999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

Blow up Solutions of the Elastic String Equation with Nonlinear Damping and Source Terms

2022-11-05 01:44:06ZhangZaiyunOuyangQianchengZouPengchengWangQiongLingWenjing

Zhang Zaiyun Ouyang Qiancheng Zou Pengcheng Wang Qiong Ling Wenjing

(School of Mathematics,Hunan Institute of Science and Technology,Yueyang 414006,Hunan,China)

Abstract In this paper,we consider the elastic string equation with nonlinear damping and source terms. Following the ideas of Zhang and Miao [43] the blow up of the solutions with positive initial energy is investigated by the perturbed energy method.

Key words Elastic string equation Blow up Positive initial energy Perturbed energy method

1 Introduction

We consider the blow up problem for the following elastic string equation

Eq. (1.2)arises in classical mechanics,fluid dynamics and quantum field theory(see[26],[27]),and has been extensively studied. It is well known that in the casef(u) = 0,it causes finite time blow up of solution with negative initial energy(see[1]). Haraux and Zuazua obtained the global existence of Eq.(1.2)with damping termg(ut)and arbitrary initial conditions(see[2]). In[3,4],Levine studied the blow up result for solutions of Eq. (1.2)with damping termg(ut)and source termf(u)in the linear damping case (r= 0). He first introduced the concavity method and showed that solutions with negative initial energy blow up in finite time. Later, this method was improved by Kalantarov and Ladyzhenskaya [5]to more general cases. Moreover, Georgier and Todorova [6] extended Levine’s result to the nonlinear damping case(r> 0). In their work, they determined suitable relations between the nonlinearity in the damping termg(ut)and the source termf(u).More precisely,they showed that the solutions with negative energy exist globally in time ifr ≥pand blow up in finite time ifr

In[33],Kirchhoff firstly proposed the so called Kirchhoff string model in the nonlinear vibration of an elastic string

whereu=u(x,t) is the lateral displacement at the space coordinatexand the timet, Eis the Young modules,his the cross-section area,ρis the mass density,Lis the length,p0is the initial axial tension,δis the resistance modules andfis the external force.

In fact, Eq. (1.1) is a model for the physical problem of vertical displacements of stretched elastic strings.

and by using the concavity method,showed that its solutions with negative energy blow up in finite time forp>max{2q,r}.But,these solutions exist globally in time ifp ≤r.In[41],Mamadou Sango studied the blow up result for the solutions of a system of quasi-linear hyperbolic equations involving thep-Laplacian and obtained a differential inequality for a function involving some norms of the solutions which yields the finite time blow up.

In the present work,we consider the elastic string equation with damping effectg(ut)and source termf(u)and establish the blow up result for this equation with positive initial energy in finite time.

2 The main result

3 Preliminary results

In this section,we use the standard Sobolev spaceLp(Ω)with the usual scalar product and norm.

Lemma 3.1 Letube a solution of(1.1). Assume thatE(0)β1.Then there exists a constantβ2>β1,such that

Remark 3.1 In this paper,CandCiwill denote various positive constants which may be different at different places.

4 Proof of Theorem 2.1

In this section, we prove Theorem 2.1 by the perturbed energy function method benefited from the ideas of Zhang and Miao[43].

which completes the proof of our result.

The parametersρandσwere chosen in a convenient way and sufficiently large. Consequently,the authors considered a datau0with sufficiently large‖?u0‖(large data‖u0‖∞provided thatψ ∈L∞(Rn))and obtained the blow up result.

Remark 4.2 Setx=‖?u0‖2,y=λ.It is plausible to conjecture the existence of curve(see Fig.1 as follows)Lin the plane(x,y)such that

i)for any point(x,y)on the right of curveL,there are datau0,v0,such that‖?u0‖2=xandE(u0,v0)=λ,and the corresponding solutions of(1.1)blow up in finite time(region I);

ii)for any point(x,y)on the left of curveL,such a choice of data cannot be made(see region II).That is to say that in region II,solutions of(1.1)exist globally.

Figure 1 The relationship between the parameters x=‖?u0‖2 and y =E(u0,v0)

5 Further Remarks

Let-△be the operator defined by the triple{V,H,a(u,v)},where

主站蜘蛛池模板: 天堂av高清一区二区三区| 日韩欧美国产成人| 中文字幕在线看| 免费AV在线播放观看18禁强制| 呦女精品网站| 久久中文字幕2021精品| 亚洲天堂网视频| 国产精品浪潮Av| 黄色网站在线观看无码| 久无码久无码av无码| 青青网在线国产| 美女被操91视频| 日本一本正道综合久久dvd| 欧美在线伊人| 2021国产乱人伦在线播放| 国产精品亚欧美一区二区三区 | 亚洲av无码人妻| 免费观看国产小粉嫩喷水| 欧美成人影院亚洲综合图| 欧美精品成人一区二区在线观看| 红杏AV在线无码| 亚洲自拍另类| 亚洲高清在线天堂精品| 99re热精品视频国产免费| 激情午夜婷婷| 青青草国产免费国产| 欧美日韩国产在线人| 四虎永久免费地址| 久久综合九色综合97婷婷| 中文字幕有乳无码| 熟妇丰满人妻| 天天躁夜夜躁狠狠躁躁88| 国产区人妖精品人妖精品视频| 欧美色丁香| 精品福利一区二区免费视频| 国产精品无码一二三视频| 99这里只有精品在线| 国产真实乱子伦视频播放| 18禁高潮出水呻吟娇喘蜜芽| 国产高潮视频在线观看| 久久综合色视频| 国产精品极品美女自在线| 精品久久国产综合精麻豆| 国产第一页亚洲| 午夜福利免费视频| 色久综合在线| 国产三级国产精品国产普男人| 内射人妻无套中出无码| 国产高清在线精品一区二区三区 | 2018日日摸夜夜添狠狠躁| 国产丝袜啪啪| 欧美va亚洲va香蕉在线| 精品超清无码视频在线观看| 日韩AV手机在线观看蜜芽| 九九香蕉视频| 一区二区三区在线不卡免费| 日韩欧美国产中文| 国产一级一级毛片永久| 二级特黄绝大片免费视频大片| 国产日韩精品欧美一区灰| 又猛又黄又爽无遮挡的视频网站| 乱人伦中文视频在线观看免费| 日韩av电影一区二区三区四区| 九九热视频在线免费观看| 日本精品视频| 亚洲一级毛片在线观播放| 亚洲毛片在线看| 中文国产成人精品久久| 亚洲天堂网2014| 香蕉99国内自产自拍视频| 亚洲激情区| 爱爱影院18禁免费| 97超级碰碰碰碰精品| 欧美日韩国产一级| 国产激爽爽爽大片在线观看| 亚洲国产中文精品va在线播放 | 亚洲国产欧美国产综合久久| 老司国产精品视频91| 又粗又大又爽又紧免费视频| 日韩美毛片| 国产国产人免费视频成18| 又粗又大又爽又紧免费视频|