常強調(diào)上板塊物質(zhì)對于弧巖漿的主要貢獻(xiàn)(Farmer and Depaolo, 1983; Taylor and Hugh, 1988)。例如加利福尼亞大陸邊緣弧在晚白堊世期間發(fā)生了巖漿爆發(fā), 在此之前的15~25 Ma前陸區(qū)域發(fā)生了巖石圈規(guī)模的逆沖活動(Ducea, 2001); 另一類是巖石圈伸展或?qū)α饕瞥龑?dǎo)致新生幔源熔體輸入(Kay and Kay, 1991; Sepidbar et al., 2018)。
許多地質(zhì)記錄表明中?南帕米爾在中生代受Shyok洋和/或新特提斯洋俯沖影響發(fā)生了明顯的地殼縮短增厚(Schwab et al., 2004; Chapman et al., 2018a)。南帕米爾缺失侏羅紀(jì)之后的海相沉積(Shvol’man, 1978), 表明早白堊世期間地體升高到海平面以上, 這是由于地殼的縮短和增厚造成的。喀喇昆侖地區(qū)強烈變形的侏羅系及較老的地層被早白堊世礫巖呈角度不整合覆蓋, 同樣證明了早白堊世發(fā)生地殼縮短增厚(Gaetani et al., 1990)。活動大陸邊緣環(huán)境, 富鉀巖漿作用通常與貝尼奧夫帶的變陡以及弧后位置地殼增厚有關(guān)(Morrison, 1980; Meen, 1987)。塔什庫爾干二云母花崗巖為高鉀鈣堿性?鉀玄巖系列(圖6b), 可能意味著在Shyok洋俯沖期間弧后位置發(fā)生了地殼縮短。伴隨著前陸褶皺與逆沖帶, 并未發(fā)育弧后盆地, 中?南帕米爾早白堊世花崗巖很可能形成于擠壓弧環(huán)境(Ducea et al., 2015)。因此, 地殼增厚和上板塊物質(zhì)向弧巖漿源區(qū)的輸送為中?南帕米爾早白堊世巖漿爆發(fā)提供了一個很好的解釋(DeCelles et al., 2009)。
塔什庫爾干二云母花崗巖富集的Sr-Nd同位素組成證明源區(qū)物質(zhì)主要來源于大陸上板塊地殼物質(zhì), 并且中?南帕米爾早白堊花崗質(zhì)巖石整體上具有富集的Sr-Nd同位素特征((87Sr/86Sr)i= 0.7069~0.7116;Nd()=–11.0~–6.2)(Aminov et al., 2017; Liu et al., 2020), 地殼深熔主要發(fā)生在早白堊世期間。大規(guī)模的地殼熔融是由地幔楔熔體補充的, 地幔楔熔體對觸發(fā)地殼熔融爆發(fā)起重要作用, 地殼下部幔源巖漿的熱能與物質(zhì)輸入可能為巖漿爆發(fā)提供了附加的影響(Wang et al., 2017; Mazhari et al., 2019; Zhang et al., 2020), 中?南帕米爾地區(qū)早白堊世巖漿爆發(fā)可能是由地幔楔熔體的底侵作用所形成的。目前普遍認(rèn)為新特提斯俯沖過程中幔源鎂鐵質(zhì)巖漿的底侵作用和俯沖洋殼的再循環(huán)在地殼生長過程中發(fā)揮了重要作用(Ji et al., 2009; Ma et al., 2013; Hou et al., 2015; Wei et al., 2017)。正如塔什庫爾干二云母花崗巖中發(fā)現(xiàn)了基性包體的存在, 意味著有來自巖石圈地幔物質(zhì)添加到大陸弧地殼中, 表明存在少量新生地殼的產(chǎn)生。因此, 中?南帕米爾在早白堊時期處于活動大陸邊緣環(huán)境, 主要發(fā)生地殼的重熔再造, 存在少量的新生地殼生長, 早白堊世巖漿爆發(fā)可能是由地幔楔熔體的底侵作用形成的。
(1) 塔什庫爾干二云母花崗巖與中基性包體均形成于早白堊世巖漿爆發(fā)事件中。
(2) 塔什庫爾干二云母花崗巖為弱過鋁質(zhì)的S型花崗巖, 具有富集的Sr-Nd同位素特征。其源區(qū)主要由變雜砂巖構(gòu)成, 可能在后期混合了少量基性包體的母巖漿, 在相對低溫條件下發(fā)生水致白云母部分熔融。
(3) Shyok洋和/或新特提斯洋的俯沖沉積物發(fā)生部分熔融, 熔體與上覆的新生巖石圈地幔發(fā)生交代反應(yīng), 交代輝石巖經(jīng)歷部分熔融形成具洋島玄武巖微量元素特征的基性熔體, 形成基性包體?;詭r漿在侵位過程中同化混染了大陸下地殼, 最終形成閃長質(zhì)包體。
(4) 中?南帕米爾地區(qū)早白堊世巖漿爆發(fā)可能是由地幔楔熔體的底侵作用所形成的。
致謝:中國地質(zhì)科學(xué)院地質(zhì)研究所尹繼元研究員和匿名評審專家進(jìn)行了細(xì)致地評審, 并提出寶貴的建議, 中國科學(xué)院廣州地球化學(xué)研究所同位素地球化學(xué)國家重點實驗室夏小平研究員在SIMS 鋯石U-Pb測年和數(shù)據(jù)分析過程中給予了熱心指導(dǎo)和幫助, 在此一并表示衷心感謝。
李杭, 柯強, 李昊, 洪濤, 趙同壽, 徐興旺. 2020. 喀喇昆侖地體甜水海地區(qū)102 Ma輝長巖的發(fā)現(xiàn)及其對區(qū)域中生代構(gòu)造演化的約束. 巖石學(xué)報, 36(4): 1041–1058.
王曉先, 張進(jìn)江, 閆淑玉, 劉江, 王佳敏, 郭磊. 2015. 北喜馬拉雅恰芒巴二云母花崗巖的年齡及形成機制. 地質(zhì)科學(xué), 50(3): 708–727.
Aminov J, Ding L, Mamadjonov Y, Dupont N G, Aminov J, Zhang L Y, Yoqubov S, Aminov J, Abdulov S. 2017. Pamir Plateau formation and crustal thickening before the India-Asia collision inferred from dating and petrology of the 110–92 Ma Southern Pamir volcanic sequence., 51: 310–326.
Angiolini L, Zanchi A, Zanchetta S, Nicora A, Vezzoli G. 2013. The Cimmerian geopuzzle: New data from South Pamir., 25(5): 352–360.
Annen C, Blundy J D, Sparks R S J. 2006. The genesis of intermediate and silicic magmas in deep crustal hot zones., 47(3): 505–539.
Barry T L, Saunders A D, Kempton P D, Windley B F, Pringle M S, Dorjnamjaa D, Saandar S. 2003. Petrogenesis of Cenozoic basalts from Mongolia: Evidence for the role of asthenospheric versus metasomatized lithospheric mantle sources., 44: 55–91.
Bouilhol P, Jagoutz O, Hanchar J M, Dudas F O. 2013. Dating the India-Eurasia collision through arc magmaticrecords., 366: 163– 175.
Chapman J B, Ducea M N, Kapp P, Gehrels G E, DeCelles P G. 2017. Spatial and temporal radiogenic isotopic trendsof magmatism in Cordilleran orogens., 48: 189–204.
Chapman J B, Robinson A C, Carrapa B, Villarreal D, Worthington J, DeCelles P G, Kapp P, Gadoev M, Oimah-madov I, Gehrels G. 2018a. Cretaceous shortening and exhumation history of the South Pamir terrane., 10(4): 494–511.
Chapman J B, Scoggin S H, Kapp P, Carrapa B, Ducea M N, Worthington J, Oimahmadov I, Gadoev M. 2018b. Mesozoic to Cenozoic magmatic history of the Pamir., 482: 181–192.
Chappell B W, Stephens W E. 1988. Origin of infra crustal (I-type) granite magmas., 79(2): 71–86.
Chappell B W, White A J R. 1992. I- and S-type granites in the Lachlan Fold Belt., 83(1–2): 1–26.
Chappell B W, White A J R. 2001. Two contrasting granite types: 25 years later., 48(4): 489–499.
Chen M, Sun M, Buslov M M, Cai K D, Zhao G C, Kulikova A V, Rubanova E S. 2016. Crustal melting and magma mixing in a continental arc setting: Evidence from the Yaloman intrusive complex in the Gorny Altai terrane, Central Asian Orogenic Belt., 252: 76–91.
Clemens J, Holloway J R, White A. 1986. Origin of an A-typegranite: Experimental constraints., 71(3–4): 317–324.
Collins W J, Beams S D, White A J R, Chappell B W. 1982. Nature and origin of A-type granites with particular reference to southeastern Australia., 80(2): 189–200.
Conrad W K, Nicholls I A, Wall V J. 1988. Water-Saturated and undersaturated melting of metaluminous and peraluminous crustal compositions at 10 kb: Evidence for the origin of silicic magmas in the Taupo volcanic zone, New Zealand, and other occurrences., 29(4): 765–803.
DeCelles P G, Ducea M N, Kapp P, Zandt G. 2009. Cyclicity in Cordilleran orogenic systems., 2(4): 251–257.
Dewey J F, Shackleton R M, Chang C F, Sun Y Y. 1988. The tectonic evolution of the Tibetan Plateau., 327: 379–413.
Douce A E P. 1996. Effects of pressure and H2O content on the compositions of primary crustal melts., 87(1–2): 11–21.
Douce A E P. 1998. Experimental constraints on Himalayan anatexis., 39(4): 689–710.
Ducea M. 2001. The California Arc: Thick granitic batholiths, eclogitic residues, lithospheric-scale thrusting, and magmatic flare-ups., 11(11): 4–10.
Ducea M N, Barton M D. 2007. Igniting flare-up events in Cordilleran arcs., 35(11): 1047–1050.
Ducea M N, Saleeby J B, Bergantz G. 2015. The architecture, chemistry, and evolution of continental magmatic arcs., 43(1): 299–331.
Farmer G L, Depaolo D J. 1983. Origin of Mesozoic and Tertiary granite in the western United States and impli-cations for Pre-Mesozoic crustal structure: 1. Nd and Sr isotopic studies in the geocline of the Northern Great Basin., 88(B4): 3379– 3401.
Frost B R, Barnes C G, Collins W J, Arculus R J, Ellis D J, Frost C D. 2001. A geochemical classification for granitic rocks., 42: 2033–2048.
Gaetani M, Garzanti E, Jadoul F, Nicora A, Tintori A, Pasini M, Khan K S A. 1990. The north Karakorum side of the Central Asia geopuzzle., 102: 54–62.
Gao L E, Zeng L S. 2014. Fluxed melting of metapelite and the formation of Miocene high-CaO two-mica granites in the Malashan gneiss dome, southern Tibet., 130: 136–155.
Gao L E, Zeng L S, Asimow P D. 2017. Contrasting geoche-mical signatures of fluid-absent versus fluid-fluxed melting of muscovite in metasedimentary sources: The Himalayan leucogranites., 45: 39–42.
Gao L E, Zeng L S, Hou K J, Guo C L, Tang S H, Xie K J, Hu G Y, Wang L. 2013. Episodic crustal anatexis and the formation of Paiku composite leucogranitic pluton in the Malashan Gneiss Dome, Southern Tibet., 58(28): 3546–3563.
Ghani A A, Searle M, Robb L, Chung S L. 2013. Transitional I-S type characteristic in the Main Range Granite, Peninsular Malaysia., 76: 225–240.
Gómez-Tuena A, Cavazos-Tovar J G, Parolari M, Straub S M, Espinasa-Pere?a R. 2018. Geochronological and geoche-mical evidence of continental crust ‘relamination’ in the origin of intermediate arc magmas., 322: 52–66.
Herzberg C. 2006. Petrology, thermal structure of the Hawaiian plume from Mauna Kea volcano., 444: 605–609.
Herzberg C. 2011. Identification of source lithology in the Hawaiian, Canary Islands: Implications for origins., 52: 113–146.
Hirschmann M M, Kogiso T, Baker M B, Stolper E M. 2003. Alkalic magmas generated by partial melting of garnet pyroxenite., 31: 481–484.
Hou Z Q, Yang Z M, Lu Y J, Kemp A, Zheng Y C, Li Q Y, Tang J X, Yang Z S, Duan L F. 2015. A genetic linkage between subduction- and collision-related porphyry Cu deposits in continental collision zones., 43: 247–250.
Inger S, Harris N. 1993. Geochemical constraints on leucogranite magmatism in the Langtang Valley, Nepal Himalaya., 34: 345–368.
Jain A K, Singh S, Manickavasagam R M. 2002. Himalayan collision tectonics., 6(4): 950–951.
Ji W Q, Wu F Y, Chung S L, Li J X, Liu C Z. 2009. Zircon U-Pb geochronology and Hf isotopic constraints on petrogenesis of the Gangdese batholith, southern Tibet., 262: 229–245.
Jiang Y H, Liu Z, Jia R Y, Liao S Y, Zhao P, Zhou Q. 2013. Origin of Early Cretaceous high-K calc-alkaline granitoids, western Tibet: Implications for the evolution of the Tethys in NW China., 56(1): 88– 103.
Kay R W, Kay S M. 1991. Creation and destruction of lower continental crust., 80(2): 259– 278.
Keshav S, Gudfinnsson G H, Sen G, Fei Y. 2004. High-pressure melting experiments on garnet clinopyroxenite and the alkalic to tholeiitic transition in ocean-island basalts., 223: 365–379.
Knesel K M, Davidson J P. 2002. Insights into collisional magmatism from isotopic fingerprints of melting reactions., 296: 2206–2208.
Lambart S, Laporte D, Schiano P. 2013. Markers of the pyroxenite contribution in the major-element compo-sitions of oceanic basalts: Review of the experimental constraints., 160–161: 14–36.
Li J Y, Niu Y L, Hu Y, Chen S, Zhang Y, Duan M, Sun P. 2016. Origin of the late Early Cretaceous granodiorite and associated dioritic dikes in the Hongqilafu pluton, northwestern Tibetan Plateau: A case for crust-mantle interaction., 260: 300–314.
Li X H, Li Z X, Wingate M T D, Chung S L, Liu Y, Lin G C, Li W X. 2006. Geochemistry of the 755 Ma Mundine Well dyke swarm, northwestern Australia: Part of a Neoproterozoic mantle superplume beneath Rodinia?, 146(1–2): 1–15.
Li X H, Liu D, Sun M, Li W X, Liang X R, Liu Y. 2004. Precise Sm-Nd and U-Pb isotopic dating of the supergiant Shizhuyuan polymetallic deposit and its host granite, SE China., 141(2): 225–231.
Li X H, Liu Y, Li Q L, Guo C H, Chamberlain K R. 2009. Precise determination of Phanerozoic zircon Pb/Pb age by multicollector SIMS without external standardization.,,, 10(4), Q04010.
Li X H, Qi C S, Liu Y, Liang X R, Tu X L, Xie L W, Yang Y H. 2005. Petrogenesis of the Neoproterozoic bimodal volcanic rocks along the western margin of the Yangtze Block: New constraints from Hf isotopes and Fe/Mn ratios., 50: 2481–2486.
Li X H, Tang G Q, Gong B, Yang Y H, Hou K J, Hu Z, Li Q, Liu Y, Li W. 2013. Qinghu zircon: A working reference for microbeam analysis of U-Pb age and Hf and O isotopes., 58(36): 4647–4654.
Liu X Q, Zhang C L, Hao X S, Zou H B, Zhao H X, Ye X T. 2020. Early Cretaceous granitoids in the Southern Pamir: Implications for the Meso-Tethys evolution of the Pamir Plateau., 362–363, 105492.
Ludwig K. 2003. ISOPLOT 3.0: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Special Publication, 4: 1-74.
Ma L, Wang Q, Wyman D A, Jiang Z Q, Yang J H, Li Q L, Gou G N, Guo H F. 2013. Late Cretaceous crustal growth in the Gangdese area, southern Tibet: Petrological and Sr-Nd-Hf-O isotopic evidence from Zhengga diorite- gabbro., 349: 54–70.
Malz N, Pf?nder J A, Ratschbacher L, Hacker B R. 2012. Cretaceous-Cenozoic magmatism in the Pamir and a comparison with Tibet., 45: 119–120.
Maniar P D, Piccoli P M. 1989. Tectonic discrimination of granitoids., 101(5): 635–643.
Mazhari S A, Kl?tzli U, Safari M. 2019. Petrological investigation of Late Cretaceous magmatism in Kaboodan area, NE Iran: Evidence for an active continental arc at Sabzevar zone., 348–349, 105183.
Meen J K. 1987. Formation of shoshonites from calcalkaline basalt magmas: Geochemical and experimental constraints from the type locality., 97: 333–351.
Middlemost E A K. 1994. Naming materials in the magma/ igneous rock system., 37(3–4): 215–244.
Morrison G W. 1980. Characteristics and tectonic setting of the shoshonite rock association., 13: 97–108.
Pashkov B, Shvol’man V. 1979. Rift margins of Tethys in the Pamirs., 13(6): 447–456.
Pati?o D A E, Harris N. 1998. Experimental constraints on Himalayan anatexis., 39(4): 689– 710.
Peccerillo A, Taylor S R. 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey., 58(1): 63–81.
Pertermann M, Hirschmann M M. 2003. Anhydrous partial melting experiments on MORB-like eclogite: Phase relations, phase compositions and mineral-melt partitioning of major elements at 2–3 GPa., 44: 2173–2201.
Ravikant V, Wu F Y, Ji W Q. 2009. Zircon U-Pb and Hf isotopic constraints on petrogenesis of the Cretaceous- Tertiary granites in eastern Karakoram and Ladakh, India., 110(1–4): 153–166.
Robinson A C. 2015. Mesozoic tectonics of the Gondwanan terranes of the Pamir plateau., 102: 170–179.
Rudnick R L, Gao S. 2003. Composition of the continental crust // Holland H D, Turekian K K. Treatise on Geochemistry, 3: 1–64.
Salters V J M, Stracke A. 2004. Composition of the depleted mantle.,,, 5(5), Q05004.
Schwab M, Ratschbacher L, Siebel W, Williams M M, Minaev V, Lutkov V, Chen F, Stanek K, Nelson B, Frisch W. 2004. Assembly of the Pamirs: Age and origin of magmatic belts from the southern Tien Shan to the southern Pamirs and their relation to Tibet., 23(4), TC4002.
Sepidbar F, Mirnejad H, Ma C, Moghadam H S. 2018. Identification of Eocene-Oligocene magmatic pulses associated with flare-up in east Iran: Timing and sources., 57: 141–156.
Shvol’man V A. 1978. Relicts of the Mesotethys in the Pamirs., 8: 369–378.
Sláma J, Ko?ler J, Condon D J, Crowley J L, Gerdes A, Hanchar J M, Horstwood M S A, Morris G A, Nasdala L, Norberg N, Schaltegger U, Schoene B, Tubrett M N, Whitehouse M J. 2008. Ple?ovice zircon — A new natural reference material for U-Pb and Hf isotopic microanalysis., 249: 1–35.
Sobolev A V, Hofmann A W, Kuzmin D V, Yaxley G M, Arndt N T, Chung S L, Danyushevsky L V, Elliott T, Frey F A, Garcia M O. 2007. The amount of recycled crust in sources of mantle-derived melts., 316: 412–417.
Stepanov A S, Hermann J. 2013. Fractionation of Nb and Ta by biotite and phengite: Implications for the “missing Nb paradox”., 41: 303–306.
Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes.,,, 42(1): 313–345.
Sylvester P J. 1998. Post-collisional strongly peraluminous granites., 45(1): 29–44.
Taylor J R, Hugh P. 1988. Oxygen, hydrogen, and strontium isotope constraints on the origin of granites., 79(2–3): 317–338.
Wang R Q, Qiu J S, Yu S B, Zhao J L. 2017. Crust-mantle interaction during Early Jurassic subduction of Neo-Tethyan oceanic slab: Evidence from the Dongga gabbro-granite complex in the southern Lhasa subterrane, Tibet., 292: 262–277.
Watson E B, Harrison T M. 1983. Zircon saturation revisited: Temperature and composition effects in a variety of crustalmagma types., 64(2): 295–304.
Wei Y Q, Zhao Z D, Niu Y L, Zhu D C, Liu D, Wang Q, Hou Z Q, Mo X X, Wei J C. 2017. Geochronology and geochemistry of the Early Jurassic Yeba Formation volcanic rocks in southern Tibet: Initiation of back-arc rifting and crustal accretion in the southern Lhasa Terrane., 278: 477–490.
Weinberg R F, Hasalová P. 2015. Water-fluxed melting of the continental crust: A review., 212: 158–188.
Whalen J B, Currie K L, Chappell B W. 1987. A-type granites: Geochemical characteristics, discrimination and petrogenesis., 95(4): 407– 419.
White A J R. 1979. Sources of granite magmas., 11(7): 539.
Workman R K, Hart S R. 2005. Major and trace element composition of the depleted MORB mantle (DMM)., 231: 53–72.
Xu H J, Ma C Q, Song Y R, Zhang J F, Ye K. 2012. Early Cretaceous intermediate-mafic dykes in the Dabie orogen, eastern China: Petrogenesis and implications for crust- mantle interaction., 154: 83–99.
Zanchi A, Poli S, Fumagalli P, Gaetani M. 2000. Mantle exhumation along the Tirich Mir Fault Zone, NW Pakistan: Pre-mid-Cretaceous accretion of the Karakoram terrane to the Asian margin., 170(1): 237–252.
Zhang Z M, Ding H X, Palin R M, Dong X, Tian Z L, Chen Y F. 2020. The lower crust of the Gangdese magmatic arc, southern Tibet, implication for the growth of continental crust., 77: 136–146.
Zindler A, Staudigel H, Batiza R. 1984. Isotope and trace element geochemistry of young Pacific seamounts: Implications for the scale of upper mantle heterogeneity., 70: 175–195.
Petrogenesis of the TaxkorganEarly Cretaceous Two-mica Granites and Medium-mafic Magmatic Enclaves in the Central Pamir and Their Geological Significance
MA Xin1, 2, DAN Wei1, 3, WANG Qiang1, 3, YANG Yanan1, 3, TANG Guorong1, 2, TANG Gongjian1, 3*
(1. State Key Laboratory of Isotope Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, Guangdong, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China; 3. CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, Guangdong, China)
A magma flare-up occurred in the Central and South Pamir during the Early Cretaceous as evidenced by the widely distributed granitic batholiths.These Cretaceous granitoid rocks are calc-alkaline series with arc-like trace element signatures. They may be formed in the northward subduction environment of the Shyok Ocean and/or the Neo-Tethys, but their petrogenesis and dynamical processes are still unclear.In this paper, we present the secondary ion mass spectrometry (SIMS) zircon U-Pb geochronological, petrographical, whole rock major and trace elements, Sr-Nd isotopic geochemical data of the Taxkorgan two-mica granites and medium-mafic magmatic enclaves of the Central Pamir. The Taxkorgan two-mica granites and medium-mafic magmatic enclaves were formed at 112.8±2.7 Ma and 116.1±4.2 Ma, respectively, which coincided with the Early Cretaceous magmatic flare-up. The Taxkorgan two-mica granites have high SiO2(71.79% – 72.99%), K2O (4.60% – 6.03%) and low MgO (0.30% – 0.53%) content. They generally have weak peraluminous characteristics (A/CNK = 1.04 – 1.11).The two-mica granites are enriched in light rare earth elements and large ion lithophile elements, but depleted in Nb, Ta and Ti. They are characterized by arc-like trace element characteristicsand enrichment in Sr-Nd isotopes ((87Sr/86Sr)i= 0.707916 – 0.721691,Nd() = –10.4 – –10.1).The petrographic and geochemical characteristics indicate that the Taxkorgan two-mica granites are S-type granites, and the magma source is mainly composed of metagreywacke, which was produced by fluid-fluxed muscovite melting. The major elements in the medium-mafic magmatic enclaves are variable (SiO2= 44.91% – 56.61%; MgO = 4.75% – 9.80%). The light and heavy rare earth element fractionation is obvious, and there is no Eu anomaly. In the trace element diagrams, the medium-mafic magmatic enclaves have different degrees of Nb and Ta depletions. The Sr-Nd isotopic characteristics of these rocks are relatively enriched and varied greatly ((87Sr/86Sr)i= 0.703927 – 0.707694;Nd() = –5.9 – –0.7). We suggest that the subducted sediments of the Shyok Ocean and/or the Neo-Tethys Ocean were partially melted, and the melt underwent a metasomatic reaction with the overlying juvenile lithospheric mantle. The metasomatic pyroxenes underwent partial melting to form a mafic magma with the trace element characteristics of ocean island basalt, and the magma rose to form the mafic magmatic enclaves. The mafic magma assimilated the continental lower crust during the emplacement process and eventually formed the dioritic enclaves.The early Cretaceous magmatic flare-up in the Central-South Pamir area may be related to the extensive melting of the crust caused by the underplating of the mantle wedge melt.
two-mica granite; continental margin arc; magmatic flare-up; Taxkorgan; Pamir
2021-02-08;
2021-03-22
新疆維吾爾自治區(qū)重大科技專項(202101679)和國家自然科學(xué)基金項目(41722205、41673033)聯(lián)合資助。
馬鑫(1994–), 男, 碩士研究生, 巖石地球化學(xué)專業(yè)。E-mail: 549768803@qq.com
唐功建(1979–), 男, 研究員, 從事巖石學(xué)與地球化學(xué)研究工作。E-mail: tanggj@gig.ac.cn
P595; P597
A
1001-1552(2022)02-0380-018