999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

兩道“新距離”問題引發的思考*

2022-11-24 17:35:06陳元中安徽省合肥市第一中學高三35班230601
中學數學雜志 2022年10期
關鍵詞:定義

陳元中 (安徽省合肥市第一中學高三35班 230601)

指導教師 洪雨沛 (安徽省合肥市第一中學 230601)

1 對兩道新定義類題目的思考

在高中數學中,新定義類題目因設問情境新穎,能夠凸顯學生的能力與素養,經常受到出題人的青睞.除了我們最熟悉的歐氏距離外,其他“新”的距離常被設置成具體情境考查學生.下面兩道題目分別定義了兩種全新的距離.

3 解題反思

4 解法溯源

4.1 等差模型

4.2 等比模型

問題2在平面直角坐標系中,定義d(A,B)=max{|x1-x2|,|y1-y2|}為兩點A(x1,y1),B(x2,y2)的“切比雪夫距離”.又設點P及l上任意一點Q,稱d(P,Q)的最小值為點P到直線l的“切比雪夫距離”,記作d(P,l).

思路 其中①③的討論見后文.

綜上,①②③正確.

2 兩種“新距離”

上述兩個題目定義了兩種不同的距離.經過查閱資料得知,我們最常使用的距離稱為歐幾里得距離,而問題1、問題2定義的這兩種距離分別被稱為曼哈頓距離和切比雪夫距離.距離究竟是怎樣的數學概念,這三種距離有怎樣的聯系與區別,筆者在R2空間中對三種距離進行了深入的探討.

2.1 距離的定義

我們所熟知的距離本質上是泛函分析中的一個基本概念.通過查詢相關材料,我們能夠得到距離的一般定義:

設X是任一非空集,對X中任意兩點x,y,有唯一確定的實數d(x,y)與之對應且滿足: ①非負性d(x,y)≥0,當且僅當x=y時d(x,y)=0;②對稱性d(x,y)=d(y,x);③三角不等式d(x,y)≤d(x,z)+d(z,y).稱d(x,y)為x,y之間的距離,(X,d)為度量空間.

我們不難發現歐氏距離顯然滿足上述定義.那么曼哈頓距離和切比雪夫距離是否滿足距離的定義呢?

2.2 曼哈頓距離

在R2空間中,A(x1,y1),B(x2,y2),則A,B兩點的曼哈頓距離可表示為d(A,B)=|x1-x2|+|y1-y2|.

由曼哈頓距離的定義易證非負性與對稱性,下面證明在曼哈頓距離下三角不等式是成立的:

設M(x3,y3),則d(A,B)=|x1-x2|+ |y1-y2|,d(A,M)=|x1-x3|+|y1-y3|,d(M,B)=|x3-x2|+|y3-y2|,則d(A,M)+d(M,B)=|x1-x3|+|y1-y3|+|x3-x2|+

|y3-y2|≥|x1-x3+x3-x2|+|y1-y3+y3-y2|=|x1-x2|+|y1-y2|=d(A,B).由此可知曼哈頓距離滿足距離的定義.

曼哈頓距離在實際生活中的應用十分廣泛.一個具有正南正北、正東正西方向規則布局的城鎮街道,從一點到達另一點的距離可以用南北方向與東西方向的距離之和表示,而這種形式的距離也就是曼哈頓距離,因此曼哈頓距離又稱為“出租車距離”(圖1).

圖1 曼哈頓距離在城市 中的應用

在計算機圖形學中,屏幕由像素構成,顯示的每一個點都在像素上,用坐標的形式描述屏幕上的點,點的坐標也一般是整數.如果直接使用歐氏距離,則必須要進行浮點運算,而浮點運算很慢而且有誤差.如果使用曼哈頓距離,則只要進行加減法計算即可,這就大大提高了運算速度和運算精度.

但曼哈頓距離采用了將兩點之間的橫縱坐標絕對值的差之和作為刻畫距離的標準,多個距離間不方便運算,在這一方面,歐氏距離更占優勢.

讓我們再一次回看問題1,不難發現問題1所提出的距離就是曼哈頓距離,但是它刻畫的是點到直線的曼哈頓距離.

類比歐幾里得距離,猜測可以將點到直線上點的曼哈頓距離的最小值稱為點到直線的曼哈頓距離.

為了便于計算點到直線的曼哈頓距離,我們可以分兩種情況進行討論:(1)對于與x軸夾角小于45°的直線,曼哈頓距離即為過點的豎直直線與原直線相交形成的線段的長度;(2)對于與x軸夾角大于45°的直線,曼哈頓距離即為過點的水平直線與原直線相交形成的線段長度.下面對情況(2)作簡要證明.

如圖2,已知平面上有點A與直線l,AB平行于x軸,AB與l的夾角α>45°.M為l上除B外任一點,求證:d(A,M)>d(A,B).

圖2

證明d(A,M)=AH+HM,d(A,B)=AB=AH+HB.因為α>45°,所以HM>HB,所以d(A,M)>d(A,B).

2.3 切比雪夫距離

在R2空間中,A(x1,y1),B(x2,y2),則A,B兩點的切比雪夫距離可表示為d(A,B)=max{|x1-x2|,|y1-y2|}.由切比雪夫距離的定義易證非負性與對稱性,下面證明在切比雪夫距離下三角不等式是成立的.

設M(x3,y3),則d(A,B)=max{|x1-x2|,

|y1-y2|},d(A,M)=max{|x1-x3|,|y1-y3|},d(M,B)=max{|x3-x2|,|y3-y2|},則d(A,M)+d(M,B)≥max{|x1-x3|+ |x3-x2|,|y1-y3|+|y3-y2|}≥max{|x1-x2|,|y1-y2|}=d(A,B).當且僅當A,B,M共線且M在線段AB上時等號成立.

由上可知,切比雪夫距離滿足距離的定義.

對于問題2中的③,本文給出分類討論的方法.對一般的點到直線的切比雪夫距離進行研究,過程較繁瑣,有興趣的讀者可以參閱文[1].

3 對三種距離的綜合理解

3.1 不同距離下的曲線形態

平面直角坐標系中,O為原點.接下來我們通過考慮方程d(O,A)=1所表示的曲線,來研究三種距離的聯系與區別.

圖3 不同距離下的曲線形態

3.2 平面直角坐標系中切比雪夫距離與曼哈頓距離的轉化

同為正方形,曼哈頓距離與切比雪夫距離之間是否存在一定的轉化關系呢?

圖4 曼哈頓距離與 切比雪夫距離的變換

既然這三個距離之間有許多的性質極其相似,那么是否存在一個通式可以把三種距離統一起來呢?

3.3 閔可夫斯基距離

觀察這個式子,我們可以發現:當p=1時得到曼哈頓距離;當p=2時得到歐幾里得距離;當p→+∞時得到切比雪夫距離.以下對p→+∞時得到切比雪夫距離進行說明.

我們生活中隨處可見的距離,追根溯源,竟是十分高深的數學原理!上文所討論的三種距離竟然可以被統一為一個式子.這反映了在眾多繁雜的數學概念背后,其實隱藏著的都是相同的本質,就像一棵大樹,在外有眾多伸向四面八方的枝椏,但最終聯系它們的都是同一棵主干,這也體現了數學中萬變不離其宗的大道至簡之美.

猜你喜歡
定義
以愛之名,定義成長
活用定義巧解統計概率解答題
例談橢圓的定義及其應用
題在書外 根在書中——圓錐曲線第三定義在教材和高考中的滲透
永遠不要用“起點”定義自己
海峽姐妹(2020年9期)2021-01-04 01:35:44
嚴昊:不定義終點 一直在路上
華人時刊(2020年13期)2020-09-25 08:21:32
定義“風格”
成功的定義
山東青年(2016年1期)2016-02-28 14:25:25
有壹手——重新定義快修連鎖
修辭學的重大定義
當代修辭學(2014年3期)2014-01-21 02:30:44
主站蜘蛛池模板: 国产欧美性爱网| 日韩在线播放中文字幕| 久久精品人妻中文系列| 久久综合九九亚洲一区| 又大又硬又爽免费视频| 97在线公开视频| 国产人前露出系列视频| 一本大道无码高清| 国产综合在线观看视频| 91青青视频| 波多野结衣久久精品| 亚洲国产理论片在线播放| 天天躁狠狠躁| 无码视频国产精品一区二区| 亚洲国产综合第一精品小说| 亚洲 欧美 日韩综合一区| 欧美日一级片| 国产精品黑色丝袜的老师| 国产超碰一区二区三区| 99久久这里只精品麻豆| 毛片网站在线播放| 91亚洲精选| 天天综合网色| 日韩欧美国产三级| 成人毛片免费在线观看| 国产成人免费视频精品一区二区 | 亚洲国产清纯| 女高中生自慰污污网站| 在线国产你懂的| 亚洲视频色图| 精品国产成人a在线观看| 美臀人妻中出中文字幕在线| 亚洲二区视频| 久久伊人久久亚洲综合| 在线播放精品一区二区啪视频| 国产免费怡红院视频| 欧洲精品视频在线观看| 国产第一页免费浮力影院| 欧美a在线| a级毛片在线免费| 国产一区三区二区中文在线| 91九色国产在线| 国产成人精品高清在线| 日本高清成本人视频一区| 毛片免费在线视频| 国产96在线 | 国产成a人片在线播放| 日韩一级二级三级| 国产麻豆精品久久一二三| 国产在线视频福利资源站| 国产精品香蕉在线| 国产成人毛片| 精品视频一区在线观看| 欧美日韩成人| 欧美激情福利| 日本一区二区三区精品国产| 久久国产av麻豆| 亚洲综合精品香蕉久久网| www.国产福利| 国产精品内射视频| 国产三级成人| 色噜噜狠狠色综合网图区| 福利在线一区| 国产内射在线观看| 亚洲一区国色天香| 国产精品久久久久无码网站| 日韩东京热无码人妻| 色成人亚洲| 操美女免费网站| 国产jizz| 国产欧美日韩va| 国产裸舞福利在线视频合集| 四虎影视8848永久精品| 久久亚洲国产视频| 国产一区二区三区在线精品专区| 久久国产精品电影| 国产成人1024精品| 久久精品国产999大香线焦| 国产综合精品日本亚洲777| 国产真实乱人视频| 日本午夜网站| 国内丰满少妇猛烈精品播|