999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

納米顆粒對(duì)ZM5鎂合金微弧氧化涂層耐磨和耐蝕性能的影響

2023-01-09 12:01:14李健鵬萬(wàn)紅霞涂小慧李衛(wèi)郭靜宋東東
表面技術(shù) 2022年12期

李健鵬,萬(wàn)紅霞,涂小慧,李衛(wèi),郭靜,宋東東

腐蝕與防護(hù)

納米顆粒對(duì)ZM5鎂合金微弧氧化涂層耐磨和耐蝕性能的影響

李健鵬1,萬(wàn)紅霞2,涂小慧1,李衛(wèi)1,郭靜3,宋東東4

(1.暨南大學(xué) 先進(jìn)耐磨蝕及功能材料研究院,廣州 510632;2.中國(guó)石油大學(xué)(北京) 新能源與材料學(xué)院,北京 102249;3.中國(guó)特種設(shè)備檢測(cè)研究院,北京 101300; 4.華北電力大學(xué) 電站能量傳遞轉(zhuǎn)化與系統(tǒng)重點(diǎn)實(shí)驗(yàn)室,北京 102206)

進(jìn)一步提高ZM5鎂合金微弧氧化(MAO)涂層的耐磨和耐蝕性能。在鎂合金表面制備了不含與含有SiC和CeO2納米顆粒的3種MAO涂層。使用掃描電子顯微鏡(SEM)、能量色散X射線光譜儀(EDS)和X射線衍射儀(XRD),對(duì)MAO涂層的表面形貌和成分結(jié)構(gòu)進(jìn)行分析,通過(guò)摩擦試驗(yàn)測(cè)試了涂層的耐磨性能,通過(guò)極化曲線(Tafel)和電化學(xué)阻抗譜(EIS)測(cè)試了涂層的耐蝕性能。含有SiC納米顆粒的MAO涂層厚度、硬度分別提升了19.40%、86.56%,含有CeO2納米顆粒的MAO涂層厚度、硬度分別提升了3.74%、44.59%。含有SiC納米顆粒的涂層孔隙率升高6.60%,而添加CeO2使涂層的孔隙率下降23.90%。摩擦試驗(yàn)表明,不含納米顆粒的MAO涂層磨痕深度為36.4 μm,而含有納米顆粒的涂層磨痕深度可以忽略不計(jì)。Tafel試驗(yàn)表明,CeO2納米顆??梢燥@著降低MAO涂層的腐蝕電流密度,從1.41×10?9A/cm2降至5.72×10?10A/cm2。同時(shí)延長(zhǎng)了涂層的穩(wěn)定鈍化區(qū)間180 mV。EIS試驗(yàn)也表明,浸泡前后,含有CeO2納米顆粒的涂層都具有最高的低頻阻抗值。納米顆??梢蕴畛銶AO涂層中的孔隙和裂紋,增大涂層的厚度和硬度,因此有效地改善涂層的耐磨性能。但在MAO處理時(shí),SiC納米顆粒增大了涂層的穩(wěn)定電流密度,提高了等離子體放電強(qiáng)度,導(dǎo)致納米顆粒的填充作用不明顯,使涂層孔隙率升高。同時(shí),含有CeO2納米顆粒的涂層具有較小的孔隙率,并且厚度較大。因此CeO2納米顆粒還可以有效地改善涂層的耐蝕性能。

ZM5鎂合金;微弧氧化涂層;納米顆粒;耐磨性能;耐蝕性能

鎂及其合金,如ZM5,具有低密度、高比強(qiáng)度和比剛度以及良好的導(dǎo)熱性等特點(diǎn),廣泛應(yīng)用于汽車、電子、航空航天和生物醫(yī)學(xué)等領(lǐng)域[1-3]。然而,在服役過(guò)程中,ZM5耐蝕性能較差,其應(yīng)用受到嚴(yán)重地限制[4]。表面處理是改善鎂合金耐蝕性能的有效方式,包括有機(jī)涂層、化學(xué)鍍層、化學(xué)轉(zhuǎn)化涂層和微弧氧化涂層等[5-8]。由于簡(jiǎn)便、高效和環(huán)保等性能特點(diǎn),MAO工藝在近幾年得到了廣泛的關(guān)注[9-14]。為了應(yīng)對(duì)復(fù)雜的工作環(huán)境,MAO涂層僅僅具有較好的耐蝕性能已難以滿足要求[1,8,15-17]。如何使MAO涂層同時(shí)具有優(yōu)異的耐磨和耐蝕性能是目前研究的重點(diǎn)內(nèi)容。

提高M(jìn)AO涂層的耐磨和耐蝕性能的方法有很多[11,18-20]。在電解液中加入納米顆粒是改善MAO涂層性能的有效方法。在涂層形成過(guò)程中,納米顆??梢栽鰪?qiáng)基體表面的弧光放電,從而增加MAO涂層的厚度[21-23]。納米顆粒也可以嵌入或者熔融進(jìn)入涂層,改變涂層的成分和結(jié)構(gòu)[21],從而改善涂層的耐磨和耐蝕性能。Yu等[24]通過(guò)對(duì)AZ31鎂合金表面含有SiC顆粒的MAO涂層研究表明,SiC納米顆粒可有效增大涂層厚度、改善涂層結(jié)構(gòu),從而提升涂層的耐磨性能。Zheng等[25]通過(guò)在純鎂表面MAO涂層中添加CeO2顆粒,降低了涂層的孔隙,從而提升了涂層的耐蝕性能,同時(shí)含有CeO2顆粒的涂層可以為基體提供長(zhǎng)期穩(wěn)定的保護(hù)。綜上所述,納米顆粒會(huì)優(yōu)先填充MAO涂層中的孔隙和裂紋,改善涂層的成分和結(jié)構(gòu),從而改善耐磨或耐蝕性能。但缺乏對(duì)于耐磨和耐蝕性能的綜合研究。在此基礎(chǔ)上,本文研究SiC和CeO2納米顆粒各自對(duì)MAO涂層的耐磨和耐蝕性能的影響,從而選擇最合適的納米顆粒,改善MAO涂層的耐磨和耐蝕性能。

本文在ZM5鎂合金表面制備了不含、含有SiC和CeO2納米顆粒的3種MAO涂層。通過(guò)SEM、EDS和XRD,對(duì)MAO涂層的表面形貌和成分結(jié)構(gòu)進(jìn)行表征。通過(guò)顯微硬度試驗(yàn),對(duì)其顯微硬度進(jìn)行表征。通過(guò)摩擦試驗(yàn),對(duì)其耐磨性能進(jìn)行研究。通過(guò)浸泡試驗(yàn)、電化學(xué)阻抗譜和極化曲線測(cè)試,對(duì)其耐蝕性能進(jìn)行研究。

1 試驗(yàn)

1.1 涂層制備

ZM5鎂合金的化學(xué)成分(以質(zhì)量分?jǐn)?shù)計(jì))為:7.5%~9.0%Al,0.2%~0.8%Zn,0.15%~0.5%Mn,Si< 0.25%,Cu<0.1%,F(xiàn)e<0.09%,Ni<0.01%,余量為Mg。試樣規(guī)格為20 mm×20 mm×5 mm。在MAO處理前,經(jīng)320#砂紙打磨基體的工作面,確保所有工作面都有相同的表面粗糙度。然后用去離子水、無(wú)水乙醇清洗試樣并立即干燥。在MAO處理時(shí),工作面積為20 mm×20 mm,其他部分用硅膠密封。

在恒定電壓(400 V)下,使用微弧氧化電源(PN-III電源)制備MAO涂層。處理時(shí)間為20 min,脈沖頻率為1 000 Hz,占空比為40%。在MAO過(guò)程中,試樣作為陽(yáng)極,不銹鋼片作為陰極。電解液成分為15 g/L Na2SiO3+2 g/L NaOH+5 g/L NaF,pH為11.5。通過(guò)在電解液中加入5 g/L SiC納米顆粒(顆粒尺寸為40 nm)或5 g/L CeO2納米顆粒(顆粒尺寸為50 nm)制備含有納米顆粒的MAO涂層。所有的化學(xué)品都是從Macklin購(gòu)買的。在MAO處理之前,均勻攪拌電解液6 h。在MAO處理過(guò)程中,使用冷卻系統(tǒng)將電解液的溫度保持在(30±5) ℃。處理后,樣品表面依次用蒸餾水、無(wú)水乙醇沖洗,然后立即用冷風(fēng)吹干。表1為MAO涂層的編號(hào)。

表1 MAO涂層的編號(hào)

1.2 性能測(cè)試及組織觀察

采用測(cè)厚儀(QNix-4500)測(cè)量厚度。采用顯微硬度計(jì)(HXD-1000TMSC/LCD)測(cè)量硬度,載荷為0.5 N,加載時(shí)間為15 s,進(jìn)行10次平行測(cè)試。用X射線衍射儀(XRD,Ultima Ⅳ)分析涂層物相,選用銅靶,電子加速電壓為40 kV,電流為40 mA,掃描范圍和步長(zhǎng)分別為10°~80°和5 (°)/min。使用掃描電子顯微鏡(Phenom XL)研究MAO涂層的表面和橫截面形貌以及元素成分。用Image J軟件對(duì)SEM圖像進(jìn)行分析,得出孔隙率。

使用摩擦試驗(yàn)機(jī)(RTEC MFT 5000)進(jìn)行往復(fù)式摩擦試驗(yàn),并用三維輪廓儀分析磨痕三維形貌。304不銹鋼球作為摩擦副,載荷為2 N,頻率為5 Hz,摩擦行程為5 mm,摩擦?xí)r間為30 min,進(jìn)行3次平行測(cè)試,測(cè)試結(jié)果具有重復(fù)性。

使用電化學(xué)工作站(CHI-604C)進(jìn)行電化學(xué)阻抗譜(EIS)測(cè)試和極化曲線測(cè)試,測(cè)試溶液為3.5%NaCl。采用標(biāo)準(zhǔn)的三電極體系,試樣為工作電極,飽和甘汞電極為參比電極,鉑電極為對(duì)電極。在電化學(xué)阻抗譜測(cè)試和極化曲線測(cè)試前,都先進(jìn)行開(kāi)路電位的測(cè)試,測(cè)試時(shí)間為30 min。電化學(xué)阻抗譜測(cè)試時(shí),頻率范圍為10 mHz~100 kHz,振幅為20 mV。極化曲線測(cè)試時(shí),掃描起始電位為相對(duì)于開(kāi)路電位?250 mV,掃描速度為0.5 mV/s。為保證結(jié)果的可靠性,電化學(xué)測(cè)試都進(jìn)行了3次平行測(cè)試,測(cè)試結(jié)果具有重復(fù)性。

2 結(jié)果分析

2.1 電流密度-時(shí)間響應(yīng)

圖1為在不同納米顆粒的電解液中制備MAO涂層的電流密度-時(shí)間曲線。在初始階段,3種樣品的電流密度都快速下降。之后,3種樣品的電流密度才趨于穩(wěn)定狀態(tài)。在進(jìn)行MAO處理的過(guò)程中,SiC-MAO具有最高的穩(wěn)定電流密度。在MAO涂層的生長(zhǎng)過(guò)程中,納米顆粒會(huì)優(yōu)先填充涂層的孔隙和裂紋,進(jìn)一步增強(qiáng)等離子體放電[21]。因此,納米顆粒會(huì)增大MAO處理過(guò)程中的電流密度。在MAO過(guò)程中,尺寸更小的納米粒子更容易填充涂層的缺陷[21]。本文使用的納米顆粒尺寸為SiC

圖1 鎂合金微弧氧化過(guò)程中的電流密度-時(shí)間曲線

2.2 涂層的微觀形貌及化學(xué)成分

圖2為含有不同納米顆粒的MAO涂層的微觀形貌。MAO涂層表面分布著類似“火山口”狀的微孔結(jié)構(gòu),并且孔隙是隨機(jī)分布的??紫兜男纬膳cMAO涂層的生長(zhǎng)過(guò)程相關(guān),即MAO涂層中的放電通道快速冷卻,形成孔隙[26]。EDS檢測(cè)了3種涂層表面中的孔隙,表2為圖2a—c中紅圈的EDS數(shù)據(jù)。1#不存在C元素和Ce元素。2#Si元素的原子數(shù)分?jǐn)?shù)為8.87%,C元素的原子數(shù)分?jǐn)?shù)為7.84%。Si元素與C元素的原子比幾乎為1∶1,證明了SiC-MAO的孔隙中存在SiC納米顆粒。3#Ce元素的原子數(shù)分?jǐn)?shù)為6.49%,證明了CeO2-MAO孔隙中存在CeO2納米顆粒。

圖3為含有不同納米顆粒的MAO涂層的孔隙率。SiC-MAO具有最高的孔隙率,CeO2-MAO具有最小的孔隙率。在MAO過(guò)程中,納米粒子會(huì)以嵌入的方式進(jìn)入MAO涂層,并填充涂層的孔隙和裂縫,從而降低涂層的孔隙率[27]。同時(shí),納米粒子也會(huì)促進(jìn)等離子體放電強(qiáng)度,從而增大涂層的孔隙率[28]。根據(jù)圖1可知,CeO2-MAO和no-MAO的穩(wěn)定電流密度相同,并且納米顆粒填充了涂層中的孔隙。因此,CeO2-MAO的孔隙率最小。根據(jù)圖1可知,SiC-MAO具有最高的穩(wěn)定電流密度,其MAO過(guò)程有更強(qiáng)烈的反應(yīng)。因此,SiC-MAO的孔隙率最大。

圖2 含有不同納米顆粒的MAO涂層的表面形貌

表2 含有不同納米顆粒的MAO涂層的化學(xué)組成

圖3 含有不同納米顆粒的MAO涂層的孔隙率

圖4為不同納米顆粒的MAO涂層的XRD圖譜。結(jié)果表明,MAO涂層的主要成分為MgO、Mg2SiO4和MgF2。此外,在SiC-MAO中可以檢測(cè)到SiC納米顆粒,在CeO2-MAO中也可以檢測(cè)到CeO2納米顆粒。在MAO涂層的生長(zhǎng)過(guò)程中,陽(yáng)極(鎂合金)表面產(chǎn)生Mg2+。在強(qiáng)電場(chǎng)作用下,Mg2+從試樣表面向溶液中快速遷移,與溶液中的F?、OH?和SiO32?發(fā)生化學(xué)反應(yīng),陸續(xù)生成MgO、Mg2SiO4和MgF2,見(jiàn)式(1)—(3)。同時(shí),納米顆粒也會(huì)進(jìn)入MAO涂層。

Mg2++2F?→MgF2(1)

Mg2++2OH?→MgO+H2O (2)

2Mg2++3SiO32?+2OH?→Mg2SiO4+H2O (3)

2.3 涂層厚度及硬度

圖5為含有不同納米顆粒的MAO涂層的厚度。no-MAO涂層的厚度為28.35 μm。含有納米顆粒的涂層厚度明顯增加。其中SiC-MAO的厚度最大,為33.85 μm。在MAO過(guò)程中,納米顆粒會(huì)嵌入涂層。此外,一部分納米顆粒也會(huì)被高能量的放電火花熔化,然后進(jìn)入涂層[22]。因此,納米顆粒會(huì)以嵌入和熔融結(jié)合的方式進(jìn)入MAO涂層,在涂層的孔隙和缺陷處優(yōu)先沉積[21],促進(jìn)涂層快速生長(zhǎng),從而增加了MAO涂層的厚度。而SiC納米顆粒具有較小的尺寸,更容易進(jìn)入涂層[21],更有利于增加涂層的厚度。圖1也表明,SiC-MAO的穩(wěn)定電流密度最大。電流密度增大會(huì)有利于MAO涂層的生長(zhǎng)。因此,含有納米顆粒的涂層具有更大的厚度,并且SiC-MAO的厚度最大。

圖6為含有不同納米顆粒的MAO涂層的顯微硬度。鎂合金基體的顯微硬度為142.2HV。MAO涂層的顯微硬度明顯高于Mg合金基體。含有納米顆粒的MAO涂層具有更高的硬度。其中,SiC-MAO的顯微硬度最高,為792.5HV。涂層的顯微硬度主要取決于涂層的結(jié)構(gòu)和相成分。在MAO處理過(guò)程中,納米顆粒會(huì)優(yōu)先填充涂層的孔隙和裂紋,改善了MAO涂層的結(jié)構(gòu)[21,27]。因此,與no-MAO相比,CeO2-MAO具有較高的硬度。與CeO2納米顆粒相比,SiC納米顆粒還是一種高硬度的材料,可以顯著提高M(jìn)AO涂層的顯微硬度[24,29]。因此,SiC-MAO的硬度最高。

圖4 含有不同納米顆粒的MAO涂層的XRD圖譜

圖5 含有不同納米顆粒的MAO涂層的厚度

圖6 含有不同納米顆粒的MAO涂層的顯微硬度

2.4 涂層的耐磨性能

圖7為MAO涂層的磨痕深度的二維剖面。在3種MAO涂層中,no-MAO具有最深的磨痕深度,而SiC-MAO和CeO2-MAO的磨痕深度可以忽略。說(shuō)明納米顆粒可以有效地改善涂層的耐磨性能。根據(jù)圖8涂層摩擦前后的SEM形貌,在相同的摩擦條件下,no-MAO涂層已經(jīng)被破壞,暴露出鎂合金基體。裸露的鎂合金磨損表面有明顯的犁溝和凹槽。結(jié)果表明,no-MAO涂層已經(jīng)產(chǎn)生了嚴(yán)重的磨損。SiC-MAO和CeO2-MAO摩擦前后的形貌表明,含有納米顆粒的涂層表面僅有少量的磨損斑點(diǎn),未見(jiàn)到暴露的鎂合金基體。同時(shí),有部分剝落的產(chǎn)物填入涂層表面的孔隙處,孔隙被堵塞。結(jié)果表明,在相同的摩擦條件下,含有納米顆粒的涂層表面僅發(fā)生了輕微的磨損損傷。

根據(jù)圖8涂層摩擦前的SEM形貌,MAO涂層表面存在許多孔隙和微裂紋。在外加負(fù)載下,裂紋極易在涂層的缺陷處產(chǎn)生,從而發(fā)生涂層剝落[22]。CeO2- MAO具有較小的孔隙率。因此,CeO2納米顆??梢愿纳仆繉拥闹旅苄?。根據(jù)圖6可知,含有納米顆粒的涂層具有更高的硬度。而涂層的結(jié)構(gòu)和硬度與其耐磨性呈現(xiàn)正相關(guān)關(guān)系[29-30]。因此,在摩擦試驗(yàn)中,SiC納米顆粒和CeO2納米顆粒都會(huì)降低裂紋產(chǎn)生的概率,減少了剝落現(xiàn)象,減輕了涂層的磨損程度。同時(shí),Pezzato等[31]證明,在摩擦過(guò)程中,納米顆粒會(huì)分布在涂層的表面,參與摩擦過(guò)程。納米顆??梢燥@著地降低涂層與鋼球之間的摩擦剪切應(yīng)力。因此,納米顆粒可以有效地降低涂層的磨損程度。綜上所述,2種納米顆粒都可以改善涂層的耐磨性能。

圖7 含有不同納米顆粒的MAO涂層的磨痕深度輪廓

圖8 含有不同納米顆粒的MAO涂層的磨痕形貌

2.5 涂層的耐蝕性能

2.5.1 浸泡試驗(yàn)

圖9為浸泡在3.5%NaCl溶液中,MAO涂層腐蝕前后的宏觀形貌。在浸泡前,no-MAO和CeO2-MAO的宏觀表面光潔度一致,而SiC-MAO的宏觀表面存在一些黑點(diǎn)。在浸泡144 h后,3種試樣都存在黑色區(qū)域(即腐蝕嚴(yán)重區(qū)域)。圖10為浸泡144 h后,MAO涂層的微觀形貌。no-MAO的低倍表面存在明顯的裂紋,高倍表面存在涂層破損的現(xiàn)象。圖10b中1#為SiC-MAO宏觀形貌上的一個(gè)黑點(diǎn)。在SiC-MAO高倍表面,可以觀察到涂層存在破損,也存在裂紋。CeO2- MAO的低倍表面存在少量的裂紋,高倍表面也發(fā)生了涂層破損。綜上所述,3種MAO涂層的表面仍具有較好的完整性。圖11為浸泡前后MAO涂層的截面形貌。3種MAO涂層都由致密層和疏松層組成。腐蝕后的涂層截面都存在一些垂直的裂紋,但是涂層沒(méi)有被嚴(yán)重?fù)p壞,基體也沒(méi)有腐蝕。根據(jù)上述現(xiàn)象,在浸泡144 h后,3種涂層仍具有良好的耐蝕性能,涂層依然具備保護(hù)基體的作用。

圖9 浸泡前后,含有不同納米顆粒的MAO涂層的宏觀形貌

圖10 浸泡144 h后含有不同納米顆粒的MAO涂層的表面形貌

圖11 浸泡前后含有不同納米顆粒的MAO涂層的截面形貌

2.5.2 電化學(xué)試驗(yàn)

圖12為添加不同納米顆粒的MAO涂層的極化曲線。表3為擬合得到的腐蝕電位、自腐蝕電流密度、陽(yáng)極和陰極塔菲爾斜率。與no-MAO相比,CeO2-MAO的腐蝕電位略微正移,腐蝕電流密度從1.41× 10?9A/cm2下降到5.72×10?10A/cm2,陽(yáng)極斜率和陰極斜率都增大。與no-MAO相比,SiC-MAO的腐蝕電位正移,腐蝕電流密度從1.41×10?9A/cm2下降到9.61×10?10A/cm2,陰極斜率增大,陽(yáng)極斜率減小。CeO2-MAO的穩(wěn)定鈍化區(qū)間最大,為330 mV,no- MAO的穩(wěn)定鈍化區(qū)間為150 mV,而SiC-MAO沒(méi)有出現(xiàn)穩(wěn)定鈍化區(qū)間。

涂層的顯微結(jié)構(gòu)會(huì)對(duì)其極化曲線產(chǎn)生影響[32]。MAO涂層為多孔結(jié)構(gòu),腐蝕介質(zhì)(如Cl?)會(huì)沿著孔隙滲入到涂層內(nèi)部。而CeO2-MAO具有最低的孔隙率,較大的涂層厚度,這表明CeO2-MAO具有良好的涂層結(jié)構(gòu)。納米顆粒會(huì)在孔隙中沉積,起到填充孔隙的作用[21]。圖2的結(jié)果顯示,孔隙中存在CeO2納米顆粒。因此,CeO2-MAO可以有效地抑制腐蝕介質(zhì)的滲入,降低了涂層的腐蝕電流密度,并提高涂層的穩(wěn)定鈍化間范圍,提高了180 mV。而SiC-MAO的孔隙率較大,導(dǎo)致涂層不能有效地抑制腐蝕介質(zhì)滲入,腐蝕電流密度降低較少,也沒(méi)有出現(xiàn)穩(wěn)定鈍化區(qū)間。因此,CeO2納米顆??梢杂行У馗纳仆繉拥哪臀g性能,而SiC納米顆粒沒(méi)有改善作用。

圖12 含有不同納米顆粒的MAO涂層的極化曲線

表3 含有不同納米顆粒的MAO涂層的腐蝕電流密度和腐蝕電位

為了進(jìn)一步研究納米顆粒對(duì)MAO涂層耐腐蝕性的影響,使用EIS技術(shù)監(jiān)測(cè)浸泡過(guò)程中MAO涂層腐蝕行為的變化。圖13為MAO涂層的EIS結(jié)果。隨著浸泡時(shí)間的增加,3種涂層的低頻阻抗模量都在下降。在浸泡144 h時(shí),3種涂層的低頻阻抗模量仍大于104Ω?cm2。在浸泡30 min和144 h時(shí),SiC-MAO的低頻阻抗模量都比no-MAO低,CeO2-MAO的低頻阻抗模量始終是最高的。對(duì)EIS曲線進(jìn)行等效電路擬合,圖14為對(duì)應(yīng)的等效電路,表4為擬合結(jié)果。在圖14中,s為溶液電阻,po和po分別為涂層多孔結(jié)構(gòu)的電容和電阻,dl和ct分別為涂層/金屬界面處的電容和電荷轉(zhuǎn)移電阻。高的ct說(shuō)明涂層具有優(yōu)良的耐蝕性能[33]。根據(jù)表4可知,在30 min時(shí),CeO2-MAO具有最高的ct,而SiC-MAO的ct與no- MAO的ct相近。而隨著浸泡時(shí)間的延長(zhǎng),3種MAO涂層的ct都有所降低。在浸泡144 h后,CeO2-MAO仍保持最高的ct,而SiC-MAO具有最低的ct,表明CeO2納米顆粒有效改善了涂層的耐蝕性能,而SiC納米顆粒沒(méi)有改善作用。Nadaraia等[32]說(shuō)明了涂層的厚度越大,孔隙率越小,其耐蝕性能越好。CeO2-MAO的孔隙率比no-MAO小,其涂層的厚度也較大。因此,CeO2-MAO的涂層可以有效地抑制腐蝕介質(zhì)進(jìn)入涂層。根據(jù)圖3可知,SiC-MAO的表面孔隙率比no-MAO大。因此,SiC納米顆粒對(duì)涂層的耐蝕性能沒(méi)有改善作用。綜上所述,EIS結(jié)果也表明,在浸泡期間,CeO2納米顆??梢杂行У馗纳仆繉拥哪臀g性能,而SiC納米顆粒沒(méi)有改善作用。

圖13 含有不同納米顆粒的MAO涂層的電化學(xué)阻抗譜

圖14 含有不同納米顆粒的MAO涂層的等效電路

表4 含有不同納米顆粒的EIS擬合結(jié)果

3 結(jié)論

1)納米顆??梢蕴岣咄繉拥暮穸群陀捕?。含有SiC納米顆粒的MAO涂層的厚度、硬度分別提升19.40%、86.56%,含有CeO2納米顆粒的MAO涂層的厚度、硬度分別提升3.74%、44.59%。含有SiC納米顆粒的涂層孔隙率升高6.60%,而添加CeO2使涂層的孔隙率下降23.90%。在MAO處理時(shí),納米顆粒會(huì)優(yōu)先填充MAO涂層中的孔隙和裂紋,增強(qiáng)涂層生長(zhǎng)時(shí)的等離子體放電強(qiáng)度,提升MAO涂層的生長(zhǎng)速度,使得含有納米顆粒的涂層具有較大的厚度和較高的硬度。SiC-MAO具有最大的穩(wěn)定電流密度,其等離子體放電強(qiáng)度最強(qiáng),導(dǎo)致其孔隙率較大。CeO2- MAO的穩(wěn)定電流密度較低,并且納米顆粒起到填充孔隙的作用,孔隙率較低。

2)SiC納米顆??梢愿纳仆繉拥哪湍バ阅?,但無(wú)法提升涂層的耐蝕性能。摩擦試驗(yàn)中,SiC-MAO的磨痕深度比no-MAO淺。磨痕微觀形貌也表明,no-MAO的涂層被破壞,而SiC-MAO表面涂層完好。然而電化學(xué)測(cè)試表明,SiC-MAO的極化曲線沒(méi)有出現(xiàn)類似鈍化的穩(wěn)定鈍化區(qū)間,并且其電化學(xué)阻抗譜的低頻阻抗模量值也低于no-MAO。

3)CeO2納米顆??梢酝瑫r(shí)改善涂層的耐磨和耐蝕性能。摩擦試驗(yàn)中,CeO2-MAO的磨痕深度比no-MAO淺。磨痕微觀形貌也表明,CeO2-MAO表面涂層在摩擦試驗(yàn)后保持完好。電化學(xué)測(cè)試表明,CeO2-MAO的極化曲線中腐蝕電流密度比no-MAO小1個(gè)數(shù)量級(jí),穩(wěn)定鈍化區(qū)間也延長(zhǎng)了180 mV,其電化學(xué)阻抗譜中的低頻阻抗模量值也高于no-MAO,并且CeO2-MAO一直保持最高的ct值。

[1] HUSSEIN R O. A Study of the Interactive Effects of Hybrid Current Modes on the Tribological Properties of a PEO (Plasma Electrolytic Oxidation) Coated AM60B Mg- Alloy[J]. Surface and Coatings Technology, 2013, 215: 421-430.

[2] SAMADIANFARD R. Sol-Gel Coating Filled with SDS- Stabilized Fullerene Nanoparticles for Active Corrosion Protection of the Magnesium Alloy[J]. Surface and Coa-tings Technology, 2021, 419: 127292.

[3] ZHANG Jiao-jiao, WEI Jin-fei, LI Bu-cheng, et al. Long- Term Corrosion Protection for Magnesium Alloy by Two- Layer Self-Healing Superamphiphobic Coatings Based on Shape Memory Polymers and Attapulgite[J]. Journal of Colloid and Interface Science, 2021, 594: 836-847.

[4] CHEN Li-man, WANG Gui-xiang, HE Yan-dong, et al. The Influence of Overpotential on Electrodeposited Alu-minum Coating Onto Zincated ZM5 Magnesium Alloy in Ionic Liquid[J]. Materials Letters, 2020, 258: 126814.

[5] HU Rong, SU Yong-yao, LIU Hong-dong. Deposition Behaviour of Nickel Phosphorus Coating on Magnesium Alloy in a Weak Corrosive Electroless Nickel Plating Bath[J]. Journal of Alloys and Compounds, 2016, 658: 555-560.

[6] DUAN Guo-qing, YANG Li-xin, LIAO Shang-ju, et al. Designing for the Chemical Conversion Coating with High Corrosion Resistance and Low Electrical Contact Resistance on AZ91D Magnesium Alloy[J]. Corrosion Science, 2018, 135: 197-206.

[7] HU Rong-gang, ZHANG Su, BU Jun-fu, et al. Recent Progress in Corrosion Protection of Magnesium Alloys by Organic Coatings[J]. Progress in Organic Coatings, 2012, 73(2-3): 129-141.

[8] KASEEM M, FATIMAH S, NASHRAH N, et al. Recent Progress in Surface Modification of Metals Coated by Plasma Electrolytic Oxidation: Principle, Structure, and Performance[J]. Progress in Materials Science, 2021, 117: 100735.

[9] LIU Chang, LU Xiao-peng, LI Yan, et al. Influence of Post-Treatment Process on Corrosion and Wear Properties of PEO Coatings on AM50 Mg Alloy[J]. Journal of Alloys and Compounds, 2021, 870: 159462.

[10] 董凱輝, 宋影偉, 韓恩厚. 鈦合金耐磨微弧氧化制備技術(shù)的研究進(jìn)展[J]. 表面技術(shù), 2021, 50(7): 57-65.

DONG Kai-hui, SONG Ying-wei, HAN En-hou. Research Progress on the Preparation of Wear-Resistant Micro-Arc Oxidation Coatings on Titanium Alloys[J]. Surface Tech-nology, 2021, 50(7): 57-65.

[11] 孫樂(lè), 馬穎, 李奇輝, 等. 純鎂表面等離子體電解滲硼與微弧氧化復(fù)合膜的制備及耐蝕性[J]. 表面技術(shù), 2021, 50(6): 64-76.

SUN Le, MA Ying, LI Qi-hui, et al. Fabrication and Corrosion Resistance of Hybrid Coatings on Pure Magne-sium by Combining Plasma Electrolytic Boronizing with Micro-Arc Oxidation[J]. Surface Technology, 2021, 50(6): 64-76.

[12] XIA Qiu-xing, LI Xiang, YAO Zhong-ping, et al. Investi-ga-tions on the Thermal Control Properties and Corrosion Resistance of MAO Coatings Prepared on Mg-5Y-7Gd- 1Nd-0.5Zr Alloy[J]. Surface and Coatings Technology, 2021, 409: 126874.

[13] MO Qiu-feng, QIN Ge-mei, LING Kui, et al. Layer-by- Layer Self-Assembled Polyurea Layers Onto MAO Sur-face for Enhancing Corrosion Protection to Aluminum Alloy 6063[J]. Surface and Coatings Technology, 2021, 405: 126653.

[14] 胡波, 李德江, 李子昕, 等. 鑄造鎂合金熱裂行為的研究進(jìn)展[J]. 精密成形工程, 2020, 12(5): 1-19.

HU Bo, LI De-jiang, LI Zi-xin, et al. Research Progress on Hot Tearing Behavior of Cast Magnesium Alloys[J]. Journal of Netshape Forming Engineering, 2020, 12(5): 1- 19.

[15] CAI Jing-shun, CAO Fa-he, CHANG Lin-rong, et al. The Preparation and Corrosion Behaviors of MAO Coating on AZ91D with Rare Earth Conversion Precursor Film[J]. Applied Surface Science, 2011, 257(8): 3804-3811.

[16] HUSSEIN R O, ZHANG P, NIE X, et al. The Effect of Current Mode and Discharge Type on the Corrosion Resistance of Plasma Electrolytic Oxidation (PEO) Coa-ted Magnesium Alloy AJ62[J]. Surface and Coatings Tech-nology, 2011, 206(7): 1990-1997.

[17] KEYVANI A, ZAMANI M, BAHAMIRIAN M, et al. Role of Incorporation of ZnO Nanoparticles on Corrosion Behavior of Ceramic Coatings Developed on AZ31 Ma-gnesium Alloy by Plasma Electrolytic Oxidation Tech-nique[J]. Surfaces and Interfaces, 2021, 22: 100728.

[18] DU Qing, WEI Da-qing, WANG Ya-ming, et al. The Effect of Applied Voltages on the Structure, Apatite-Inducing Ability and Antibacterial Ability of Micro Arc Oxidation Coating Formed on Titanium Surface[J]. Bioactive Mate-rials, 2018, 3(4): 426-433.

[19] CHANG Lin-rong, CAO Fa-he, CAI Jing-shun, et al. Influence of Electric Parameters on MAO of AZ91D Magnesium Alloy Using Alternative Square-Wave Power Source[J]. Transactions of Nonferrous Metals Society of China, 2011, 21(2): 307-316.

[20] 國(guó)泰榕, 盧小鵬, 李巖, 等. 磷酸鹽后處理對(duì)Mg-Gd-Y合金微弧氧化涂層耐蝕性能的影響[J]. 表面技術(shù), 2021, 50(9): 278-285, 310.

GUO Tai-rong, LU Xiao-peng, LI Yan, et al. Effect of Phosphate Post-Treatment on Corrosion Resistance of Micro-Arc Oxidation Coating on Mg-Gd-Y Alloy[J]. Surface Technology, 2021, 50(9): 278-285, 310.

[21] ZHANG Pei, ZUO Yu, NIE Guo-chao. The Pore Structure and Properties of Microarc Oxidation Films on 2024 Aluminum Alloy Prepared in Electrolytes with Oxide Nanoparticles[J]. Journal of Alloys and Compounds, 2020, 816: 152520.

[22] LI Zheng-yang, CAI Zhen-bing, CUI Xue-jun, et al. Inf-luence of Nanoparticle Additions on Structure and Fret-ting Corrosion Behavior of Micro-Arc Oxidation Coatings on Zirconium Alloy[J]. Surface and Coatings Technology, 2021, 410: 126949.

[23] MOHAMAD S, LIZA S, YAAKOB Y. Strengthening of the Mechanical and Tribological Properties of Composite Oxide Film Formed on Aluminum Alloy with the Addi-tion of Graphite[J]. Surface and Coatings Techno-logy, 2020, 403: 126435.

[24] YU Lu, CAO Jin-hui, CHENG Ying-liang. An Improve-ment of the Wear and Corrosion Resistances of AZ31 Magnesium Alloy by Plasma Electrolytic Oxidation in a Silicate-Hexametaphosphate Electrolyte with the Suspen-sion of SiC Nanoparticles[J]. Surface and Coatings Tech-nology, 2015, 276: 266-278.

[25] ZHENG Zhong-ren, ZHAO Ming-chun, TAN Li-li, et al. Corrosion Behavior of a Self-Sealing Coating Containing CeO2Particles on Pure Mg Produced by Micro-Arc Oxidation[J]. Surface and Coatings Technology, 2020, 386: 125456.

[26] WANG Xin-yan, LU Xiao-peng, JU Peng-fei, et al. In-fluence of ZnO on Thermal Control Property and Corro-sion Resistance of Plasma Electrolytic Oxidation Coatings on Mg Alloy[J]. Surface and Coatings Technology, 2021, 409: 126905.

[27] REHMAN Z, UZAIR M, LIM H, et al. Structural and Electrochemical Properties of the Catalytic CeO2Nano-particles-Based PEO Ceramic Coatings on AZ91 Mg Alloy[J]. Journal of Alloys and Compounds, 2017, 726: 284-294.

[28] ZHANG Pei, ZUO Yu, NIE Guo-chao. The Pore Structure and Properties of Microarc Oxidation Films on 2024 Aluminum Alloy Prepared in Electrolytes with Oxide Nanoparticles[J]. Journal of Alloys and Compounds, 2020, 816: 152520.

[29] NASIRI V H, EBRAHIMI-KAHRIZSANGI R, KASIRI- AS-GA-RANI M, et al. Structural, Tribological and Elec-trochemical Behavior of SiC Nanocomposite Oxide Coa-tings Fabricated by Plasma Electrolytic Oxidation (PEO) on AZ31 Magnesium Alloy[J]. Journal of Alloys and Compounds, 2016, 683: 241-255.

[30] ATAPOUR M, BLAWERT C, ZHELUDKEVICH M L. The Wear Characteristics of CeO2Containing Nanocom-posite Coating Made by Aluminate-Based PEO on AM 50 Magnesium Alloy[J]. Surface and Coatings Technology, 2019, 357: 626-637.

[31] PEZZATO L, LORENZETTI L, TONELLI L, et al. Effect of SiC and Borosilicate Glass Particles on the Corrosion and Tribological Behavior of AZ91D Magnesium Alloy after PEO Process[J]. Surface and Coatings Technology, 2021, 428: 127901.

[32] NADARAIA K V, SUCHKOV S N, IMSHINETSKIY I M, et al. Some New Aspects of the Study of Dependence of Properties of PEO Coatings on the Parameters of Cur-rent in Potentiodynamic Mode[J]. Surface and Coatings Technology, 2021, 426: 127744.

[33] TOORANI M, ALIOFKHAZRAEI M, MAHDAVIAN M, et al. Superior Corrosion Protection and Adhesion Strength of Epoxy Coating Applied on AZ31 Magnesium Alloy Pre-Treated by PEO/Silane with Inorganic and Organic Corrosion Inhibitors[J]. Corrosion Science, 2021, 178: 109065.

Effect of Nanoparticles on the Wear and Corrosion Resistance of MAO Coatings on ZM5 Mg Alloy

1,2,1,1,3,4

(1. Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University, Guangzhou 510632, China; 2. Department of Materials Science and Engineering, China University of Petroleum, Beijing, Beijing 102249, China; 3. China Special Equipment Inspectionand Research Institute, Beijing 101300, China; 4. Key Laboratory of Energy Transfer and System of Power Station of Ministry of Education, North China Electric Power University, Beijing 102206, China)

Micro-arc oxidation (MAO) is an advanced surface modification technology, which can improve material properties, such as corrosion resistance and wear resistance. To further improve the wear and corrosion resistance of the MAO coatings on ZM5 magnesium (Mg) alloy, the MAO coatings with different nanoparticles (no, SiC and CeO2) were prepared on the ZM5 Mg alloy. ZM5 Mg alloy samples were cut in the size of 20 mm×20 mm×5 mm. Prior to the MAO process, the substrate was polished with silicon carbide paper in 320 grit. Then the samples were cleaned with deionized water, anhydrous ethanol and dried immediately. The working size of the sample was 20 mm×20 mm, and the other parts were coated with silicone. The power supply (PN-III power source) was used to prepare MAO coating under a constant voltage mode (400±5) V for 20 min. The pulse frequency was 1 000 Hz and the duty ratio was 40%. The electrolyte solution was 2 g/L sodium hydroxide (NaOH), 15 g/L sodium silicate (Na2SiO3), and 5 g/L sodium fluoride (NaF). The MAO coatings with different nanoparticles were prepared by adding 5 g/L SiC nanoparticles or 5 g/L CeO2nanoparticles to the electrolyte. During the MAO treatment, the electrolyte temperature was maintained at (30±5) ℃ through the cooling system. After the treatment, the surfaces of the samples were sequentially rinsed with distilled water, anhydrous ethanol and then dried by cool airflow immediately.

The surface morphology of MAO coatings was analyzed by SEM (Phenom XL). The composition was analyzed by EDS and XRD (Ultima Ⅳ). The wear resistance was studied by friction tests (rTEC MFT 5000). And the corrosion resistance was tested by Tafel and EIS(CHI-604C). The thickness of MAO coatings with SiC and CeO2nanoparticles increased by 19.40% and 3.74%, respectively. And the microhardness of MAO coatings with SiC and CeO2nanoparticles increased by 86.56% and 44.59%, respectively. The porosity of MAO coatings with SiC nanoparticles increased by 6.60% but with CeO2nanoparticles decreased by 23.90%. The result of the friction tests showed that the MAO coatings without nanoparticles had an abrasion depth of 36.4 μm, while the MAO coatings with SiC and CeO2nanoparticles had a negligible abrasion depth. The result of Tafel showed that the corrosion current density of MAO coatings with CeO2nanoparticles significantly reduced from 1.41×10?9A/cm2to 5.72×10?10A/cm2and the passivation zone extended by 180 mV. The result of EIS also showed that the coatings with CeO2nanoparticles had the highest impedance value at low frequency in immersion. During the MAO treatment, the nanoparticles can fill the pores and cracks in the MAO coatings and enhance the growth rate of the MAO coating, resulting in an increase in the thickness and microhardness of the coatings. Thus, SiC and CeO2nanoparticles improved the wear resistance of the MAO coating. During the MAO process, the SiC nanoparticles increased the stable current density, resulting in insignificant filling of the nanoparticles. Therefore, the SiC nanoparticles increased the porosity of the coatings. In contrast, CeO2nanoparticles reduced the porosity. Thus, CeO2nanoparticles improved the corrosion resistance of the MAO coating.

ZM5 magnesium alloy; MAO coating; nanoparticles; wear resistance; corrosion resistance

TG174.4

A

1001-3660(2022)12-0131-11

10.16490/j.cnki.issn.1001-3660.2022.12.013

2021–10–23;

2022–03–09

2021-10-23;

2022-03-09

國(guó)家自然科學(xué)基金(51701055);國(guó)家市場(chǎng)監(jiān)督管理總局科技計(jì)劃項(xiàng)目(2019MK134)

National Natural Science Foundation of China (51701055); Science and Technology Project of State Administration for Market Regulation (2019MK134)

李健鵬(1997—),男,碩士研究生,主要研究方向?yàn)椴牧细g與防護(hù)。

LI Jian-peng (1997-), Male, Postgraduate, Research focus: corrosion and protection of materials.

萬(wàn)紅霞(1986—),女,博士,講師,主要研究方向?yàn)槭凸艿栏g與防護(hù)。

WAN Hong-xia (1986-), Female, Doctor, Lecturer, Research focus: oil pipeline corrosion and protection.

李健鵬, 萬(wàn)紅霞, 涂小慧, 等. 納米顆粒對(duì)ZM5鎂合金微弧氧化涂層耐磨和耐蝕性能的影響[J]. 表面技術(shù), 2022, 51(12): 131-141.

LI Jian-peng, WAN Hong-xia, TU Xiao-hui, et al. Effect of Nanoparticles on the Wear and Corrosion Resistance of MAO Coatings on ZM5 Mg Alloy[J]. Surface Technology, 2022, 51(12): 131-141.

責(zé)任編輯:萬(wàn)長(zhǎng)清

主站蜘蛛池模板: 亚洲一区二区精品无码久久久| 国产精品伦视频观看免费| 久久一本精品久久久ー99| 丁香亚洲综合五月天婷婷| 国产麻豆福利av在线播放| 久久 午夜福利 张柏芝| 8090午夜无码专区| 爽爽影院十八禁在线观看| 黄色一级视频欧美| 国产不卡一级毛片视频| 2022精品国偷自产免费观看| 中文无码精品A∨在线观看不卡| 国产在线视频福利资源站| 国产精品天干天干在线观看| 国产精品美女网站| 91麻豆精品国产高清在线| 国产精品片在线观看手机版| 国产在线麻豆波多野结衣| 免费观看男人免费桶女人视频| 国产精品性| 狠狠做深爱婷婷久久一区| 久久青草视频| 亚洲欧美在线综合一区二区三区 | 国产性生交xxxxx免费| 一本久道久综合久久鬼色| 久久毛片基地| 91久久偷偷做嫩草影院| 亚洲欧美日韩中文字幕在线| 高清精品美女在线播放| 久久精品一卡日本电影| 免费国产黄线在线观看| 尤物午夜福利视频| 国产成人区在线观看视频| 国产视频入口| 久久久精品无码一二三区| 婷婷综合色| 亚洲第一综合天堂另类专| 国产欧美自拍视频| 精品五夜婷香蕉国产线看观看| 欧美影院久久| 国产高潮流白浆视频| 美女高潮全身流白浆福利区| 热久久国产| 国产AV无码专区亚洲A∨毛片| 国产日本欧美亚洲精品视| 亚洲综合中文字幕国产精品欧美| 视频在线观看一区二区| 亚洲精品制服丝袜二区| 热热久久狠狠偷偷色男同| 国产在线观看高清不卡| 国产呦精品一区二区三区网站| 2020国产精品视频| 亚洲中文字幕在线一区播放| 夜夜爽免费视频| 91精品国产情侣高潮露脸| 漂亮人妻被中出中文字幕久久| 一级不卡毛片| 激情乱人伦| 国产成人综合欧美精品久久| 日本欧美一二三区色视频| 97超级碰碰碰碰精品| 欧美一区福利| 亚洲伊人久久精品影院| 国产传媒一区二区三区四区五区| 久久精品一品道久久精品| 凹凸国产分类在线观看| 国产成人免费观看在线视频| 一级毛片a女人刺激视频免费| 亚洲天堂网站在线| 亚洲伊人电影| av手机版在线播放| 国产成年无码AⅤ片在线| 91伊人国产| 国产精品短篇二区| 无码免费的亚洲视频| 免费人成视网站在线不卡| 色悠久久综合| 午夜欧美理论2019理论| 丁香五月激情图片| 色悠久久综合| 亚洲av无码人妻| 五月婷婷丁香综合|