999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

Ding-投射模和粘合

2022-05-30 12:29:36張豫岡曹天涯
吉林大學學報(理學版) 2022年2期
關鍵詞:定義結構

張豫岡, 曹天涯

(1. 蘭州工業學院 基礎學科部, 蘭州 730050; 2. 西北師范大學 計算機科學與工程學院, 蘭州 730070)

文獻[1]給出了三角范疇粘合的公理化定義, 其提供了將三角范疇分解為兩個三角子范疇, 又將兩個三角子范疇粘合成一個三角范疇的構造方法. 目前, Abel范疇和三角范疇的粘合已成為數學研究的基本工具, 在奇異空間、 代數表示論、 環論、 多項式函子理論等領域具有重要作用. 文獻[2]給出了三角范疇穩定t-結構的概念, 三角范疇的粘合和穩定t-結構有密切的聯系; 文獻[3]提出了強Gorenstein-平坦模和Gorenstein FP-內射模的概念; 文獻[4]稱強Gorenstein-平坦模和Gorenstein FP-內射模分別為Ding-投射模和Ding-內射模, 同時利用Ding-模把Quillen模型結構下的同倫范疇從Gorenstein環推廣到Ding-Chen環上; 文獻[5-9]給出了關于Ding模以及粘合的相關結果. 本文在文獻[6]的基礎上繼續研究Ding-投射模上的相關同倫范疇, 并且構造粘合及相應的穩定t-結構.

1 預備知識

設R是具有單位元的環, 本文所涉及的模均為左R-模, 復形均為上鏈復形.

定義1[4]若存在一個正合序列

P·=…→P-1→P0→P1→P2→…,

定義2[1]設D, D′,D″是三角范疇, D允許有關于D′和D″的粘合, 記作

(1)

其是指式(1)中6個三角函子滿足下列條件:

1) (i*,i*),(i!,i!),(j!,j!)和(j*,j*)是伴隨對;

2)i*,j!,j*是滿嵌入函子;

3)j*i*=0;

4) 對D中的任意對象X, 可確定D中的兩個三角:

i*i!X→X→j*j!X→i*i!X[1],

j!j*X→X→i!i*X→j!j*X[1].

如果4個正合函子i*,i!,j*,j*滿足粘合定義中的相應條件, 則稱三角范疇D允許有關于三角范疇D′和D″的右的粘合.

類似地, 可定義左粘合.

定義3[2]設U和V是三角范疇D的全子范疇, 用[1]表示三角范疇中的平移函子.如果其滿足下列條件:

1) U=U[1], V=V [1];

2) 對于任意的X∈U,Y∈V, 均有HomD(X,Y)=0;

3) 對于D中的任意一個對象X, 存在三角A→X→B→A[1], 其中A∈U,B∈V.

則稱(U,V)是D上的穩定t-結構.

2 主要結果

對于*∈{∞,-,+}, 定義K*(DP)的三角子范疇如下:

K*,db(DP)∶={X∈K*(DP)|對任意D∈DP, 均存在-m,k∈,

使得Hi(HomR(D,X))=0,i<-m,i>k}.

顯然,Kb(DP),K-,db(DP),K+,db(DP)都是K∞,db(DP)的三角子范疇,Kb(DP)是K-,db(DP)和K+,db(DP)的三角子范疇.同理, 對于Ding-內射模的同倫范疇K*,db(DI), 可相應地定義三角子范疇Kb(DI),K-,db(DI),K+,db(DI).如果C是三角范疇D的三角子范疇并且關于直和項封閉, 則稱C是三角范疇D的一個厚子范疇.上面涉及的三角子范疇都是厚子范疇.

引理1[2,10]1) 設C是三角范疇D的一個厚子范疇, 若典范嵌入i*: C→D有一個右伴隨i!: D→C, 則存在下列右粘合:

2) 設(U,V)和(V,W)是D中的兩個穩定t-結構, 則對于典范嵌入i*: V→D, 存在如下粘合:

并且Imj!=U, Imj*=W.

定義4若對R上任意正合序列

其中每個Di(i≥0)都是Ding-投射模, 則有Kerdn∈DP, 此時稱環R具有性質(*).

引理2[6]設R是具有性質(*)的環, 則下列結論成立:

1) (K-,db(DP),Kdac(DP))是K∞,db(DP)中的一個穩定t-結構;

2) 典范嵌入i*:K-,db(DP)→K∞,db(DP)誘導出右粘合

引理3[2]設D是三角范疇, C是D的厚子范疇,q: D→D/C是商函子.則對于D中的穩定t-結構(U,V), 下列敘述等價:

1) (q(U),q(V ))是D/C中的穩定t-結構;

2) (U∩C,V∩C)是C中的穩定t-結構.

特別地, 假設C是U(或者V)的一個三角子范疇, 則V(或者U)可視為D/C的三角子范疇.此時, (U/C,V)(或者(U,V/C))是D/C中的穩定t-結構.

命題1設R是任意環, 則(K+,db(DP)/Kb(DP),K-,db(DP)/Kb(DP))構成了三角范疇K∞,db(DP)/Kb(DP)中的穩定t-結構.

證明: 首先, 有

HomK∞,db(DP)/Kb(DP)(K+,db(DP)/Kb(DP),K-,db(DP)/Kb(DP))=0,

對于任意X∈K∞,db(DP), 都有短正合序列

因為該序列是可裂的, 所以其誘導出了同倫范疇的三角:

顯然,X≥1∈K+,db(DP),X≤0∈K-,db(DP), 結論成立.

定理1設環R相對于DP具有性質(*), 則下列結論成立:

1) (K+,db(DP)/Kb(DP),K-,db(DP)/Kb(DP)),(K-,db(DP)/Kb(DP),Kdac(DP))是K∞,db(DP)/Kb(DP)中的穩定t-結構;

2) 典范嵌入i*:K-,db(DP)/Kb(DP)→K∞,db(DP)/Kb(DP)誘導出粘合

(2)

并且Imj!=K+,db(DP)/Kb(DP), Imj*=Kdac(DP).

證明: 由命題1知, (K+,db(DP)/Kb(DP),K-,db(DP)/Kb(DP))構成三角范疇K∞,db(DP)/Kb(DP)中的穩定t-結構.由引理2知, (K-,db(DP),Kdac(DP))是K∞,db(DP)中的穩定t-結構.因為Kb(DP)是K-,db(DP) 的三角子范疇, 所以由引理3知, (K-,db(DP)/Kb(DP),Kdac(DP))是K∞,db(DP)/Kb(DP)中的穩定t-結構.

由引理1中穩定t-結構和粘合的關系可得式(2)中的粘合, 并且易得Imj!=K+,db(DP)/Kb(DP),Imj*=Kdac(DP).

對偶地, 相對于Ding-內射模可得如下結論.

定義5若對R上任意正合序列

其中每個Di(i≤1)都是Ding-內射模, 則有Imd0∈DI, 此時稱環R具有性質(#).

命題2設環R具有性質(#), 則下列結論成立:

命題3設環R具有性質(#), 則下列結論成立:

2) 典范嵌入i*:K+,db(DI)/Kb(DI)→K∞,db(DI)/Kb(DI)誘導出粘合:

猜你喜歡
定義結構
《形而上學》△卷的結構和位置
哲學評論(2021年2期)2021-08-22 01:53:34
永遠不要用“起點”定義自己
海峽姐妹(2020年9期)2021-01-04 01:35:44
定義“風格”
論結構
中華詩詞(2019年7期)2019-11-25 01:43:04
新型平衡塊結構的應用
模具制造(2019年3期)2019-06-06 02:10:54
論《日出》的結構
成功的定義
山東青年(2016年1期)2016-02-28 14:25:25
創新治理結構促進中小企業持續成長
現代企業(2015年9期)2015-02-28 18:56:50
修辭學的重大定義
當代修辭學(2014年3期)2014-01-21 02:30:44
基于BIM的結構出圖
主站蜘蛛池模板: 国产免费怡红院视频| 国产va在线观看免费| 欧美α片免费观看| 在线色国产| 久久久无码人妻精品无码| 亚洲毛片网站| 亚洲视频三级| 99爱在线| 亚洲国产精品无码AV| 亚洲精品你懂的| 婷婷六月综合| 在线看免费无码av天堂的| 亚洲人成人伊人成综合网无码| 中文字幕在线不卡视频| 欧美亚洲一二三区| 国产精品永久免费嫩草研究院| 免费在线看黄网址| 麻豆AV网站免费进入| 亚洲成人黄色在线观看| 国产探花在线视频| 天堂在线www网亚洲| 久久精品这里只有国产中文精品 | 看你懂的巨臀中文字幕一区二区| 成人亚洲视频| 精品一区二区三区水蜜桃| 日韩精品高清自在线| 国产人前露出系列视频| 国产后式a一视频| 成人欧美日韩| 无码免费的亚洲视频| 久久免费成人| 亚洲,国产,日韩,综合一区| 国产污视频在线观看| 中文字幕波多野不卡一区| 99热免费在线| 久久亚洲黄色视频| 国模私拍一区二区| 99热这里只有精品在线播放| 色AV色 综合网站| 国产精品xxx| 一本大道香蕉中文日本不卡高清二区 | 亚洲第一国产综合| 狠狠色丁香婷婷| 成人免费一区二区三区| 中文纯内无码H| 成人综合网址| 99r在线精品视频在线播放| 国产福利一区在线| 青草视频网站在线观看| 欧美激情一区二区三区成人| 免费一极毛片| 国产无码性爱一区二区三区| 日韩黄色在线| 久久精品国产精品国产一区| 国产一国产一有一级毛片视频| 国产一级毛片网站| 久久综合九色综合97网| 国产精品嫩草影院av| 欧美.成人.综合在线| 国产三级精品三级在线观看| 亚洲国产日韩一区| 国产精品国产主播在线观看| 国产成人久视频免费| 十八禁美女裸体网站| 欧美亚洲国产精品久久蜜芽| 91国内在线观看| 亚洲精品国产综合99久久夜夜嗨| 无码久看视频| 激情国产精品一区| 国产福利免费在线观看| 色哟哟国产精品一区二区| 久久久久国产一级毛片高清板| 国产色爱av资源综合区| 国产人免费人成免费视频| 在线免费a视频| 国产69精品久久| 国产在线自揄拍揄视频网站| 中文字幕免费播放| 国模在线视频一区二区三区| 久久精品国产国语对白| 国产精品视频猛进猛出| 国产一级毛片yw|