999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

Some further results for holomorphic maps on parabolic Riemann surfaces

2022-08-25 08:55:20MenglongHONG洪夢龍

Menglong HONG(洪夢龍)

School of Mathematical,East China Normal University,Shanghai 200000,China E-mail: 894326916@qq.com

appears. Dealing with this term is similar to dealing with the “error term” in the SMT.Therefore, to extend H. Cartan’s SMT, we need to use Ahlfors’ negative curvature method to get the precise terms.

2 Parabolic Riemann Surfaces

Parabolic Riemannian surface Y is a kind of Riemannian surface. Usually, we call a Riemannian surface with curvature 0 parabolic, and obviously, C is a parabolic Riemann surface.In addition, for any bounded subharmonic function f on the Riemann surface, if all of it is constant, Y must be Parabolic. From the paper [1], we know that Y is parabolic ?, and there is a smooth exhaustion function

holds, in a finite Lebesgue measure.

3 The First Main Theorem

4 Holomorphic Curves Into Pn(C)

Before we prove Theorem 4.1, we recall some notations and some results. For the open set U ?Y, in the local coordinate U, write df =f′dz, z ∈U, and the higher order derivatives are

Let φk(H)=‖Fk;H‖2. By Lemma 4.6 and a calculation, we have Lemma 4.7.

5 Extension the Result of Ru

Nguyen Van Thin in[6]extended the results of Ru[2,3]to the maps of M-punctured disks,which is just a special case of Y. In this section, we extend the results of Nguyen Van Thin in[6] to Y.

be the m-th Hilbert weight defined on X about c.

6 Abelian Variety

In this section, we extend the result of Y.T. Siu and S.K. Yeung [4] to Abelian varieties,using A to represent an Abelian variety and letting dim(A) = n. From the definition of the derivative in [1], we also can define some global complex analytic 1-forms, for example {ωj:=dwj}0≤j≤n. This can help us find some global jet coordinates on JkA such that JkA=A×Ckn.Let ξ ∈Y be a fixed global vector. If f is holomorphic and from Y to A, we can define

Proof of Theorem 6.1 On the first step, we consider the situation where f(Y) is not Zariski dense in Y. Take a Zariski closure X of f(Y). If X exists in another form by translating the Abelian subvariety of A,we can get mf(r,X∩D)=mf(r,D)on the premise that f(Y)/?D.In the above hypothesis, if X = A, then we also have X ∩D = D. It is contradictory. Let B = {a ∈A,a+X = X}, and the quotient group is defined as A/B = A0. In addition, we can instead of f by its synthesis of the quotient map A →A0. Without affecting the results,assume that X is not one of the translations of subgroup of A and that dim(X)>0.

Letting JkA=A×Rn,k, we recall that here Rn,kis the “universal”rational homogeneous variety Cnk/Gk(see line 2, page 2, Paun-Sibony [1]). Denote by Xkthe Zariski closure on fk(Y), and meanwhile use the injection Xk→Akto synthesize the map τk: Xk→Rn,k,which located in the second factor JkA →A×Rn,k. By the Prop-5.3 in [1], ?1 <k, when the dimension of the fiber of τkis greater than zero, dim(AX) is strictly positive, where AXis defined as

In addition, from the above assumption, we know that τkhas finite generic fibers, where τkis a mapping from Xkto Rn,kand k is greater than or equal to one. Thus, from Prop-5.4 of Paun-Sibony [1], we can find an order k jet-differential P such that its values in the dual of an ample line bundle and its restriction to Xkare not identical to 0. By Theorem 3.2 (b) in [15],this implies that (take D with empty)

Acknowledgements Thanks to my advisor Min Ru and Xuecheng Pang for their help.

主站蜘蛛池模板: 亚洲国产成人久久77| 成年片色大黄全免费网站久久| 亚洲精品麻豆| 久久99国产乱子伦精品免| 第一页亚洲| 日韩在线观看网站| 午夜免费视频网站| 久久午夜影院| 美女啪啪无遮挡| 国产精品久久久久久久久久久久| 精品久久久久久成人AV| 精品国产成人av免费| 免费日韩在线视频| 91视频区| 中文字幕在线日本| 欧美综合区自拍亚洲综合天堂| 91精品亚洲| 国产成人做受免费视频| 国产欧美日韩专区发布| 免费毛片视频| 在线视频一区二区三区不卡| h视频在线观看网站| 色欲不卡无码一区二区| 国产精品一区在线麻豆| 中文精品久久久久国产网址 | 久久国产成人精品国产成人亚洲 | 亚洲高清国产拍精品26u| av无码一区二区三区在线| 国产成人精品优优av| 亚洲一区二区精品无码久久久| 天堂岛国av无码免费无禁网站| 国产91在线免费视频| 一本大道视频精品人妻| 精品久久久久无码| 国产亚洲视频中文字幕视频| 日韩午夜片| 亚洲成AV人手机在线观看网站| 91精品国产福利| 日本久久网站| 亚洲欧美自拍中文| 色婷婷在线播放| 亚洲精品福利视频| 激情国产精品一区| 91美女视频在线观看| 国产免费网址| 91娇喘视频| 波多野结衣一区二区三区四区| 无码中文字幕加勒比高清| 国产91透明丝袜美腿在线| 国产h视频在线观看视频| 亚洲人成日本在线观看| 黄色三级毛片网站| 中国一级特黄视频| 国产福利拍拍拍| 亚洲日韩AV无码精品| 国产黄色免费看| 国产不卡网| 这里只有精品在线播放| 天堂在线www网亚洲| 欧美中文字幕在线视频| 欧美日韩久久综合| 在线高清亚洲精品二区| 澳门av无码| 亚洲色图欧美在线| 一本大道香蕉高清久久| 久久狠狠色噜噜狠狠狠狠97视色| 白丝美女办公室高潮喷水视频| 日本在线国产| 五月婷婷综合色| 亚洲欧美不卡中文字幕| 2018日日摸夜夜添狠狠躁| 日本午夜精品一本在线观看| www精品久久| 9丨情侣偷在线精品国产| 91福利在线看| 中文字幕乱妇无码AV在线| 亚欧成人无码AV在线播放| 好紧太爽了视频免费无码| 天天色天天操综合网| 中文毛片无遮挡播放免费| 国产无码精品在线播放| 欧美va亚洲va香蕉在线|