董偉林 張 鵬 楊元英
(1.中國航發湖南動力機械研究所 湖南株洲 412002;2.中小型航空發動機葉輪機械湖南省重點試驗室 湖南株洲 412002)
在航空發動機壓氣機和渦輪部件中,通常會在轉盤和靜盤的尾緣設置軸向擋環結構,如圖1所示,稱之為盤緣封嚴。有研究表明:如果發動機的封嚴冷氣泄漏量可以降低50%,則其整體循環熱效率會提高0.5%,同時耗油率將下降0.9%[1]。掌握盤腔及盤緣結構對盤腔流動換熱和封嚴特性的影響規律,深入挖掘盤緣主流入侵機制,設計高效盤緣封嚴結構,可以有效地控制并減少冷氣泄漏量,減少主流入侵至盤腔,有效提高發動機的經濟性及可靠性。
國外方面,英國Bath大學OWEN團隊率先針對轉靜盤腔主流入侵展開了相關研究[2],發現轉盤會帶動轉盤腔內流體一起旋轉,在離心力作用下,旋轉的流體會被甩出盤腔,這種效應也被稱為泵效應;當盤腔冷氣供給流量小于這股流量時,主流通道的氣流便會入侵至盤腔。ABE和OWEN[3]研究發現當主流道包含靜止導葉后,氣流在導葉尾緣分離降速形成切向的壓力不均勻現象,其高壓區可能會誘發主流入侵盤腔。OWEN[4-5]將盤緣封嚴研究繼續向前推進,將因冷氣供給流量小于轉盤泵效應夾帶流量這種主流入侵方式稱為旋轉誘導主流入侵(Rotationally Induced,RI),將由主流通道靜葉導致切向壓力不均勻從而引發主流入侵稱為外部誘導主流入侵(Externally Induced,EI);當上述2種現象都存在時,稱之為聯合誘導主流入侵(Combined Induced,CI);并且,通過假設流體無黏,主流最高值與最低值之間壓力為線性分布(也稱為鋸齒模型,Sawtooth Model),分別推導了RI、EI和CI封嚴流量和最小封嚴流量的關系式。近10年來,OWEN團隊從5個方面總結了其研究成果,分別為:旋轉誘導主流入侵(RI),外部誘導主流入侵(EI),盤腔內部流動,非設計工況及單雙層封嚴環結構。針對雙擋環結構,盤腔從低到高可以分為內腔和外腔,外部誘導的氣流并沒有入侵至內腔,而是集中在外腔,而旋轉誘導的氣流則會入侵至內腔[6-10]。LEE等[11]設計了徑向波浪式盤緣封嚴結構,在導葉尾緣壓力較高區域對封嚴環進行加厚,較均勻盤緣封嚴結構封嚴效率提高了3.8%。TERAMACHI等[12]設計了轉盤帶翅片封嚴結構,發現同樣也可以提高封嚴效率。
國內方面,李軍團隊對1.5級渦輪主流入侵特性進行了數值研究,發現隨主流流量的增加,封嚴效率逐漸降低,將封嚴環由光滑面改成蜂窩結構后,封嚴效率得到了提高[13-14]。鄔澤宇等[15-16]通過在主流添加二氧化碳的方法,試驗研究了封嚴環結構參數、凸起結構等對封嚴效率的影響。董偉林等[17-19]發現即使不考慮導葉尾緣的切向非均勻壓力的影響,主流仍然會在封嚴間隙誘導形成卷吸渦從而發生主流入侵,且該種入侵方式與旋轉誘導燃氣入侵存在相互羈絆的效果;基于此,提出了咬齒型封嚴結構,較直齒有效提升封嚴效率,降低盤腔向主流的泄漏量。
綜合國內外的研究現狀發現,對于外部誘導主流入侵的相關研究主要集中在不同的轉靜盤緣封嚴結構形式上。對于導葉而言,其尾緣的非均勻壓力分布正是主流入侵盤腔的主要誘因之一,然而導葉的設計往往只服務于主流的氣動性能,其結構參數的改變對盤腔封嚴效率帶來的影響則缺乏考慮。本文作者正是以此為出發點,采用數值方法,揭示了導葉結構參數變化對封嚴效率及盤腔流場影響的規律。
圖2所示為計算模型及網格劃分,文中對轉子葉片進行了簡化,其余關鍵參數與文獻[20]一致,見表1。基礎模型(type-VB)導葉安裝角為46°,弦長為68 mm,導葉尾緣距封嚴出口2.5 mm,整環導葉個數為30個,取單個導葉作為周期性計算域,即為1/30物理模型。采用用戶自定義標量(User Defined Scalar,UDS)方法模擬主流入侵。主流入口采用流量進口邊界條件,給定靜溫,標量值設為1;次流入口同樣采用流量進口和靜溫邊界條件,標量值設為0;主流出口采用壓力出口邊界條件。所有壁面設置為絕熱無滑移邊界。采用ICEM軟件進行結構化網格劃分,使用了O形網格以及H形網格,對葉身附近流體區域網格進行了加密處理以充分捕捉流動細節。

圖2 計算模型與網格劃分Fig.2 Computational model and meshing

表1 結構參數Table 1 Structure parameters
(1)旋轉雷諾數
式中:b為轉盤最大半徑;μ為次流入口動力黏度;Ω為旋轉角速度;ρ為次流入口的密度。
旋轉雷諾數反映了轉盤整體旋轉效應的強弱。
(2)封嚴效率[13]
式中:ca為主流入口的示蹤氣流濃度(在數值模擬中,采用添加標量的方法進行替代),其值設置為1;co為封嚴冷氣入口的示蹤氣流濃度,其值設置為0;cs為盤緣擋環下端面對應的徑向位置(r/b=0.978)。
圖3所示為標準k-ε,RNGk-ε和SSTk-ω湍流模型數值計算結果與文獻[20]試驗結果對比。可知,計算盤腔內流動時,3種湍流模型的精度均在可接受范圍之內,RNGk-ε由于對旋流的修改,使得盤腔內高半徑處流體徑向速度最高。文中采用SSTk-ω湍流模型進行計算。

圖3 湍流模型驗證Fig.3 Turbulence model validation
網格獨立性驗證分析如圖4所示,最終模型網格數為220萬,縱坐標變化量不超過0.6%。

圖4 網格獨立性驗證Fig.4 Grid independence verification
董偉林等[17]的研究表明,當旋轉雷諾數ReΦ=3.8×106時,燃氣入侵主要形式是旋轉誘導,當旋轉雷諾數ReΦ=1.26×105時,則表現為主流誘導,因此文中針對上述2種雷諾數工況展開研究,以期獲得2種不同入侵形式下導葉結構變化對封嚴特性的影響規律。
圖5給出了ReΦ=1.26×105時3種導葉角度下主流通道壓比(與出口壓力比值,下同)分布。隨著導葉安裝角度增加,主流入口的壓力逐步增加,這是因為隨著導葉安裝角度增加使導葉間的流通喉部面積明顯減小,流動阻力增大,從而使得主流入口的壓力增加。

圖5 不同導葉角度下主流通道壓比分布(50%葉高)Fig.5 Pressure ratio distribution of main flow channel at differentvane angles (50% span):(a)type-VBA1(36°);(b)type-VB(46°);(c)type-VBA2(56°)
圖6給出了ReΦ=1.26×105時不同導葉角度下導葉尾緣下游2.5 mm處(即轉靜交界面處)壓比分布。隨著導葉角度的增加,該截面的最高壓力值增加,最低壓力值減少,這同樣是因為最小流通面積改變所導致的。導葉角度的增加,會使得導葉尾緣的切向壓力波動變得更加劇烈,一定程度上使得主流入侵變得更加嚴重。
圖7和圖8所示分別為旋轉雷諾數ReΦ=1.26×105和ReΦ=3.8×106時不同導葉角度下封嚴間隙通道內徑向速度分布。由圖7可知,當旋轉雷諾數ReΦ=1.26×105時,隨著導葉安裝角度的增加,徑向入流區域的面積逐漸增大,徑向入流速度逐漸增加,這代表有更多的主流入侵到盤腔中。其原因正是由于導葉安裝角增加,使導葉尾緣壓力波動更加劇烈,切向壓力的最高值增加,盤腔內外的壓差增大,從而使得主流入侵變得更加嚴重。同時還可以發現,徑向入流區域集中在轉盤側,代表此時主流氣流主要是沿著轉盤入侵至盤腔。

圖6 不同導葉角度下切向截面壓比分布Fig.6 Pressure ratio distribution of tangential section atdifferent vane angles:(a)type-VBA1(36°);(b)type-VB(46°);(c)type-VBA2(56°)

圖7 不同導葉角度封嚴通道徑向速度分布(ReΦ=1.26×105)Fig.7 Radial velocity distribution of rim seal channel at differentvane angles(ReΦ=1.26×105):(a)type-VBA1(36°);(b)type-VB(46°);(c)type-VBA2(56°)

圖8 不同導葉角度下封嚴通道徑向速度分布(ReΦ=3.8×106)Fig.8 Radial velocity distribution of rim seal channel at differentvane angles(RΦ=3.8×106):(a)type-VBA1(36°);(b)type-VB(46°);(c)type-VBA2(56°)
由圖8可知,當旋轉雷諾數ReΦ=3.8×106時,仍然可以觀察到明顯的徑向入流區域,不過其徑向入流區域的分布情況正好與圖7相反,徑向入流區域主要集中在靜盤側。這說明了主流氣流是沿著靜盤入侵至盤腔,說明在該工況下主流入侵形式為旋轉誘導主流入侵。
圖9所示為旋轉雷諾數ReΦ=1.26×105時不同導葉角度下封嚴效率分布。可知,隨著導葉安裝角度的增加,封嚴通道內主流入侵更加嚴重,封嚴效率降低了5%,這與上文中壓力和速度分布的規律一致。并且主流入侵的深度也會隨著導葉安裝角度的增加而增加,但是仍然未入侵至盤腔底部,這是因為盤腔內的流體整體上沿著徑向為正壓梯度,即入侵的主流氣流仍然集中在高半徑位置,并未深入盤腔內部。

圖9 不同導葉角度下封嚴效率分布(ReΦ=1.26×105)Fig.9 Sealing efficiency of rim seal at different vane angles(ReΦ=1.26×105):(a)type-VBA1(36°);(b)type-VB(46°);(c)type-VBA2(56°)
圖10所示為旋轉雷諾數ReΦ=3.8×106時不同導葉角度下封嚴效率分布。與ReΦ=1.26×105相比,整個盤腔內部都發生了明顯的主流入侵,且主流氣流幾乎入侵至次流的入口位置,并在盤腔內幾乎均勻分布。由扇形截面分布可知,主流在切向幾乎是均勻入侵至盤腔,并且3種導葉安裝角盤緣封嚴結構的封嚴效率差異不大。這說明了在大旋轉雷諾數工況下(此時主流入侵方式為RI),封嚴效率與主流通道結構參數(包括導葉結構參數)的關系較小,而是主要由旋轉雷諾數和次流量綱一流量來決定。
圖11給出了不同導葉角度盤緣封嚴結構封嚴效率隨旋轉雷諾數的變化曲線。可知,隨著旋轉雷諾數的增加,3種導葉角度盤緣封嚴結構的封嚴效率都呈現出先增加后減小的趨勢,由此可以得出結論:無論是否考慮導葉,旋轉雷諾數與主流雷諾數二者的“羈絆效應[17]”都將存在,即旋轉泵效應的增加抑制了主流的燃氣入侵,從而提高了封嚴效率。此外,還可以發現3條曲線的“極大值”所對應的旋轉雷諾數卻不相同,導葉安裝角越大,其“極大值”所對應的橫坐標也就越大。這是因為當導葉安裝角較大時,其導葉間的最小流通面積減小,在流量不變的情況下,流速增加,相當于提高了主流雷諾數,從而需要更高的旋轉雷諾數來抵消主流沿轉盤的入侵趨勢。

圖10 不同導葉角度下封嚴效率分布(ReΦ=3.8×106)Fig.10 Sealing efficiency of rim seal at different vane angles(ReΦ=3.8×106):(a)type-VBA1(36°);(b)type-VB(46°);(c)type-VBA2(56°)

圖11 不同導葉角度封嚴結構封嚴效率隨旋轉雷諾數的變化Fig.11 Variation of sealing efficiency with rotationalReynolds number at different vane angles
圖12給出了ReΦ=1.26×105時3種導葉軸向位置下主流通道壓比分布。隨著導葉與封嚴出口的距離逐漸增加,50%葉高處的壓力分布幾乎沒有變化。改變導葉的軸向位置,實際上改變了導葉與封嚴出口的相對位置。該圖說明了主流通道的壓力分布主要取決于主流通道的結構和氣動參數,而與通道下游結構關系不大。

圖12 不同導葉軸向位置主流通道壓比分布(50%葉高)Fig.12 Pressure ratio distribution of main flow channel at differentvane axial positions(50% span):(a)type-VB(2.5 mm);(b)type-VBC1(5.5 mm);(c)type-VBC2(8.5 mm)
圖13所示為ReΦ=1.26×105時轉靜交界面處(分別為導葉尾緣下游2.5、5.5、8.5 mm)壓比分布。隨著導葉尾緣與封嚴出口距離的增加,流動逐漸均勻,切向的壓力波動逐漸衰減,切向壓力的最低值變化較小,而切向壓力的最高值明顯降低。

圖13 不同導葉軸向位置下切向截面與出口壓比分布Fig.13 Pressure ratio distribution of tangential section at differentvane axial positions:(a)type-VB(2.5 mm);(b)type-VBC1(5.5 mm);(c)type-VBC2(8.5 mm)
圖14和圖15所示分別為旋轉雷諾數ReΦ=1.26×105和ReΦ=3.8×106時不同導葉軸向位置下封嚴間隙通道內徑向速度分布。由圖14可知,當ReΦ=1.26×105時,隨著導葉尾緣與封嚴出口距離的增加,徑向入流速度逐漸降低,這說明了主流入侵有所減弱,封嚴效率增加了28%。由圖15可知,當ReΦ=3.8×106時,type-VB導葉尾緣后出現了一塊明顯的徑向入流區域,而隨著導葉尾緣與封嚴出口距離的增加,觀察type-VBC2可以發現徑向入流區域的分布明顯更加均勻,即氣流切向幾乎均勻地沿著靜盤入侵至盤腔。

圖14 不同導葉軸向位置下封嚴通道徑向速度分布(ReΦ=1.26×105)Fig.14 Radial velocity distribution of rim seal channel atdifferent vane axial positions (ReΦ=1.26×105):(a)type-VB(2.5 mm);(b)type-VBC1(5.5 mm);(c)type-VBC2(8.5 mm)

圖15 不同導葉軸向位置下封嚴通道徑向速度分布(ReΦ=3.8×106)Fig.15 Radial velocity distribution of rim seal channel atdifferent vane axial positions (RΦ=3.8×106):(a)type-VB(2.5 mm);(b)type-VBC1(5.5 mm);(c)type-VBC2(8.5 mm)
圖16所示為旋轉雷諾數ReΦ=1.26×106時不同導葉軸向位置下封嚴效率分布。可知,隨著導葉軸向位置的增加,封嚴效率明顯增加。這是因為切向的壓力波動減弱,即主流通道的切向壓力最高值降低,盤腔內外的壓差減小,使得主流入侵減少,封嚴效率增加。

圖16 不同導葉軸向位置封嚴效率分布(ReΦ=1.26×105)Fig.16 Sealing efficiency of rim seal at different vane axialpositions (ReΦ=1.26×105):(a)type-VB(2.5 mm);(b)type-VBC1(5.5 mm);(c)type-VBC2(8.5 mm)
圖17所示為旋轉雷諾數ReΦ=3.8×106時不同導葉軸向位置下封嚴效率分布。可知,當旋轉雷諾數ReΦ=3.8×106時,與ReΦ=1.26×105相比,主流氣流幾乎已經入侵至次流入口位置,并在整個盤腔分布均勻。隨著導葉軸向位置的增加,封嚴效率幾乎不變,即在該工況下,主流入侵程度主要取決于旋轉泵效應甩出的流量和冷氣供給流量,與導葉結構關系不大。
圖18所示為不同導葉軸向位置盤緣封嚴結構封嚴效率隨旋轉雷諾數的變化曲線。整體分析可以看出,在計算工況范圍內,type-VB的封嚴效率最低,其平均封嚴效率為62%;type-VBC1的封嚴效率次之,其平均封嚴效率為67%;type-VBC2的封嚴效率最高,其平均封嚴效率為76%。此外,還可以發現在小旋轉雷諾數范圍內,type-VB的封嚴效率明顯低于type-VBC1和type-VBC2;隨著旋轉雷諾數的增加,3種封嚴結構都出現了先增加后下降的趨勢,其峰值正是由前文所說的羈絆效應所導致。當主流入侵方式由EI轉為RI后,3種封嚴的封嚴效率差異變小,type-VBC2略高于type-VBC1和type-VB,這說明由導葉尾緣分離降速增壓所引發的主流入侵與旋轉誘導主流入侵二者是相互疊加的,但是在RI中,封嚴效率還是主要取決于旋轉雷諾數和次流量綱一流量的大小。

圖17 不同導葉軸向位置封嚴效率分布(ReΦ=3.8×106)Fig.17 Sealing efficiency of rim seal at different vane axialpositions(ReΦ=3.8×106):(a)type-VB(2.5 mm);(b)type-VBC1(5.5 mm);(c)type-VBC2(8.5 mm)

圖18 不同導葉軸向位置封嚴結構封嚴效率隨旋轉雷諾數的變化Fig.18 Variation of sealing efficiency with rotationalReynolds number at different vane axial positions
文中計算域為單葉片周期,因此采用單周期的角度來表征稠度,角度越小則稠度越大。
圖19給出了ReΦ=1.26×105時3種導葉稠度下主流通道壓比分布。隨著導葉稠度的降低,主流入口的壓力逐漸降低,這是因為主流入口的流量是恒定的,而隨著導葉稠度的降低,流體的流動喉部面積增加,使得入口壓力降低。

圖19 不同導葉稠度下主流通道壓比分布(50%葉高)Fig.19 Pressure ratio distribution of main flow channel at differentvane solidity (50% span):(a)type-VB(12°);(b)type-VBN1(15°);(c)type-VBN2(18°)
圖20所示為ReΦ=1.26×105時不同導葉稠度下導葉尾緣下游2.5 mm處 (即轉靜交界面處)壓比分布。隨著導葉稠度的降低,切向的壓力波動略微衰減,切向壓力最高值略微降低,而切向壓力最低值幾乎不變,整體上變化不大。

圖20 不同導葉稠度下切向截面與出口壓比分布Fig.20 Pressure ratio distribution of tangential section atdifferent vane solidity:(a)type-VB(12°);(b)type-VBN1(15°);(c)type-VBN2(18°)
圖21所示為旋轉雷諾數ReΦ=1.26×105時不同導葉稠度下封嚴間隙通道內徑向速度分布。可知,隨著導葉稠度的降低,徑向入流速度逐漸增加,這說明主流入侵有所增加。由上文可知,切向截面的最高壓力隨著導葉稠度的降低略微降低,其封嚴效率降低的原因與主流的切向速度有關。分析可知隨著導葉稠度的降低,主流的切向速度減小,即其離心力更小,徑向內流的阻力更小,而在相同內外壓差的作用下,主流的切向速度越小,更容易徑向內流,所以主流入侵越嚴重。

圖21 不同導葉稠度下封嚴通道徑向速度分布(ReΦ=1.26×105)Fig.21 Radial velocity distribution of rim seal channel at differentvane solidity (ReΦ=1.26×105):(a)type-VB(12°);(b)type-VBN1(15°);(c)type-VBN2(18°)
圖22所示為旋轉雷諾數ReΦ=3.8×106時不同導葉稠度下封嚴間隙通道內徑向速度分布。可以發現,徑向入流區域同樣變得更加明顯,其原因與低旋轉雷諾數工況相同。且發現徑向入流區域由圖21中的靠近轉盤變為圖22中的靠近靜盤,這說明隨著旋轉雷諾數的增加,主流入侵方式由外部誘導主流入侵(EI)轉變為旋轉誘導主流入侵(RI)。

圖22 不同導葉稠度封嚴通道徑向速度分布(ReΦ=3.8×106)Fig.22 Radial velocity distribution of rim seal channel at differentvane solidity (ReΦ=3.8×106):(a)type-VB(12°);(b)type-VBN1(15°);(c)type-VBN2(18°)
圖23和圖24所示分別為旋轉雷諾數ReΦ=1.26×105和ReΦ=3.8×106時不同導葉稠度下封嚴效率分布。由圖23可知,當旋轉雷諾數ReΦ=1.26×105時,隨著導葉稠度的降低,主流入侵變得更加嚴重,并且入侵的位置也更深。在圖23(c)中可觀察到很明顯的主流入侵軌跡,這正是由于主流的切向速度減小所致,主流切向速度越小,越容易徑向內流,封嚴效率降低了30%。

圖23 不同導葉稠度下封嚴效率分布(ReΦ=1.26×105)Fig.23 Sealing efficiency of rim seal at different vanesolidity (ReΦ=1.26×105):(a)type-VB(12°);(b)type-VBN1(15°);(c)type-VBN2(18°)

圖24 不同導葉稠度下封嚴效率分布(ReΦ=3.8×106)Fig.24 Sealing efficiency of rim seal at different vane solidity(ReΦ=3.8×106):(a)type-VB(12°);(b)type-VBN1(15°);(c)type-VBN2(18°)
由圖24可知,當旋轉雷諾數ReΦ=3.8×106時,主流入侵至整個盤腔并且分布均勻,此時入侵方式為旋轉誘導主流入侵(RI)。type-VBN1的封嚴效率略低于type-VBN2和type-VB。這同樣說明在高旋轉雷諾數下,RI占據了主要地位,在RI條件下封嚴效率主要取決于旋轉雷諾數、次流量綱一流量和封嚴間隙,和主流導葉結構關系不大。
圖25所示為不同導葉稠度盤緣封嚴結構封嚴效率隨旋轉雷諾數的變化曲線。在計算工況范圍內,type-VBN2的封嚴效率最低,平均封嚴效率為46%;type-VBN1的封嚴效率次之,其平均封嚴效率為51%;type-VB的封嚴效率最高,其平均封嚴效率為62%。其原因與導葉尾緣的流體流動密切相關。由前文可知,隨著葉片數的減少,流體的切向速度會降低,因而流體徑向內流的阻力更小。隨著旋轉雷諾數的繼續增加,封嚴效率同樣先增加后下降,其峰值同樣是羈絆效應的體現。在高旋轉雷諾數工況下不同稠度封嚴結構封嚴效率差異不超過5%。

圖25 不同導葉稠度封嚴結構封嚴效率隨旋轉雷諾數的變化Fig.25 Variation of sealing efficiency with rotationalReynolds number at different vane solidity
采用三維周期性數值方法,通過添加用戶自定義標量方法來計算盤腔封嚴效率;改變導葉的角度、軸向位置和稠度,得到其對盤緣泄漏和封嚴特性的影響規律。在文中的計算工況下,得到以下結論:
(1)外部誘導主流入侵(EI)是兩個因素綜合導致的,其一,主流流體在導葉尾緣分離降速,其入侵在切向位置處于導葉尾緣高壓區內(將其稱為第一種形式EI),其二,主流流體撞擊到轉盤壁面并向下入侵,其入侵方向在軸向位置靠近轉盤側(將其稱為第二種形式EI)。
(2)隨著導葉安裝角度增加,導葉尾緣的最高壓力增加,最低壓力降低。在低旋轉雷諾數工況下,導葉角度增加,此時主流入侵方式為EI,封嚴效率降低;在高旋轉雷諾數工況下,此時主流入侵方式為RI,導葉角度增加,封嚴效率變化不大。
(3)隨著導葉尾緣軸向位置由2.5 mm增至8.5 mm,平均封嚴效率增加了14%,且封嚴出口的壓力沿切向變得平緩。在低旋轉雷諾數工況下,封嚴效率明顯增加;在高旋轉雷諾數工況下,封嚴效率略微增加。
(4)隨著導葉稠度增加(計算域角度由18°降低至12°),平均封嚴效率增加了16%,且封嚴出口的壓力最高值和最低值變化不大,但是流體的切向速度增加。在低旋轉雷諾數工況下,封嚴效率明顯降低;在高旋轉雷諾數工況下,封嚴效率差異小于5%。