束寧德 趙洋 劉慶新
【摘要】 椎基底動(dòng)脈延長(zhǎng)擴(kuò)張癥(vertebrobasilar dolichoectasia,VBD)是腦血管病的一種,主要表現(xiàn)為椎動(dòng)脈和/或基底動(dòng)脈的異常擴(kuò)張迂曲,屬于向外的營(yíng)養(yǎng)不良重構(gòu)。由于椎基底動(dòng)脈所處位置空間狹小,供血區(qū)包含多個(gè)重要中樞,其過(guò)度迂曲擴(kuò)張將產(chǎn)生較為嚴(yán)重的后果。目前關(guān)于VBD病因的研究較少,近期的研究結(jié)果表明炎癥、血流動(dòng)力學(xué)等參與了VBD病變血管重構(gòu),進(jìn)一步導(dǎo)致VBD的發(fā)生發(fā)展。本文現(xiàn)圍繞VBD血管重構(gòu)相關(guān)病因的研究進(jìn)展進(jìn)行綜述,以期為VBD發(fā)生發(fā)展機(jī)制方面的研究提供新思路并為相關(guān)治療研究提供新方向。
【關(guān)鍵詞】 椎基底動(dòng)脈延長(zhǎng)擴(kuò)張癥 血管重構(gòu) 病因
Research Progress on Etiology of Vascular Remodeling in Vertebrobasilar Dolichoectasia/SHU Ningde, ZHAO Yang, LIU Qingxin. //Medical Innovation of China, 2022, 19(18): -176
[Abstract] Vertebrobasilar dolichoectasia (VBD) is a kind of cerebrovascular disease, mainly manifested as abnormal dilation and tortuality of vertebral artery and/or basilar artery, which belongs to outward hypotrophic remodeling. Due to the narrow location of vertebrobasilar artery, the blood supply area contains several important centers, and its excessive tortuous expansion will produce serious consequences. Currently, there are few studies on the etiology of VBD. Recent research results indicate that inflammation and hemodynamics, for example, are involved in vascular remodeling in VBD, further leading to the occurrence and development of VBD. This paper reviews the research progress on the etiology of vascular remodeling in VBD, in order to provide new ideas for the study on the pathogenesis of VBD and new directions for the treatment of VBD.
[Key words] Vertebrobasilar dolichoectasia Vascular remodeling Etiology
First-author’s address: Binzhou Medical University Hospital, Binzhou 256603, China
doi:10.3969/j.issn.1674-4985.2022.18.042
椎基底動(dòng)脈延長(zhǎng)擴(kuò)張癥(vertebrobasilar dolichoectasia,VBD)是一種呈慢性進(jìn)行性發(fā)展的腦血管變異性疾病,主要表現(xiàn)為椎基底動(dòng)脈的異常延長(zhǎng)、擴(kuò)張和彎曲。近些年的臨床病例研究發(fā)現(xiàn)VBD與卒中關(guān)系密切,尤其體現(xiàn)在VBD同后循環(huán)梗死上[1]。由于血管重構(gòu)導(dǎo)致的血管延長(zhǎng)、擴(kuò)張,VBD患者面臨著血管壓迫、血栓形成、血管破裂等各種風(fēng)險(xiǎn),異常的血管重構(gòu)不僅增加了患者新發(fā)急性腦血管事件的風(fēng)險(xiǎn),VBD患者卒中的再發(fā)風(fēng)險(xiǎn)也有所升高[2]。目前外科松解手術(shù)、支架置入術(shù)等對(duì)癥治療僅僅對(duì)于出現(xiàn)壓迫癥狀的患者有較理想的緩解效果[3-4],臨床上針對(duì)VBD的治療仍不系統(tǒng)、成熟。
在對(duì)VBD患者及VBD大鼠模型的血管病理研究中發(fā)現(xiàn),病變血管在鏡下表現(xiàn)為血管外徑增大,血管橫截面可見(jiàn)管壁內(nèi)彈性層變性、退化和多發(fā)間隙,網(wǎng)狀纖維大量轉(zhuǎn)化、萎縮、消失、平滑肌層萎縮和變薄等結(jié)構(gòu)改變[5-6]。基于上述血管形態(tài)和病理學(xué)改變,結(jié)合文獻(xiàn)[7]提出的血管重構(gòu)定義和分類,認(rèn)為外向性營(yíng)養(yǎng)不良重構(gòu)(outward hypotrophic remodeling)是VBD患者血管發(fā)生的主要病理改變。由此導(dǎo)致的血管畸形和腦血流灌注障礙是VBD患者出現(xiàn)相關(guān)臨床癥狀最主要的原因,因此明確VBD血管重構(gòu)相關(guān)的病因,在為靶向藥物研究提供新的研究證據(jù)上具有重要意義
1 VBD血管重構(gòu)相關(guān)病因
1.1 炎癥 高血壓、高血脂、低剪切應(yīng)力等多種因素導(dǎo)致的內(nèi)皮細(xì)胞功能失調(diào)會(huì)上調(diào)白介素、腫瘤壞死因子等炎癥因子的表達(dá),并進(jìn)一步誘導(dǎo)炎癥細(xì)胞的聚集,加重血管的炎癥反應(yīng)。以往在對(duì)動(dòng)脈瘤的研究中驗(yàn)證了炎癥可通過(guò)氧化應(yīng)激損傷,巨噬細(xì)胞、肥大細(xì)胞等炎癥細(xì)胞聚集,MMPs的分泌以及相關(guān)炎癥因子的釋放誘導(dǎo)平滑肌細(xì)胞炎癥性表型轉(zhuǎn)化,導(dǎo)致病變血管內(nèi)彈性層破壞、重構(gòu)[8],而在動(dòng)脈粥樣硬化病變血管中同樣存在巨噬細(xì)胞等炎癥細(xì)胞的內(nèi)膜下浸潤(rùn)以及平滑肌細(xì)胞的表型轉(zhuǎn)化[9-11]。近期,劉會(huì)等[12]研究發(fā)現(xiàn),VBD大鼠病變血管中JNK炎癥信號(hào)通路被激活、MMP-9分泌量增加以及巨噬細(xì)胞標(biāo)記物MAC387的表達(dá)量較正常大鼠明顯升高,并且在給予瑞舒伐他汀藥物干預(yù)后,JNK、MMP-9及MAC387表達(dá)量較前顯著下降,并在一定程度上改善病變血管迂曲程度。提示炎癥反應(yīng)可能通過(guò)參與血管重構(gòu)過(guò)程影響VBD疾病進(jìn)展,抑制相關(guān)炎癥反應(yīng)可延緩VBD發(fā)展。
1.2 血流動(dòng)力學(xué)作用 剪切應(yīng)力是血流產(chǎn)生的對(duì)內(nèi)皮的摩擦力,層流剪切應(yīng)力的血管舒張和抗炎特性已被證明可以增強(qiáng)內(nèi)皮細(xì)胞的存活。應(yīng)用計(jì)算流體力學(xué)方法對(duì)VBD患者血管進(jìn)行數(shù)值模擬,并對(duì)獲得的血流動(dòng)力學(xué)信息進(jìn)行分析后發(fā)現(xiàn)VBD患者的椎動(dòng)脈匯合部、基底動(dòng)脈下段以及基底動(dòng)脈尖部沿血流方向存在低管壁剪切應(yīng)力區(qū)和高壁面壓力區(qū),在本身血管完整性被破壞的VBD患者中,基底動(dòng)脈下段的高壁面壓力導(dǎo)致了管壁的擴(kuò)張,由于基底動(dòng)脈主要分支的相對(duì)位置較固定,因此逐漸出現(xiàn)迂曲[13]。低剪切應(yīng)力介導(dǎo)的內(nèi)皮細(xì)胞自噬抑制可能在介導(dǎo)內(nèi)皮功能障礙中發(fā)揮作用,剪切應(yīng)力暴露的內(nèi)皮細(xì)胞出現(xiàn)自噬損傷,對(duì)NO生物利用度降低,對(duì)氧化和炎癥的反應(yīng)增強(qiáng)[14],氧化應(yīng)激通過(guò)凋亡等途徑誘導(dǎo)血管重構(gòu)[15]。目前已通過(guò)體內(nèi)外試驗(yàn)證明,病理性的循環(huán)牽張力能夠通過(guò)增強(qiáng)自噬導(dǎo)致VSMCs的表型轉(zhuǎn)化,使得特別是高血壓患者的血管出現(xiàn)病理性重構(gòu)[16-17]。VBD患者存在的低管壁剪切應(yīng)力可通過(guò)自噬損傷、氧化應(yīng)激等多個(gè)方面導(dǎo)致血管發(fā)生病理性重構(gòu)。
1.3 基質(zhì)金屬蛋白酶(MMPs)家族 血管平滑肌細(xì)胞(VSMCs)的存活、生長(zhǎng)分化以及血管本身穩(wěn)定性、功能的發(fā)揮均離不開(kāi)細(xì)胞外基質(zhì),在組成細(xì)胞外基質(zhì)的各種成分中,膠原蛋白增加血管抗破裂性[18],彈性蛋白的破壞會(huì)導(dǎo)致血管的過(guò)度擴(kuò)張[19]。合成型VSMCs是在內(nèi)皮細(xì)胞誘導(dǎo)下由成熟的收縮型VSMCs分化而來(lái)[20],能夠合成大量細(xì)胞外基質(zhì),如MMPs家族[21]。VBD大鼠病變血管中MMP-9的表達(dá)量高于正常大鼠[12],MMP-9是MMPs家族成員之一,通過(guò)切割、破壞彈性蛋白使血管失去抗擴(kuò)張能力而擴(kuò)張,參與血管重構(gòu)。而MMP-12被觀察到能夠直接促進(jìn)血管彈性層變化,誘導(dǎo)血管重構(gòu)[22]。MMPs家族通過(guò)降解細(xì)胞外基質(zhì),促進(jìn)VSMCs的激活和遷移,使得中膜變薄而血管更易發(fā)生向外的血管重構(gòu)[23]。此外慢性炎癥刺激也可以通過(guò)誘導(dǎo)MMPs促進(jìn)細(xì)胞外基質(zhì)的降解,使細(xì)胞遷移、增生、損傷、凋亡,參與血管重構(gòu)[24]。同時(shí)通過(guò)對(duì)臨床病例的整理及分析發(fā)現(xiàn),VBD患者病變血管的迂曲擴(kuò)張程度與MMP-9及TIMPs呈正相關(guān)。由此證明MMPs參與VBD的發(fā)生發(fā)展,并且通過(guò)檢測(cè)MMP-9水平、計(jì)算MMP-9/TIMP-1的比值來(lái)評(píng)估VBD患者病情,以便及早地預(yù)防及治療,避免后續(xù)并發(fā)癥的出現(xiàn)[25]。
1.4 原蛋白轉(zhuǎn)化酶(PCSKs) PCSKs是絲氨酸蛋白酶的一種,實(shí)驗(yàn)人員發(fā)現(xiàn)PCSK6(也被稱為PACE4)作為關(guān)鍵調(diào)節(jié)因子同樣參與血管重構(gòu)過(guò)程中VSMCs功能的調(diào)節(jié),它參與激活MMPs,特別是MMP14,通過(guò)對(duì)細(xì)胞外基質(zhì)及彈力層的降解,使血管平滑肌脫離相對(duì)穩(wěn)定的狀態(tài),且損傷部位對(duì)促細(xì)胞去分化細(xì)胞因子反應(yīng)性增強(qiáng)而發(fā)生平滑肌細(xì)胞表型轉(zhuǎn)化,由收縮型轉(zhuǎn)化為合成型細(xì)胞[26],與重構(gòu)過(guò)程中平滑肌細(xì)胞的遷移相關(guān)[23]。此外,PCSK3同樣被觀察到能夠影響細(xì)胞增殖、遷移以及炎癥反應(yīng)等血管重構(gòu)的多個(gè)過(guò)程,而PCSK9則參與獨(dú)立調(diào)節(jié)血管壁中促炎細(xì)胞因子的分泌[27]。PCSKs能夠通過(guò)激活MMPs、促進(jìn)平滑肌細(xì)胞表型轉(zhuǎn)化等多種途徑參與血管重構(gòu)過(guò)程。
1.5 纖溶酶原 VSMCs參與分泌的細(xì)胞基質(zhì)是承受血管壁張力的物質(zhì)基礎(chǔ)。人們?cè)谘芯縿?dòng)脈夾層及動(dòng)脈瘤時(shí),在血管壁上檢測(cè)出大量纖溶酶原,纖溶酶原在VSMCs膜上被激活成纖溶酶,纖溶酶降解VSMCs上纖維連接蛋白,誘導(dǎo)VSMCs脫離ECM,使血管發(fā)生重構(gòu);組織型纖溶酶原激活劑(tPA)能夠通過(guò)上調(diào)單核細(xì)胞趨化蛋白含量,刺激單核細(xì)胞滲出血管并轉(zhuǎn)化為巨噬細(xì)胞浸潤(rùn)血管及周圍組織,纖溶酶還能夠激活MMPs降解ECM及血管彈性層使平滑肌細(xì)胞發(fā)生遷移,使平滑肌層變薄擴(kuò)張;還有部分學(xué)者認(rèn)為纖溶酶相關(guān)血管擴(kuò)張與神經(jīng)支配有相關(guān)性,由于損傷血管基因表達(dá)引起神經(jīng)源性血管舒張可能導(dǎo)致早期向外的血管重構(gòu)[28]。
1.6 LDL受體相關(guān)蛋白-1(LRP-1) LRP-1是VSMCs中LDL的主要清除受體[29],LRP-1也能夠協(xié)助吞噬纖溶酶及基質(zhì)金屬蛋白酶/金屬肽酶抑制因子(MMPs/TIMP)復(fù)合物,通過(guò)降低血管壁及周圍蛋白酶的活性保護(hù)血管彈性纖維,從而減輕血管損傷,抑制血管重構(gòu)。相關(guān)研究表明LRP-1表達(dá)缺乏的轉(zhuǎn)基因小鼠患動(dòng)脈瘤等疾病的比例增加[19]。
1.7 自噬反應(yīng) 生理狀態(tài)下,自噬處于低表達(dá)的高保守狀態(tài),通過(guò)參與血管平滑肌的自我更新和修復(fù),防止細(xì)胞走向衰老。當(dāng)遭遇炎癥反應(yīng)、氧化損傷、代謝功能障礙、灌注不足等病理改變時(shí),自噬通過(guò)監(jiān)測(cè)體內(nèi)AMP濃度、AMP/ATP比值以及某些異常蛋白聚集,激活自噬反應(yīng),協(xié)助機(jī)體渡過(guò)應(yīng)激階段[30],抑制細(xì)胞凋亡及內(nèi)質(zhì)網(wǎng)應(yīng)激依賴性炎癥,在保存血管完整性方面發(fā)揮關(guān)鍵作用[31]。但當(dāng)自噬大量清除細(xì)胞內(nèi)的物質(zhì)且超過(guò)一定閾值時(shí),便會(huì)對(duì)細(xì)胞造成不可逆的損傷,導(dǎo)致細(xì)胞死亡。
近期在對(duì)血管相關(guān)性疾病研究過(guò)程中發(fā)現(xiàn),自噬的調(diào)節(jié)失衡參與血管重構(gòu)相關(guān)疾病進(jìn)程。二甲雙胍是常見(jiàn)的自噬調(diào)控藥物,作為常見(jiàn)的AMPK激活劑通過(guò)抑制mTOR增強(qiáng)細(xì)胞自噬,影響細(xì)胞的表型轉(zhuǎn)化、遷移、細(xì)胞凋亡等其他細(xì)胞死亡方式。He等[32]向大鼠腹主動(dòng)脈灌注彈性蛋白酶,通過(guò)破壞血管的彈性纖維制造腹主動(dòng)脈瘤的大鼠模型,并通過(guò)對(duì)模型大鼠進(jìn)行二甲雙胍灌胃治療后發(fā)現(xiàn)二甲雙胍能夠通過(guò)激活自噬抑制腹主動(dòng)脈瘤的形成,同時(shí)抑制平滑肌細(xì)胞的表型轉(zhuǎn)化。Wu等[33]、Liu等[34]的研究中發(fā)現(xiàn)動(dòng)脈瘤相關(guān)因子激活自噬在體外具有細(xì)胞保護(hù)作用,如亞精胺、STAT3抑制劑通過(guò)激活、維持自噬抑制血管炎癥及動(dòng)脈瘤進(jìn)展,然而Azza等[14]通過(guò)系統(tǒng)性回顧研究發(fā)現(xiàn),與其促生存作用相反,通過(guò)動(dòng)脈瘤相關(guān)細(xì)胞因子OPN激活自噬可增強(qiáng)細(xì)胞凋亡,突出自噬的雙重作用;在動(dòng)脈夾層中,有研究表明過(guò)度的自噬激活是主動(dòng)脈夾層的特征性表現(xiàn),而適當(dāng)自噬激活對(duì)主動(dòng)脈夾層有可能存在治療作用[35];基礎(chǔ)自噬在早期動(dòng)脈粥樣硬化中具有動(dòng)脈粥樣硬化保護(hù)作用,但在晚期動(dòng)脈粥樣硬化斑塊中功能失調(diào),可能產(chǎn)生有害后果[36],Yusuke等[22]的實(shí)驗(yàn)也證實(shí)在血管向外重構(gòu)的過(guò)程中,存在自噬缺陷的SMCs出現(xiàn)動(dòng)脈粥樣硬化改變比例也有相應(yīng)的增強(qiáng)加。VBD同動(dòng)脈瘤重構(gòu)類型相同,自噬的調(diào)控失衡極有可能也參與了VBD的進(jìn)程,同時(shí)參與VSMCs表型的轉(zhuǎn)變及血管重構(gòu)。自噬作為體內(nèi)重要的生物學(xué)過(guò)程之一,其調(diào)節(jié)失衡影響了動(dòng)脈瘤、動(dòng)脈夾層等多種血管重構(gòu)疾病,因此也有可能參與到同屬于向外的營(yíng)養(yǎng)不良重構(gòu)的VBD的發(fā)展過(guò)程中,關(guān)于自噬是否參與VBD的進(jìn)程,目前尚無(wú)相關(guān)的基礎(chǔ)實(shí)驗(yàn)研究,仍需要進(jìn)一步實(shí)驗(yàn)證明。
2 總結(jié)與展望
綜上所述,根據(jù)血管形態(tài)變化對(duì)血管重構(gòu)相關(guān)疾病進(jìn)行歸類,VBD屬于向外的營(yíng)養(yǎng)不良重構(gòu)類疾病,與動(dòng)脈瘤、夾層等有著相似的形態(tài)學(xué)特點(diǎn)。從血管重構(gòu)角度出發(fā),VBD影響因素包括炎癥、血流動(dòng)力學(xué)因素、MMPs、PCSKs、纖溶酶原等的釋放、LRP-1等,且極有可能與自噬相關(guān)。筆者希望通過(guò)對(duì)VBD血管重構(gòu)相關(guān)病因的研究,豐富疾病早期篩查及臨床診斷方法,并為臨床上的治療提供新的理論依據(jù)。
參考文獻(xiàn)
[1] WANG F,HU X Y,WANG T,et al.Clinical and imaging features of vertebrobasilar dolichoectasia combined with posterior circulation infarction: A retrospective case series study[J/OL].Medicine,2018,97(48):e13166.
[2] CHEN Z,ZHANG S,DAI Z,et al.Recurrent risk of ischemic stroke due to vertebrobasilar dolichoectasia[J].BMC Neurology,2019,19(1):1-8.
[3] CHAI S,XU H,WANG Q,et al.Microvascular decompression for trigeminal neuralgia caused by vertebrobasilar dolichoectasia: interposition technique versus transposition technique[J].Acta Neurochirurgica,2020,162(11):2811-2821.
[4] WANG J,JIA L,YANG X,et al.Outcomes in symptomatic patients with vertebrobasilar dolichoectasia following endovascular treatment[J].Frontiers in Neurology,2019,10:610.
[5] OTA R,KURIHARA C,TSOU T L,et al.Roles of matrix metalloproteinases in flow-induced outward vascular remodeling[J].Journal of Cerebral Blood Flow & Metabolism,2009,29(9):1547-1558.
[6]張春燕,劉會(huì),曹曉雨,等.枕大池注射彈性蛋白酶制作大鼠椎基底動(dòng)脈延長(zhǎng)擴(kuò)張癥模型[J].國(guó)際腦血管病雜志,2019,27(6):438-441.
[7] JAMINON A,REESINK K,KROON A,et al.The role of vascular smooth muscle cells in arterial remodeling: focus on calcification-related processes[J].International Journal of Molecular Sciences,2019,20(22):5694-5722.
[8] NAKAJIMA N,NAGAHIRO S,SANO T,et al.Phenotypic modulation of smooth muscle cells in human cerebral aneurysmal walls[J].Acta Neuropathologica,2000,100(5):475-480.
[9] LIBBY P,RIDKER P M,MASERI A.Inflammation and atherosclerosis[J].Circulation,2002,105(9):1135-1143.
[10] FU X,NIU N,LI G,et al.Blockage of macrophage migration inhibitory factor (MIF) suppressed uric acid-induced vascular inflammation,smooth muscle cell de-differentiation,and remodeling[J].Biochem Biophys Res Commun,2019,508(2):440-444.
[11] LEE H S,YUN S J,HA J M,et al.Prostaglandin D2 stimulates phenotypic changes in vascular smooth muscle cells[J].Experimental & Molecular Medicine,2019,51(11):1-10.
[12]劉會(huì),張春燕,曹曉雨,等.椎基底動(dòng)脈延長(zhǎng)擴(kuò)張癥大鼠JNK、MMP-9和MAC387的表達(dá)及瑞舒伐他汀的干預(yù)作用[J].中華神經(jīng)醫(yī)學(xué)雜志,2021,20(7):662-667.
[13]韓金濤,喬惠婷,韓旭,等.椎基底動(dòng)脈延長(zhǎng)擴(kuò)張癥的計(jì)算流體力學(xué)分析[J].北京大學(xué)學(xué)報(bào):醫(yī)學(xué)版,2015,47(2):302-304.
[14] AZZA R,MOHAMMED A,SUBODH V.The putative role of autophagy in the pathogenesis of abdominal aortic aneurysms[J].Atherosclerosis,2017,257:288-296.
[15] MA W Q,SUN X J,WANG Y,et al.Restoring mitochondrial biogenesis with metformin attenuates β-GP-induced phenotypic transformation of VSMCs into an osteogenic phenotype via inhibition of PDK4/oxidative stress-mediated apoptosis[J].Molecular and Cellular Endocrinology,2019,479:39-53.
[16] LI H P,LIU J T,CHEN Y X,et al.Suppressed nuclear envelope proteins activate autophagy of vascular smooth muscle cells during cyclic stretch application[J].Biochimica et Biophysica Acta (BBA)-Molecular Cell Research,2021,1868(1):118855.
[17] SUN L,ZHAO M,LIU A,et al.Shear Stress Induces Phenotypic Modulation of Vascular Smooth Muscle Cells via AMPK/mTOR/ULK1-Mediated Autophagy[J].Cellular and Molecular Neurobiology,2018,38(2):541-548.
[18] LAURENCE D W,HOMBURG H,YAN F,et al.A pilot study on biaxial mechanical, collagen microstructural, and morphological characterizations of a resected human intracranial aneurysm tissue[J].Scientific Reports,2021,11(1):1-15.
[19] MICHEL J B,JONDEAU G,MILEWICZ D M.From genetics to response to injury: vascular smooth muscle cells in aneurysms and dissections of the ascending aorta[J].Cardiovascular Research,2018,114(4):578-589.
[20] LIU M,GOMEZ D.Smooth muscle cell phenotypic diversity: At the crossroads of lineage tracing and single-cell transcriptomics[J].Arteriosclerosis, Thrombosis, and Vascular Biology,2019,39(9):1715-1723.
[21]張杰,黃興曉,池菊芳.通過(guò)激活通路誘導(dǎo)血管平滑肌細(xì)胞發(fā)生炎癥及表型轉(zhuǎn)化[J].中國(guó)病理生理雜志,2020,36(11):1966-1971.
[22] YUSUKE O,TOMOYA M,KOSUKE A,et al.Defective autophagy in vascular smooth muscle cells enhances cell death and atherosclerosis[J].Autophagy,2018,14(11):1991-2006.
[23] R?HL S,SUUR B E,LENGQUIST M,et al.Lack of PCSK6 increases flow-mediated outward arterial remodeling in mice[J].Cells,2020,9(4):1009-1025.
[24] CUI J,XU G,BIAN F.H2S alleviates aortic aneurysm and dissection: Crosstalk between transforming growth factor 1 signaling and NLRP3 inflammasome[J].International Journal of Cardiology,2021,338:215-225.
[25] ZHANG D P,PENG Y F,ZHANG H L,et al.Basilar artery tortuosity is associated with white matter hyperintensities by TIMP-1[J].Frontiers in Neuroscience,2019:836.
[26] RYKACZEWSKA U,SUUR B E,R?HL S,et al.PCSK6 is a key protease in the control of smooth muscle cell function in vascular remodeling[J].Circulation Research,2020,126(5):571-585.
[27] PATRIKI D,SARAVI S S S,CAMICI G G,et al.PCSK 9: a link between inflammation and atherosclerosis[J].Current Medicinal Chemistry,2022,29(2):251-267.
[28] LABEYRIE P E,GOULAY R,MARTINEZ DE LIZARRONDO S,
et al.Vascular tissue-type plasminogen activator promotes intracranial aneurysm formation[J].Stroke,2017,48(9):2574-2582.
[29] DIJK W,RUPPERT P M M,OOST L J,et al.Angiopoietin-like 4 promotes the intracellular cleavage of lipoprotein lipase by PCSK3furin in adipocytes[J].Journal of Biological Chemistry,2018,293(36):14134-14145.
[30] MAIURI M C,ZALCKVAR E,KIMCHI A,et al.Self-eating and self-killing: crosstalk between autophagy and apoptosis[J].Nature Reviews Molecular Cell Biology,2007,8(9):741-752.
[31] CLéMENT M,CHAPPELL J,RAFFORT J,et al.Vascular smooth muscle cell plasticity and autophagy in dissecting aortic aneurysms[J].Arteriosclerosis, Thrombosis, and Vascular Biology,2019,39(6):1149-1159.
[32] HE J,LI N,F(xiàn)AN Y,et al.Metformin inhibits abdominal aortic aneurysm formation through the activation of the AMPKmTOR signaling pathway[J].Journal of Vascular Research,2021,58(3):148-158.
[33] WU Q,CHENG Z,ZHOU Y,et al.A novel STAT3 inhibitor attenuates angiotensin Ⅱ-induced abdominal aortic aneurysm progression in mice through modulating vascular inflammation and autophagy[J].Cell Death & Disease,2020,11(2):1-16.
[34] LIU S,HUANG T,LIU R,et al.Spermidine suppresses development of experimental abdominal aortic aneurysms[J].Journal of the American Heart Association,2020,9(8):e014757.
[35] ZHOU Z,LIU Y,ZHU X,et al.Exaggerated autophagy in stanford type A aortic dissection: a transcriptome pilot analysis of human ascending aortic tissues[J].Genes,2020,11(10):1187-1199.
[36] DE MEYER G R Y,GROOTAERT M O J,MICHIELS C F,et al.Autophagy in vascular disease[J].Circulation Research,2015,116(3):468-479.
(收稿日期:2022-04-11) (本文編輯:姬思雨)