作者簡介:俞惠芳(1972-),女(通信作者),青海樂都人,教授,博士,主要研究方向為密碼學與信息安全(327766891@qq.com);劉悅(1999-),女,陜西西安人,碩士研究生,主要研究方向為多變量公鑰密碼學.
摘 要:盲簽密能保障消息的不可見性和不可追蹤性,能應用于電子現金、電子選舉和智能卡等領域。隨著量子算法發展,傳統盲簽密的安全性面臨嚴重威脅。為了解決此問題,提出無證書的多變量盲簽密方案(CL-MBSCS)。CL-MBSCS具備有效抗量子計算的特性,消除了密鑰的托管和證書的管理。簽名部分使用改進的多變量簽名模型,分離公鑰和私鑰分以便隱藏待簽名消息,從而提高了其安全性。CL-MBSCS的安全性強、計算效率高且應用前景廣闊。
關鍵詞:多變量;盲簽密;無證書;后量子安全
中圖分類號:TP309 文獻標志碼:A
文章編號:1001-3695(2023)04-041-1214-06
doi:10.19734/j.issn.1001-3695.2022.07.0379
Abstract:Blind signcryption can ensure the invisibility and untraceability of message,it can be applied in electronic cash,electronic election and smart cards.Development of quantum computing algorithms brings security threat to traditional blind signcryption.To solve this problem,this paper devised certificateless multivariate blind signcryption scheme(CL-MBSCS).CL-MBSCS could effectively resist the quantum computing attacks and eliminated the key escrow and certificate management.It used the multivariable blind signature to separate the public key and private key to hide signed message,and enhanced security.CL-MBSCS has strong security and high computation efficiency,and has broad application prospect.
Key words:multivariate;blind signcryption;certificateless;anti-quantum security
可信中心(certificate authority,CA) 作為公鑰基礎設施的核心部分,確保用戶公鑰認證性和有效性方面發揮了重要作用,然而,管理證書的過程非常煩瑣復雜。之后,隨著基于身份的密碼體制的出現,用戶公鑰由一些公開信息組成,私鑰生成器產生用戶私鑰,這樣一來,困擾大家的證書管理問題得到解決,但仍無法消除密鑰的托管。無證書密碼體制[1]克服了證書管理和密鑰托管,在實際應用中有更好的性能。2008年,文獻[2]首次提出無證書簽密理論,消息的認證性和保密性同時得到保障。Barreto等人[3]提出無證書簽密方案的簽密部分和解簽密部分沒有使用到雙線性對運算。文獻[4,5]提出可證安全的無證書簽密方案。文獻[6]提出的無證書的混合簽密方案在隨機諭言機模型下是可證明安全的。周彥偉等人[7]提出不使用雙線性對的無證書簽密方案。隨后,出現了無證書聚合簽密方案[8]和抗量子無證書環簽密方案[9]。
1982年Chaum[10]首次提出盲簽名概念。近年來,學者在盲簽名[11~19]方面已有眾多貢獻。目前這些方案只能保障消息的不可偽造性,盲簽密[20,21]通過盲簽密者和消息擁有者之間的交互式操作可同時保障消息的不可偽造性及保密性。盲簽密步驟如下:消息擁有者盲化消息,接著盲簽密者對已盲化消息執行簽名操作;消息擁有者對盲簽名去盲的同時對消息進行加密;最后,消息擁有者將密文發送給接收者進行驗證。這個過程中,盲簽密者無法獲得消息的具體內容,同時簽名之后的消息對于盲簽密者來說是不可追蹤、不可見的。接收者公布密文后,盲簽密不能追蹤到具體簽名時間。
隨著量子計算技術的飛速發展,盲簽密體制的安全性面臨嚴重挑戰。多變量密碼作為抗量子密碼,有計算速度快和計算效率高的優勢,非常適合用于計算資源有限的應用場景。直到現在,已有許多多變量簽名[22~25]和多變量簽密[26,27],但是還沒有無證書的多變量盲簽密方案被提出。
具體貢獻:本文提出新的無證書的多變量盲簽密方案(CL-MBSCS),方案具有抗量子計算攻擊的能力,其安全性依托于有限域上二次多變量多項式方程組(multivariate quadra-tic,MQ)問題和多項式同構IP(isomorphism of polynomials)問題的難解性。CL-MBSCS 具有盲性、不可追蹤性、保密性及不可偽造性。CL-MBSCS解決了如下問題:a)傳統盲簽密體制無法抵抗量子計算攻擊的問題;b)證書管理和密鑰托管的問題;c)使用改進的多變量簽名模型,將公私鑰之間的線性關系去除,提高了整個系統的安全性及穩定性。此外,效率分析中分別從計算開銷、密文長度以及抗量子特性對比了CL-MBSCS和其他方案[16,17,19],通過實驗仿真結果說明了CL-MBSCS具有較高的計算效率和傳輸效率。
6 結束語
CL-MBSCS(無證書的多變量盲簽密方案)能抗量子計算攻擊。CL-MBSCS 在簽名階段實現了公私鑰分離,減少了公鑰和私鑰間的線性關系,還解決了證書的管理和密鑰的托管,非常適用于智能終端,能更有效地保證數據傳輸的安全性和效率。例如:a)電子現金是電子商務中一種有效的電子支付手段,銀行僅需要管理用戶的賬戶而不需要知道電子現金是如何流動的,在這個場景中,CL-MBSCS可有效地保障用戶數據的安全性;b)用戶可使用CL-MBSCS 來進行匿名電子投票,在這個場景中,找出具體的投票人基本是不可能的,攻擊者也不可能偽造投票信息;c)智能卡也可使用CL-MBSCS來保護用戶的數據隱私。
參考文獻:
[1]Al-Riyami S S,Paterson K G.Certificateless public key cryptography[C]//Proc of International Conference on Theory and Application of Cryptology and Information Security.Berlin:Springer,2003:452-473.
[2]Barbosa M,Farshim P.Certificateless signcryption[C]//Proc of ACM Symposium on Information Computer and Communications Security.New York:ACM Press,2008:369-372.
[3]Barreto P S L M,Deusajute A M,Cruz E D S,et al.Toward efficient certificateless signcryption from(and without) bilinear pairings[C]//Proc of Anais do Ⅷ Simpósio Brasileiro em Segurana da Informao e de Sistemas Computacionais.2008:115-125.
[4]Yu Gang,Yang Hongzhi,Fan Shuqin,et al.Efficient certificateless signcryption scheme[C]//Proc of the 3rd International Conference on Electronic Commerce and Security Workshops.2010:55-59.
[5]劉文浩,許春香.無雙線性配對的無證書簽密方案[J].軟件學報,2011,22(8):1918-1926.(Liu Wenhao,Xu Chunxiang.Certificateless signcryption scheme without bilinear pairing[J].Journal of Software,2011,22(8):1918-1926.)
[6]俞惠芳,楊波.可證安全的無證書混合簽密[J].計算機學報,2015,38(4):804-813.(Yu Huifang,Yang Bo.Provably secure certificateless hybrid signcryption[J].Chinese Journal of Compu-ters,2015,38(4):804-813.)
[7]周彥偉,楊波,王青龍.安全的無雙線性映射的無證書簽密機制[J].軟件學報,2017,28(10):2757-2768.(Zhou Yanwei,Yang Bo,Wang Qinglong.Secure certificateless signcryption scheme without bilinear pairing[J].Journal of Software,2017,28(10):2757-2768.)
[8]李晨,祁正華.高效安全的無證書聚合簽密方案[J].計算機技術與發展,2020,30(10):117-122.(Li Chen,Qi Zhenghua.An efficient and safe certificateless signcryption scheme[J].Computer Technology and Development,2020,30(10):117-122.)
[9]Yu Huifang,Wang Weike,Zhang Qi.Certificateless anti-quantum ring signcryption for network coding[J].Knowledge-Based Systems,2021,235:107655.
[10]Chaum D.Blind signatures for untraceable payments[M]// Chaum D,Rivest R L,Sherman A T.Advances in Cryptology.Boston,MA:Springer,1983:199-203.
[11]Chen Siyuan,Zeng Peng,Raymond K K.A new code-based blind signature scheme[J].The Computer Journal,2022,65(7):1776-1786.
[12]Cai Zhengying,Liu Shi,Han Zhangyi,et al.A quantum blind multi-signature method for the industrial blockchain[J].Entropy,2021,23(11):article ID 1520.
[13]Chen Jingjing,You Fucheng.A quantum multi-agent blind signature scheme with unordered signatures[J].Journal of Physics:Confe-rence Series,2021,1883(1):article ID 012076.
[14]Jiang Yuhong,Deng Lunzhi,Ning Bingqin.Identity-based partially blind signature scheme:cryptanalysis and construction[J].IEEE Access,2021,9:78017-78024.
[15]Zhang Minghui,Xie Jiahui.High fidelity quantum blind dual-signature protocols[J].Modern Physics Letters B,2022,36(13):article ID 2250064.
[16]Sanjeet K N,Sujata M,Banshidhar M.Certificateless blind signature using ECC[J].Journal of Information Processing Systems,2017,4(13):970-986.
[17]曾麗,李旭東.基于橢圓曲線的強無證書盲簽名方案[J].網絡空間安全,2018,9(5):41-44.(Zeng Li,Li Xudong.A strong certificate free blind signature scheme based on elliptic curve[J].Cyberspace Security,2018,9(5):41-44.)
[18]Liao Xiaoping.Certificate-free blind parameter signature scheme[J].Modern Information Technology,2019,3(3):158-159.
[19]唐衛中,張大偉,佟暉.基于SM2的無證書盲簽名方案[J].計算機應用研究,2022,39(2):552-556.(Tang Weizhong,Zhang Dawei,Tong Hui.Certificateless blind signature scheme based on SM2[J].Application Research of Computers,2022,39(2):552-556.)
[20]Yu Huifang,Wang Zhicang.Certificateless blind signcryption with low complexity[J].IEEE Access,2019,7:115181-115191.
[21]宋明明,張彰,謝文堅.沒有對運算的無證書盲簽密方案[J].廣西民族大學學報:自然科學版,2011,17(1):64-67.(Song Mingming,Zhang Zhang,Xie Wenjian.Certificateless blind signcryption scheme without pairing[J].Journal of Guangxi University for Nationalities,2011,17(1):64-67.)
[22]王鑫,劉景美,王新梅.多變量簽名模型的改進[J].北京郵電大學學報,2009,32(5):124-127.(Wang Xin,Liu Jingmei,Wang Xinmei.Improvement on multivariate signature scheme model[J].Journal of Beijing University of Posts and Telecommunications,2009,32(5):124-127.)
[23]李慧賢,王凌云,龐遼軍.一種混合多變量簽名方案[J].軟件學報,2018,29(2):456-472.(Li Huixian,Wang Lingyun,Pang Liaojun.Mixed multivariate signature scheme[J].Journal of Software,2018,29(2):456-472.)
[24]郭秋玲,向宏,蔡斌,等.基于多變量公鑰密碼體制的門限環簽名方案[J].密碼學報,2018,5(2):140-150.(Guo Qiuling,Xiang Hong,Cai Bin,et al.Threshold ring signature scheme based on multivariate public key cryptosystems[J].Journal of Cryptologic Research,2018,5(2):140-150.)
[25]俞惠芳,付帥鳳.抗量子計算的多變量盲簽名方案[J].軟件學報,2021,32(9):2935-2944.(Yu Huifang,Fu Shuaifeng.Post-quantum blind signature scheme based on multivariate cryptosystems[J].Journal of Software,2021,32(9):2935-2944.)
[26]俞惠芳,張帥.多變量體制下的代理簽密方案[J].計算機應用研究,2022,39(7):2167-2171.(Yu Huifang,Zhang Shuai.Proxy signcryption scheme based on multivariate cryptosystem[J].Application Research of Computers,2022,39(7):2167-2171.)
[27]Yu Huifang,Zhang Shuai,Liu Yue.Certificateless multivariate ring signcryption scheme[J].Journal of Information Security and Application,2022,68(8):103220.
[28]Johnson D S.The NP-completeness column:an ongoing guide[J].Journal of Algorithms,1984,5(3):433-447.
[29]Patarin J.Hidden fields equations(HFE) and isomorphisms of polynomials(IP):two new families of asymmetric algorithms[M]//Maurer U.Advances in Cryptology.Berlin:Springer,1996:33-48.