999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

THE DIRICHLET PROBLEM OF A SPECIAL LAGRANGIAN TYPE EQUATION WITH SUPERCRITICAL PHASE

2022-11-23 04:06:58ZHUSheng
數學雜志 2022年6期

ZHU Sheng

(School of Mathematics and Statistics,Ningbo University,Ningbo 315211,China)

Abstract:In this paper,we introduce a special Lagrangian type operator,and consider the corresponding Dirichlet problem of the special Lagrangian type equation with supercritical phase.By establishing the global C2estimates,we obtain the existence theorem of classical solutions by the method of continuity.

Keywords: special lagrangian type equation;Dirichlet problem;supercritical phase

1 Introduction

was introduced by Harvey-Lawson[2]in the study of calibrated geometries.Here Θ is a constant called the phase angle.In this case the graphx(x,Du(x))defines a calibrated,minimal submanifold of R2n.Since the work of Harvey-Lawson,special Lagrangian manifolds have gained wide interests,due in large part to their fundamental role in the Strominger-Yau-Zaslow description of mirror symmetry[3].For the special Lagrangian equations with supercritical phase,Yuan obtained the interiorC1estimate with Warren in[4]and the interiorC2estimate with Wang in[5].Recently Collins-Picard-Wu[6]obtained the existence theorem of the Dirichlet problem by adopting the classic method with some important observation about the concavity of the operator.

In fact,the Dirichlet problems of elliptic equations in Rnwere widely studied.For the Laplace equation,the Dirichlet problem was well studied in[7,8].For fully nonlinear elliptic equations,the pioneering work was done by Caffarelli-Nirenberg-Spruck in[1,9]and Ivochkina in[10].In their papers,they solved the Dirichlet problem for Monge-Amp`ere equations andk-Hessian equations elegantly.Since then,many interesting fully nonlinear equations with different structure conditions have been researched,such as Hessian quotient equations,which were solved by Trudinger in[11].For more information,we refer the citations of[9].

In this paper,we establish the following existence theorem of(1.1)

Theorem 1.1Suppose Ω?Rnis aC4strictly convex domain,φ∈C2(?Ω) andwithin.Then there exists a unique solutionu∈to the Dirichlet problem(1.1).

Remark 1.2In addition,if Ω, Θ andφare all smooth,the solutionuis also smooth on.

Remark 1.3As in[6],if we assume there is a subsolutioninstead of the strict convexity of Ω,Theorem 1.1 still holds.

The rest of the paper is organized as follows.In Section 2,we give some properties and establish theC0estimates.In Section 3 and 4,we establish theC1andC2estimates for the Dirichlet problem(1.1).And Theorem 1.1 is proved in the Section 5.

2 Some Properties and a Priori Estimates

3 Global Gradient Estimate

4 Global Second Derivatives Estimate

5 Proof of Theorem 1.1

In this section,we complete the proof of the Theorem 1.1.

For the Dirichlet problem of equation(1.1),we have established theC0,C1andC2estimates in Section 2,3 and 4.By the globalC2priori estimate,the equation(1.1)is uniformly elliptic in.From Property 2.2,we know-e-Aarctanηis concave with respect toD2u,whereAis defined in Property 2.2.Following the discussions in the Evans-Krylov theorem[15,16],we can get the global H?lder estimate of second derivatives,

whereCandαdepend onn,Ω,,|Θ|C2and|φ|C2.From(5.1),one also obtainsC3,α()estimates by differentiating the equation(1.1)and applies the Schauder theory for linear uniformly elliptic equations.

Applying the method of continuity(see[6]),the existence of the classical solution holds.By the standard regularity theory of uniformly elliptic partial differential equations,we can obtain the higher regularity.

主站蜘蛛池模板: 久久久久人妻一区精品| 国产一国产一有一级毛片视频| 亚洲精选无码久久久| 亚洲区欧美区| 熟妇丰满人妻av无码区| 日韩午夜福利在线观看| 爽爽影院十八禁在线观看| 91无码国产视频| 亚洲av成人无码网站在线观看| 欧美精品一区二区三区中文字幕| 国产美女丝袜高潮| 四虎国产永久在线观看| 国产三级精品三级在线观看| 狠狠色狠狠综合久久| 国产午夜在线观看视频| 天天综合天天综合| 亚洲成肉网| 欧美色香蕉| 理论片一区| 国产日韩精品一区在线不卡| 国产精品视频a| 国产对白刺激真实精品91| 九九视频免费在线观看| 中国成人在线视频| 久久久久无码精品| 亚洲无码A视频在线| 国产成人高清在线精品| 亚卅精品无码久久毛片乌克兰| 97人人做人人爽香蕉精品| 五月激情综合网| 亚洲有无码中文网| 韩国v欧美v亚洲v日本v| 国产理论最新国产精品视频| 欧洲成人免费视频| 中文字幕在线播放不卡| 精品天海翼一区二区| 国产精品久久久久久搜索| 91啦中文字幕| 国产国语一级毛片| 亚洲第一黄片大全| 男女男精品视频| 首页亚洲国产丝袜长腿综合| 国产素人在线| 久久这里只精品热免费99| 国产黑人在线| 国产中文一区a级毛片视频| 亚洲天堂日韩在线| 9丨情侣偷在线精品国产| 91毛片网| 久久黄色小视频| 成人av专区精品无码国产 | 欧美精品在线视频观看| 2020最新国产精品视频| 婷婷色一二三区波多野衣| 国产性精品| 久久婷婷六月| 免费人成在线观看成人片| 刘亦菲一区二区在线观看| 久久女人网| 久草国产在线观看| 国产精品综合色区在线观看| 全裸无码专区| 国产精品视频3p| 日本免费福利视频| 亚洲欧洲国产成人综合不卡| 99re热精品视频中文字幕不卡| 欧美色99| 超碰精品无码一区二区| 亚洲嫩模喷白浆| 福利在线一区| 欧美精品二区| 人妻丰满熟妇αv无码| 国产黄网永久免费| 91久久偷偷做嫩草影院精品| 亚洲成人免费在线| 欧美成人精品一级在线观看| 国产激情无码一区二区三区免费| 国产swag在线观看| 亚洲黄网视频| 狠狠亚洲五月天| 一区二区欧美日韩高清免费| 久草视频精品|