丁一凡,李光球,李輝
竊聽者隨機分布SWIPT-NOMA系統的物理層安全
丁一凡,李光球,李輝
(杭州電子科技大學通信工程學院,浙江 杭州 310018)
非正交多址接入(non-orthogonal multiple access,NOMA)與無線攜能通信(simultaneous wireless information and power transfer,SWIPT)技術的組合可提高無線系統的頻譜效率,并能夠解決用戶節點的電能供應問題。然而,當能量收集器要惡意竊聽基站發送的機密信息時,SWIPT-NOMA系統的信息安全傳輸會受到威脅,為增強其物理層安全(physical layer security,PLS)性能,提出了一種采用發射天線選擇和功率分割策略的SWIPT-NOMA系統PLS模型。如果各能量收集器的空間位置隨機分布服從泊松點過程,利用空間泊松分布生成函數推導SWIPT-NOMA系統的安全中斷概率和非零安全容量概率近似表達式。數值計算與仿真結果表明,所推導的表達式具有很高的準確性,且可用于研究竊聽者密度、基站與遠近端信息接收者之間的距離、基站發射天線數以及功率分割因子等參數對SWIPT-NOMA系統PLS性能的影響。
非正交多址接入;無線攜能通信;物理層安全;泊松點過程;安全中斷概率
非正交多址接入(non-orthogonal multiple access,NOMA)系統利用疊加碼、功率分配和串行干擾消除(successive interference cancellation,SIC)算法在相同的頻帶上同時為多個用戶設備提供服務,比傳統正交多址接入系統具有更高的頻譜利用率,是5G系統中的關鍵技術之一[1]。文獻[2]推導了多天線NOMA系統的遍歷和速率閉合表達式。文獻[3]通過最優中繼選擇來最大化協作NOMA系統的吞吐量,但在用戶節點存在能量受限約束的NOMA應用場景中,其與無線攜能通信(simultaneous wireless information and power transfer,SWIPT)技術相結合的SWIPT-NOMA系統能在有效解決用戶節點電能供應問題的同時,獲得高的系統頻譜效率[4]。文獻[5]通過將近端用戶充當采用功率分割(power split,PS)策略的全雙工能量收集中繼器來最大化SWIPT-NOMA系統的遍歷和速率。文獻[6]推導了機會協作SWIPT- NOMA系統的中斷概率閉合表達式。文獻[7]推導了用戶空間位置隨機分布時的SWIPT-NOMA系統的中斷概率和系統吞吐量閉合表達式。
然而,無線傳輸固有的廣播特性使NOMA、SWIPT-NOMA系統的信息安全傳輸存在隱患[8],物理層安全(physical layer security,PLS)具有不需要密鑰、不受竊聽端計算能力限制等優點,能夠實現上述無線系統在信息論意義上的安全通信,因此受到廣泛關注[9-21]。文獻[9]推導了竊聽者空間位置隨機分布下多輸入單輸出無線系統在獨立與合謀兩種場景下的安全中斷概率(secrecy outage probability,SOP)閉合表達式。文獻[10]推導了利用人工噪聲干擾提升PLS性能的竊聽者隨機分布多輸入單輸出無線系統的SOP閉合表達式。文獻[11]推導了采用發射天線選擇(transmit antenna selection,TAS)技術的多輸入單輸出NOMA系統的SOP閉合表達式。文獻[12]進一步研究采用TAS技術來最小化竊聽者信道容量下NOMA系統的PLS性能。文獻[13]推導了近端用戶充當中繼節點的協作NOMA系統的SOP閉合表達式。文獻[14]研究了解碼轉發協議下采用TAS技術的協作NOMA系統的PLS性能。文獻[15]研究了基站輔助發送人工噪聲干擾的大規模NOMA系統的PLS性能。文獻[16]研究了采用TAS技術的多輸入單輸出SWIPT系統的PLS性能。文獻[17]推導了SWIPT系統的SOP、非零安全容量概率(non-zero secrecy capacity probability,NZSCP)和漸近SOP閉合表達式。文獻[18]進一步推導竊聽者空間位置隨機分布下SWIPT系統在獨立與合謀兩種場景下的SOP閉合表達式,文獻[17-18]中的能量收集器(energy-harvesting receiver,ER)均充當竊聽者。文獻[19]研究利用人工噪聲干擾來提升SWIPT-NOMA系統的PLS性能。文獻[20]推導了毫米波無人機SWIPT-NOMA系統的SOP和NZSCP閉合表達式。文獻[21]研究了在保證遠端用戶服務質量和近端用戶安全速率約束下SWIPT-NOMA系統的PLS性能。
在現有SWIPT-NOMA系統PLS的研究中,尚未有考慮ER充當竊聽者的情形,此外文獻[9]和文獻[18]表明竊聽者的空間位置仍可能是隨機分布且數量是不可預知的,為此,本文進一步研究實際應用中ER空間位置及數目的不確定性對SWIPT-NOMA系統PLS的影響;鑒于TAS技術可以提高無線系統的PLS性能,提出一種采用TAS和PS策略的SWIPT-NOMA系統PLS 模型,并推導其SOP和NZSCP近似表達式,之后通過仿真實驗加以驗證。

(1)IR1以及每個ER均具備SIC技術,IR2不具備SIC技術。






圖1 TAS和PS策略下SWIPT-NOMA系統的PLS模型
















S→IR1和S→IR2鏈路的信道容量分別表示為:


能量收集器ER竊聽IR1和IR2機密信息時的信道容量分別為:




3.1.1 IR1的SOP
IR1的SOP可近似為[9]:




那么當ER的分布半徑很大時,由式(23)和式(24)可推得IR1的SOP近似表達式為:



考慮以下特殊情況。
3.1.2 IR2的SOP
IR2的SOP可近似為:

將式(6)和式(15)代入式(27)中,IR2的SOP近似表達式為:



3.1.3 SWIPT-NOMA的SOP
將式(25)和式(28)代入式(20),可推得采用TAS和PS策略下SWIPT-NOMA系統的SOP近似表達式為:




下面分別對IR1和IR2的NZSCP進行推導。
IR1的NZSCP表示為:

將式(4)和式(13)代入式(33)中,利用式(23)可將IR1的NZSCP近似為:


IR2的NZSCP表示為:


最后將式(35)和式(37)代入式(32)中,可推得采用TAS和PS策略下SWIPT-NOMA系統的NZSCP近似表達式為:




表1 TAS和PS策略下SWIPT-NOMA系統的仿真參數設置
(1)SWIPT-NOMA系統的SOP以及IR1和IR2的SOP均隨距離的增大而顯著增大,這是因為S與IR1和IR2的距離越遠相當于減少了S→IR1和S→IR2鏈路的信道容量,所以SWIPT-NOMA系統的安全性能下降;

圖2 不同竊聽者ER泊松分布密度下SWIPT-NOMA系統的SOP性能曲線

圖3 不同功率分割因子下SWIPT-NOMA系統的SOP性能曲線

圖4 不同路徑損耗指數下SWIPT-NOMA系統的SOP性能曲線


圖5 不同M下SWIPT-NOMA系統的NZSCP性能曲線
本文推導了ER空間位置隨機分布服從泊松點過程時采用TAS和PS策略的SWIPT-NOMA系統的安全中斷概率和非零安全容量概率近似表達式,文獻[9]的無線系統和文獻[18]的SWIPT系統均可視為本文的特殊情況。通過數值計算與仿真實驗得出如下結論:基站發射天線數越大,PS因子、S至IR1和IR2的距離越小,SWIPT-NOMA系統的物理層安全性能越好;而竊聽者ER密度、路徑損耗指數的增大,會降低SWIPT-NOMA系統的安全性能。此外,考慮ER合謀竊聽場景下SWIPT-NOMA系統的物理層安全性能是未來研究的一個方向。
[1] DING Z G, LEI X F, KARAGIANNIDISG K, et al. A survey on non-orthogonal multiple access for 5G networks: research challenges and future trends[J]. IEEE Journal on Selected Areas in Communications, 2017, 35(10): 2181-2195.
[2] CHEN X M, ZHANG Z Y, ZHONG C J, et al. Exploiting multiple-antenna techniques for non-orthogonal multiple access[J]. IEEE Journal on Selected Areas in Communications, 2017, 35(10): 2207-2220.
[3] GAU R H, CHIU H T, LIAO C H, et al. Optimal power control for NOMA wireless networks with relays[J]. IEEE Wireless Communications Letters, 2018, 7(1): 22-25.
[4] PONNIMBADUGE PERERA T D, JAYAKODY D N K, SHARMA S K, et al. Simultaneous wireless information and power transfer (SWIPT): recent advances and future challenges[J]. IEEE Communications Surveys & Tutorials, 2018, 20(1): 264-302.
[5] YUAN Y, XU Y Q, YANG Z, et al. Energy efficiency optimization in full-duplex user-aided cooperative SWIPT NOMA systems[J]. IEEE Transactions on Communications, 2019, 67(8): 5753-5767.
[6] 李陶深, 寧倩麗, 王哲. SWIPT-NOMA機會協作系統的優化方案[J]. 通信學報, 2020, 41(8): 141-154.
LI T S, NING Q L, WANG Z. Optimization scheme for the SWIPT-NOMA opportunity cooperative system[J]. Journal on Communications, 2020, 41(8): 141-154.
[7] LIU Y W, DING Z G, ELKASHLAN M, et al. Cooperative non-orthogonal multiple access with simultaneous wireless information and power transfer[J]. IEEE Journal on Selected Areas in Communications, 2016, 34(4): 938-953.
[8] WU Y P, KHISTI A, XIAO C S, et al. A survey of physical layer security techniques for 5G wireless networks and challenges ahead[J]. IEEE Journal on Selected Areas in Communications, 2018, 36(4): 679-695.
[9] CHEN G J, COON J P, DI RENZO M. Secrecy outage analysis for downlink transmissions in the presence of randomly located eavesdroppers[J]. IEEE Transactions on Information Forensics and Security, 2017, 12(5): 1195-1206.
[10] ZHENG T X, WANG H M, YUAN J H, et al. Multi-antenna transmission with artificial noise against randomly distributed eavesdroppers[J]. IEEE Transactions on Communications, 2015, 63(11): 4347-4362.
[11] LEI H J, ZHANG J M, PARK K H, et al. On secure NOMA systems with transmit antenna selection schemes[J]. IEEE Access, 2017, 5: 17450-17464.
[12] SHIMK, OHH, DOTN, et al. A physical layer security-based transmit antenna selection scheme for NOMA systems[C]// Proceedings of 2018 Tenth International Conference on Ubiquitous and Future Networks (ICUFN). Piscataway: IEEE Press, 2018: 597-602.
[13] 李美玲, 李瑩, Sami Muhaidat, 等. 非理想干擾刪除下全雙工中繼NOMA系統的物理層安全性能研究[J]. 電子學報, 2019, 47(1): 183-189.
LI M L, LI Y, MUHAIDAT S, et al. Physical layer security for NOMA-based full duplex relay networks with non-ideal interference cancellation[J]. Acta Electronica Sinica, 2019, 47(1): 183-189.
[14] DENG D, LI C, FAN L S, et al. Impact of antenna selection on physical-layer security of NOMA networks[J]. Wireless Communications and Mobile Computing, 2018: 2390834.
[15] LIU Y W, QIN Z J, ELKASHLAN M, et al. Enhancing the physical layer security of non-orthogonal multiple access in large-scale networks[J]. IEEE Transactions on Wireless Communications, 2017, 16(3): 1656-1672.
[16] ZHANG Y J, LIANG T. Secrecy wireless information and power transfer with transmit antenna selection in MISO systems[C]//Proceedings of 2015 IEEE International Conference on Computer and Communications. Piscataway: IEEE Press, 2015: 362-367.
[17] PAN G F, TANG C Q, LI T T, et al. Secrecy performance analysis for SIMO simultaneous wireless information and power transfer systems[J]. IEEE Transactions on Communications, 2015, 63(9): 3423-3433.
[18] 錢輝, 李光球, 丁一凡. 隨機位置竊聽場景下SWIPT系統的物理層安全性能[J]. 電信科學, 2020, 36(5): 65-72.
QIAN H, LI G Q, DING Y F. Physical layer security performance of SWIPT system in the presence of randomly located eavesdroppers[J]. Telecommunications Science, 2020, 36(5): 65-72.
[19] BADAWYA, SHAFIEAE. Securing OFDM-based NOMA SWIPT systems[J]. IEEE Transactions on Vehicular Technology, 2020, 69(10): 12343-12347.
[20] SUN X L, YANG W W, CAI Y M. Secure communication in NOMA-assisted millimeter-wave SWIPT UAV networks[J]. IEEE Internet of Things Journal, 2020, 7(3): 1884-1897.
[21] BAO H, ZHANG C X, WU L L, et al. Design of physical layer secure transmission scheme based on SWIPT NOMA systems[C]//Proceedings of 2017 IEEE 17th International Conference on Communication Technology. Piscataway: IEEE Press, 2017: 6-9.
[22] GRADSHTEYN I S, RYZHIK I M. Table of integrals, series and products[M]. Pittsburgh: Academic Press, 2007.
Physical layer security for SWIPT-NOMA system in presence of randomly located eavesdroppers
DING Yifan, LI Guangqiu, LI Hui
School of Communication Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
The combination of non-orthogonal multiple access (NOMA) and simultaneous wireless information and power transfer (SWIPT) technologies can improve spectrum efficiency of wireless system and solve the power supply problem of user nodes. However, when energy-harvesting receivers want to maliciously eavesdrop on confidential information sent by the base station, the information security transmission of SWIPT-NOMA system will be threatened. To enhance its physical layer security (PLS) performance, the PLS model of SWIPT-NOMA system with transmit antenna selection and power split strategies was proposed. When the spatial location randomly distributed energy-harvesting receivers obey the Poisson point process, the approximate expressions for the secrecy outage probability and non-zero secrecy capacity probability of SWIPT-NOMA system were derived by using the spatial Poisson probability generation function. Numerical and simulation results verify the accuracy of the expressions. The above expressions can also be used to study the influence of eavesdropper density, the distance between the base station and the far and near information receivers, the number of transmitting antennas and the power split factor on PLS performance of SWIPT-NOMA system.
non-orthogonal multiple access, simultaneous wireless information and power transfer, physical layer security, Poisson point process, secrecy outage probability
TN918.1
A
10.11959/j.issn.1000?0801.2022059
2021?12?07;
2022?03?10
李光球,gqli@hdu.edu.cn

丁一凡(1996? ),男,杭州電子科技大學通信工程學院碩士生,主要研究方向為無線通信。
李光球(1966? ),男,博士,杭州電子科技大學通信工程學院教授,主要研究方向為無線通信、信息論與編碼。

李輝(1996? ),男,杭州電子科技大學通信工程學院碩士生,主要研究方向為無線通信。