999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

GLEASON’S PROBLEM ON THE SPACE Fp,q,s(B) IN Cn*

2022-11-04 09:06:40PengchengTANG唐鵬程XuejunZHANG張學(xué)軍

Pengcheng TANG (唐鵬程) Xuejun ZHANG (張學(xué)軍)

College of Mathematics and Statistics,Hunan Normal University,Changsha 410081,China

E-mail: 1228928716@qq.com;xuejunttt@263.net

Abstract Let Ω be a domain in Cn and let Y be a function space on Ω.If a ∈Ω and g ∈Y with g(a)=0,do there exist functions f1,f2,···,fn ∈Y such that This is Gleason’s problem.In this paper,we prove that Gleason’s problem is solvable on the boundary general function space Fp,q,s(B) in the unit ball B of Cn.

Key words boundary general function space;Gleason’s problem;solvability;unit ball

1 Introduction

Letα=(α1,α2,···,αn) be a multi-index,where eachαlis a nonnegative integer.In this paper,the following abbreviated notations will be used: |α|=α1+α2+··· +αn,α!=

For any pointz∈B-{0},the involution automorphisms ofBare defined by

such thatφz(0)=z,φz(z)=0 andOtherwise,we defineφ0(w)=-w.

In this paper,the notation “EF” means that there exist two constantsa >0 andb >0 such thataF≤E≤bF.If there exists a constanta >0 such thatG≤aH(G≥aH),then we denote it by “GH” (“G?H”).

Fors≥0,p >0,q+n >-1 andq+s >-1,the spaceF(p,q,s),which we call the general function space,consists off∈H(B) and

where the complex gradient offis defined by

In [1],we proved that

In [2],Zhao Ruhan first introduced theF(p,q,s) space on the unit disk.Later,many function spaces associated withF(p,q,s) were studied in various domains;see,for example,[1,3–11].In the definition of theF(p,q,s) space,the integral is on the unit ballBor the other domain Ω,for example,a bounded symmetric domain.In this paper,we will consider the corresponding function space of an integral on the unit sphere?B,which we write asFp,q,s(B).

Definition 1.1Fors≥0,p >0,q+s≥0 andq+n≥0,the functionf∈H(B) is said to belong to the boundary general function spaceFp,q,s(B) if

It is easy to prove thatFp,q,s(B) is a Banach space under the norm ||.||p,q,swhenp≥1,and theFp,q,s(B) is also a complete distance space under the distanced(a,b)=||a-b||pp,q,swhen 0<p <1.We may also consider many properties ofFp,q,s(B).Gleason’s problem is one of these properties.

LetYbe a holomorphic function space on the domain Ω ?Cn.Gleason’s problem onYis the following: ifa∈Ω andg∈Ywithg(a)=0,are there functionsf1,···,fn∈Ysuch that

There have been many works addressing Gleason’s problem,for example [12–26].We know that Gleason’s problem is solvable onF(p,q,s) (see [26]).Is this problem also solvable onFp,q,s(B) ? In this paper,we seek to solve this problem.

The following function spaces are also used in this paper:

Definition 1.2For 0<β≤1,the functionfis in the Lipschitz space Lipβ(B) if

The space Λβ(B)=Lipβ(B) ∩H(B) is called a holomorphic Lipschitz space.By Theorem 7.9 in [27],if 0<β <1,thenf∈Λβ(B) if and only iff∈H(B) and

Definition 1.3Forα >-1 andp >0,the functionf∈H(B) is said to belong to the weighted Bergman space(B) if

where dvα(w)=cα(1 -|w|2)αdv(w),with the constant

2 Some Lemmas

Lemma 2.1(see [14]) Forδ >-1,the integrals

have the following properties:

Lemma 2.2(see [28,29]) Letwandabe two points inB.Forl >0 andt >0,let

Then the following results hold:

Lemma 2.3Fors≥0,p >0,q+n≥0,q+s≥0,ifh∈Fp,q,s(B),then

Moreover,the exponent (q+n)/pis the best possible.

ProofFor anya∈B,let=E*(a,1/3) (see [30]) be the Bergman ball.If,then Lemma 2.20 in [27] shows that

By the proof process of Lemma 2.1 in [30],we may get that

For anyl∈{1,2,···,n},letDlhdenote the partial derivative ofhwith respect to thel-th component.By Lemma 2.24 and Lemma 1.8 in [27],we have that

In what follows,we prove that this exponent (q+n)/pis the best possible.

For fixedξ∈?B,we take

wherew∈B.

Whens=q=0,it follows from Lemma 2.1 that

On the other hand,for anyδ <n/p,Lemma 2.1 means that

This shows that this exponent (q+n)/pis the best possible whenq=s=0.

In what follows,we consider the other cases.

For the case (i)s≥nandq+n≥0 or (ii)s=0<q,it is easy to prove that ||hξ||p,q,s?1,by Lemma 2.1.If 0<s <nandq+s >0,thenn(q+n)/(n-s)>nandn/s >1.By Lemma 2.1 and Hlder’s inequality,we have that

Next,we consider the case 0<s <nandq+s=0.

Ifn <2s,then Lemma 2.2(3) shows that

Ifn=2s,then Lemma 2.2(2) and

Ifn >2s >0,then Lemma 2.2(1) means that

Therefore,(2.1)–(2.4) show that ||hξ||p,q,s?1.

If there exists someδ <(q+n)/psuch that

This contradiction shows that the exponent (n+q)/pis the best possible.

This proof is complete. □

Lemma 2.4(see [29]) Forδ >-1 and 0 ≤ρ <1,the integral

has the following asymptotic properties:

(1)J(ρ) ?(1 -ρ)-twhent >0.

(2)J(ρ) ?1 whent <0.

(3)J(ρ) ?logwhent=0.

3 Main Results

In order to consider the solvability of Gleason’s problem onFp,q,s(B),we first prove the following result:

Theorem 3.1Lets≥0,p >0,q+n≥0,q+s≥0,0<β <1,α >β/2+max{1/p-1,0}n-1 andα >max{1/p,1} max{q+s,q+n}+max{1/p-1,0}n-1,l∈{1,2,···,n}.Ifφ∈Lipβ(B),then

for allh∈Fp,q,s(B),where

ProofWhenφ∈Lipβ(B),it is clear that

Otherwise,ifz,w∈B,then we have that

We first consider the operator

By (3.2) andφ∈Lipβ(B),we have that

For any 0 ≤ρ <1 anda∈B,let

(i) Casep >1.

This means that

When 2s <n,by (3.4) andn+α+1 -β/2>n,Lemma 2.2(3),Lemma 1.8 in [27],α-q-s >-1 and Lemma 2.4,,we may obtain that

When 2s >n,by (3.4) andn+α+1 -β/2>n,Lemma 2.2(4),Lemma 1.8 in [27],α-q-s >-1 and Lemmas 2.3–2.4,,s+(q+s)-(2s-n)=q+n≥0,α-q-n >-1,Lemma 2.1,s+(q+s)-(2s-n)-(n+α+1-β/2)+(α-q-n)+n+1=β/2>0,

we can get that

When 2s=n,the conditionsq+s≥0 andα >q+n-1 mean that we may chooseδ0=min{(n-β)/4,(α-q-n+1)/2} such thatα-q-n-δ0>-1,q+2s-δ0≥(α+n+1 -β/2 -2δ0) -(α-q-n-δ0) -n-1=q+2s-β/2 -δ0>0.By (3.4),Lemma 2.2(5),Lemma 2.3 and Lemma 2.1,we have that

(ii) Case 0<p≤1.

Forw∈B,we take(z∈B).Applying Lemma 2.15 in [27] toHw,we can obtain that

The above inequality and (3.3) mean that

Therefore,by (3.8) and Fubini’s theorem,we may get that

Using (3.9),as long as we usepβ/2 andα′to replaceβ/2 andαin (3.4),respectively,the rest of the proof is similar to the proof of casep >1.

The above result and (3.5)–(3.7) mean that we have proved that

Lemma 2.3 means thatDlh∈(B) whenα >(q+n)/p-1 andh∈Fp,q,s(B).It follows from Theorem 2.2 in [27] that

Therefore,Tφh(w)=φ(w)Dlh(w) -Gφh(w).By (a+b)p?ap+bpfor alla≥0 andb≥0,φ∈Lipβ(B) ?C(),we can get that

This means that (3.1) holds.This proof is complete. □

Next,we discuss the solvability of Gleason’s problem onFp,q,s(B).

Theorem 3.2Lets≥0,p >0,q+n≥0 andq+s≥0.For any integerγ≥1 anda∈B,there exist bounded linear operatorsWm(|m|=γ) onFp,q,s(B) such that

for anyh∈Fp,q,s(B) andw∈BwithDλh(a)=0 (|λ|=0,1,···,γ-1),wheremandλare multi-index.

ProofWe mainly consider the caseγ=1.

For fixeda∈Bandl∈{1,2,···,n},we take that

ThenWlis a linear operator and

In what follows,we prove thatWlis bounded onFp,q,s(B) for everyl∈{1,2,···,n}.

We take a positive integerα >max{1/p-1,0}n-1/2 andα >max{1/p,1} max{q+s,q+n}+max{1/p-1,0}n-1.By (3.10)–(3.11),Fubini’s theorem and a simple calculation,we have that

For anyk∈{1,2,···,n},it is clear that

We consider the operator

Forγ≥2,the proof is similar to that of Theorem 5 in [25].The main difference is that the calculation is more difficult.We omit the details here.

The proof of Theorem 3.2 is complete. □

主站蜘蛛池模板: 中文字幕免费视频| 亚洲无码高清视频在线观看| 免费jizz在线播放| 波多野结衣视频网站| 亚洲成人精品在线| 女人18毛片久久| 亚洲欧美激情另类| 97久久人人超碰国产精品| 国产免费黄| 成人免费午夜视频| 中文字幕精品一区二区三区视频| 激情亚洲天堂| 午夜日b视频| 国产av色站网站| 中文字幕人妻无码系列第三区| 久久精品日日躁夜夜躁欧美| 在线日韩一区二区| 国产美女丝袜高潮| 天堂亚洲网| 亚洲第一福利视频导航| jizz在线观看| 一本无码在线观看| 黄色网站不卡无码| 精品国产自在在线在线观看| 激情综合婷婷丁香五月尤物| 国产精品xxx| www.91在线播放| 99视频免费观看| 国产一级精品毛片基地| 国产精品不卡永久免费| 99热国产这里只有精品无卡顿" | 免费高清自慰一区二区三区| 午夜a级毛片| 谁有在线观看日韩亚洲最新视频| 国产在线拍偷自揄拍精品| 亚洲国产91人成在线| 欧美成人h精品网站| 国产va在线观看| 无码在线激情片| 国模极品一区二区三区| 呦系列视频一区二区三区| 无码aaa视频| 2021天堂在线亚洲精品专区| 久久视精品| 国产麻豆福利av在线播放| 草草线在成年免费视频2| 欧美综合成人| 亚洲日韩高清无码| 午夜免费视频网站| 亚洲精品视频免费观看| AV色爱天堂网| 99精品免费在线| 久久精品无码一区二区国产区| 国产福利一区视频| 国产综合日韩另类一区二区| 久久精品丝袜高跟鞋| 国产免费网址| 美女国内精品自产拍在线播放| 91精品国产91久久久久久三级| 欧美一级高清免费a| 日本黄色a视频| 免费毛片视频| 自慰网址在线观看| 国产不卡在线看| 日韩在线视频网| 欧美日韩在线国产| 国产欧美日韩va另类在线播放 | 蝴蝶伊人久久中文娱乐网| 国产一级无码不卡视频| 性网站在线观看| 一级毛片免费观看不卡视频| 国产精品伦视频观看免费| 免费人欧美成又黄又爽的视频| 国产玖玖玖精品视频| 99re精彩视频| 成人自拍视频在线观看| 亚洲乱亚洲乱妇24p| 久久中文电影| 亚洲视频欧美不卡| 无码免费视频| 欧美在线精品一区二区三区| 欧美高清国产|