徐杰林,李振廣,陳仕艷,王朝生,烏婧,王華平,d
PLA、PGA及其共聚物在包裝領域應用研究進展
徐杰林a,c,李振廣a,c,陳仕艷a,c,王朝生a,c,烏婧b,c,d,王華平a,c,d
(東華大學 a.材料科學與工程學院 b.紡織產業關鍵技術協同創新中心 紡織科技創新中心 c.纖維改性材料國家重點實驗室 d.國家先進功能纖維創新中心,上海 201620)
綜述聚乳酸(PLA)、聚乙交酯(PGA)、聚乙丙交酯(PLGA)及其改性材料在包裝領域的研究進展,對改性材料及制備工藝進行展望,為PLA、PGA以及PLGA的改性與制備提供參考。簡介PLA、PGA以及PLGA的制備方法、基本性能,并總結近幾年改性材料的種類及其制備工藝。對PLA、PGA以及PLGA進行改性,再通過溶液鑄膜、吹塑制膜等工藝制備薄膜,制備的薄膜具有優異的抗紫外性能、阻隔性能以及抗菌性能。PLA、PGA以及PLGA具有優異的生物降解性能,通過改性后制備的薄膜性能更加均衡,在包裝領域具有極大的應用前景,對聚合物的改性方法還需進行深入研究,制備出性能更加優異的改性材料。
聚乳酸;聚乙交酯;聚乙丙交酯;改性;包裝
從服裝、餐飲、汽車到醫學、電子領域,高分子材料在現代生活中扮演著重要的角色[1]。尤其在包裝行業中,塑料的大量使用,給人們的生活帶來了很大的便利[2]。包裝材料大多是聚乙烯、聚對苯二甲酸乙二醇酯等石油基不可降解高分子材料,當其使用周期結束后,被遺棄在自然環境會引發“白色污染”等一系列環境問題,其產生的微塑料更是對人和其他生物造成嚴重影響[3-5]。針對這些問題,開發生物可降解材料是解決該問題的策略之一[6]。
聚乳酸(PLA)是目前全球所有生物基塑料中產量最高的,預計到2025年,PLA的年產量將達到56萬t[7]。PLA的機械強度高,透明度好,易加工,且被美國食品和藥物管理局(Food and Drug Administration,FDA)批準用于食品包裝,因此PLA是一種極具吸引力的綠色包裝材料,然而,PLA韌性差,很難單獨作為包裝材料使用[8-9]。聚乙交酯(PGA)與PLA具有相似的化學結構,但沒有甲基側基,因此表現出與聚乳酸不同的特性[10]。PGA降解速度快、力學性能以及生物相容性好、阻隔性能優異,在醫療、包裝和可再生工業中具有重要的應用價值,但其韌性相對較差,單獨作為包裝材料使用受到限制[11-12]。聚乙丙交酯(PLGA)是乳酸與乙醇酸的共聚物,通過控制乳酸和乙醇酸的比例,可以靈活地控制其力學性能和降解性能,使其在綠色環保的塑料工業中發揮重要作用,特別是針對需要在室溫或自然環境下快速降解的一次性包裝產品,其作用更為顯著,但其抗菌性能還需進一步提升[6, 13]。
文中首先對PLA、PGA、PLGA的制備方法進行回顧,其次,簡介了PLA、PGA、PLGA的基本性能并與傳統工程塑料的性能進行比較,最后分析近年來PLA、PGA、PLGA的改性方法及其在包裝材料領域的應用。以期為PLA、PGA、PLGA的改性材料制備以及其在包裝材料領域的應用提供參考。
乳酸是合成聚乳酸的原料,可從甘蔗、玉米、小麥、木薯等富含淀粉和糖的作物中提取[14]。目前制備聚乳酸的途徑主要有乳酸直接縮聚法以及丙交酯開環聚合法,如圖1所示。直接縮聚法工藝簡單,以乳酸為聚合單體,在催化劑的作用下,乳酸單體上的羥基與羧基發生脫水縮合反應,生成PLA聚合物,但隨著反應進行,聚合體系的黏度隨著PLA摩爾質量的增加而增長,使得副產物水難以去除,無法合成高摩爾質量PLA。Moon等[15]通過直接縮聚法,熔融制備摩爾質量為2′104g/mol的聚合物,隨后在105 ℃左右熱處理結晶,然后在140 ℃或150 ℃下加熱10~30 h進一步固相縮聚,可以在較短的反應時間內以高收率獲得摩爾質量超過5′105g/mol的聚乳酸。開環聚合制備PLA以丙交酯為單體,丙交酯可由聚乳酸低聚物解聚得到,通過開環聚合制備PLA可控性好、副反應少、產物摩爾質量和強度高,但只有純度高的丙交酯才能合成摩爾質量高、性能優異的PLA[16]。姚逸等[17]以丙交酯為單體,通過開環聚合法,在180 ℃反應3 h,得到數均摩爾質量大于1′105g/mol的聚乳酸。

圖1 PLA的制備方法
乙醇酸是制備PGA的單體,它是最小的α–羥基酸,乙醇酸可從石油或可再生資源(例如甘蔗、甜菜、菠蘿)中獲得[6]。PGA可通過以下2種聚合方法制備,即乙醇酸的縮聚和乙交酯的開環聚合,如圖2所示[18]。乙醇酸直接縮聚法操作簡單,但由于PGA在其熔化溫度以上的熱穩定性較差,因此在縮聚過程中很容易降解,只能得到較低摩爾質量的聚合物,無法滿足加工及使用需求[19-20]。崔愛軍等[21]以乙醇酸為單體,通過直接縮聚法在190 ℃下反應得到摩爾質量為2′104g/mol左右的低聚物,隨后在190 ℃下繼續固相反應,最終得到摩爾質量為7.4′104g/mol的PGA。相比之下開環聚合可對聚合反應進行更精確的控制,是合成高摩爾質量PGA的主要方法,因此,在PGA的工業生產中通常采用乙交酯開環聚合法,但開環聚合法對乙交酯純度要求較高[22]。乙交酯開環聚合常用的催化劑有辛酸亞錫、次水楊酸鉍、氯化亞錫、乙酸鉍、二苯基溴化鉍等[18, 23-26]。Lu等[26]以二苯基溴化鉍為催化劑,通過乙交酯開環聚合法制備了摩爾質量高達2.4′105g/mol的PGA,但與PLA相比,PGA的單體乙醇酸比乳酸昂貴,因此PGA在擴大生產方面尚未取得很好的發展。

圖2 PGA的制備方法
PLGA是聚乳酸與聚乙醇酸的共聚物,其合成路線如圖3所示。PLGA可以通過乳酸與乙醇酸縮聚得到,但同樣存在摩爾質量較低的問題,高摩爾質量的PLGA通常是在錫類催化劑的作用下,以高純度丙交酯、乙交酯為單體,通過開環聚合制備[10]。由于聚乳酸鏈段上的甲基具有疏水作用,因此當聚合物鏈段中引入了聚乳酸鏈段時,使得PLGA比PGA更具疏水性,從而導致PLGA相對于PGA需要更長的降解周期[6]。
PLA是一種硬質熱塑性塑料,具有良好的生物相容性和降解性能,采用乳酸的L型和D型旋光異構體,可以制備左旋聚乳酸(PLLA)、右旋聚乳酸(PDLA)和外消旋聚乳酸(PDLLA)[27]。這些立體異構體的結晶度和降解速率不同,其中,PLLA和PDLA是可結晶的,降解緩慢,而PDLLA是無定型的,降解較快。聚乳酸的基本性能如表1所示[6,12],其基本性能與聚對苯二甲酸乙二醇酯(PET)較為接近,但與聚丙烯(PP)差異較大。聚乳酸具有極好的透明度、光澤的外觀以及高剛性,可以應用于纖維、一次性杯子和包裝材料等領域。
相對于PLA材料,PGA的拉伸強度更高,在90~110 MPa,由于其結構具有高度的規整性,導致PGA可以快速結晶,其結晶溫度約為150~180 ℃,最高結晶度可達52%,高結晶度也導致其韌性較差。同時PGA結構的高度規整性使得其對氣體、水分具有較高的阻隔性,在包裝領域具有良好的應用前景。PGA的降解速率過快,導致其貨架期較短,且PGA在大多數常見的有機溶劑中都不溶解,僅在當摩爾質量低于4.5′104g/mol時溶解于六氟異丙醇,使得其表征困難[12]。
PLA和PGA的共聚已經被人們廣泛研究,PLGA是乳酸(LA)和乙醇酸(GA)的線性共聚物,可以通過調節LA和GA的比例能夠制備不同性能的PLGA[28-31]。PLGA的玻璃化轉變溫度介于PLA和PGA之間。PLGA的降解速率與乳酸、乙醇酸的比例有關,這是由于乳酸的甲基會使得材料更加疏水,因此,在共聚中,隨著LA的含量增加,聚合物的親水性會越來越差,使得共聚物的水解/生物降解速率下降,同時,隨著共聚物組分發生變化,共聚物的結晶度也會相應變化,研究表明,當LA與GA的物質的量之比為50∶50時降解速率達到最快[10, 32]。

圖3 PLGA的制備方法
表1 PLA、PGA及其共聚物基本性能

Tab.1 Basic characteristics of PLA, PGA and their copolymer
PLA、PGA及其共聚物具有良好的降解性能,具有在包裝領域應用的潛力,但PLA、PGA質地硬脆,其共聚物抗菌性能較差,通過與其他材料共混是一種簡單且經濟的方法。目前,常用的共混材料有增塑劑、抗菌劑、納米填料以及天然材料等,如表2所示。
表2 共混材料及共混物性能特點

Tab.2 Blended materials and performance characteristics of blend
改性后的材料可通過靜電紡絲、溶液鑄膜、熱壓成膜以及吹塑制膜等工藝制備薄膜,不同制膜工藝的特點如表3所示。
PLA材料具有較好的力學強度和透明性,在生產過程中具有低能耗、低溫室氣體排放等顯著優勢,使其在包裝材料領域具有廣闊的應用前景,但PLA質地硬脆、抗紫外性能及阻隔性能差,極大地限制了其在包裝領域的應用[39]。
研究人員通過復合改性有效提高了PLA材料的力學性能、阻隔性能以及抗菌性能,使其能夠用于包裝領域,如表4所示。Rigotti等[40]將不同比例聚(五亞甲基2,5–呋喃酸酯)與PLA共混,隨后通過溶液鑄膜得到透明度極好的薄膜,當聚(五亞甲基2,5–呋喃酸酯)質量分數為30%時,共混物的斷裂伸長率提高至200%,同時,氧氣和二氧化碳氣體透過率下降至純PLA的四分之一;Swaroop等[37]在PLA中添加氧化鎂顆粒,采用吹塑工藝制備薄膜,實驗結果表明,在添加2%的氧化鎂時,所制備的薄膜相較于純PLA薄膜的拉伸強度和塑性分別提高了近22%和146%,添加1%的氧化鎂時,氧氣和水蒸氣阻隔性能相較于純PLA薄膜分別提高了近65%和57%,且共混物對大腸桿菌有極好的抑制性,整體表現出優異的力學性能、阻隔性能以及抗菌性能;Zeng等[9]將聚己內酯、百里香酚和MIL–68(AL)與PLA共混,并通過靜電紡絲制備薄膜,體外抑菌實驗表明,百里香酚和MIL–68(AL)的加入,有效抑制了大腸桿菌和金黃色葡萄球菌的生長,極大地提高了共混物的抗菌性能。
表3 薄膜制備工藝及其特點

Tab.3 Film preparation process and characteristics
改性后的PLA材料具有優異的綜合性能,在包裝領域有著廣闊的應用前景,但目前大多數復合材料的制備仍處于實驗室階段,其后續擴大生產需要研究人員的進一步探索。
表4 PLA改性材料及制備工藝

Tab.4 PLA modified materials and preparation process
在生物可降解包裝材料中,PAG是一種極具吸引力的聚合物,因為它在目前所有生物可降解塑料中具有最高的氧氣和水蒸氣阻隔性,且力學性能優異,但由于其固有的機械脆性、濕度敏感性,以及熔點(225~230 ℃)與分解溫度(255 ℃)相近等缺點,限制了其加工和在薄膜包裝領域的應用[52]。
研究人員通過加入柔性材料與PGA共混,極大地改善了PGA的力學性能,如表5所示。Sun等[53]通過雙螺桿將PBAT與PGA共混,隨后通過吹塑工藝制備薄膜,并考察該薄膜對草莓的保鮮效果,實驗表明,80%PGA/20%PBAT能有效抑制多酚氧化酶活性和H2O2含量的增加,延長草莓的保存時間;Xu等[54]將PCL與PGA共混,提高了PGA的韌性,并在共混物中添加多功能環氧聚合物(MEPs)作為活性增容劑,PCL和PGA的末端羧基/羥基都能與MEP發生原位反應,極大地提高了PGA與PCL的相容性,當MEP質量分數為0.75%時,PGA/PCL共混物的斷裂韌性提高了370%,抗拉強度提高到49.6 MPa。
由于PGA材料本身具有優異的阻隔性能,因此對PGA的改性主要集中在提高PGA的韌性以及熱穩定性,對PGA的其他性能,如抗菌性能還需進一步探索。
PLGA是應用較廣泛的可生物降解的聚合物之一,可控降解是PLGA的一個基本特征,通過調整共聚物中LA與GA的比例來調節PLGA材料的降解時間,可使其應用于不同保質期限的產品,然而PLGA的抗菌性能較差,使得產品保鮮時間大大縮短[13]。
研究人員通過在PLGA基體中添加抗菌材料使其具有一定的抗菌性能,極大地促進了其在包裝領域的應用,如表6所示。常用的抗菌材料有酚類以及金屬納米材料。其中,酚類抗菌材料價格便宜,對細菌殺傷力強,但耐熱性能較差,其抗菌機制是通過與微生物細胞膜相互作用破壞膜結構,從而使細胞內容物損失,殺死細菌及微生物[60];相比之下,金屬納米材料的耐熱性能較好,抗菌性能優異,但價格較為昂貴,其通過破壞細菌細胞膜、影響酶的活性、破壞蛋白質合成、干擾DNA、RNA合成等手段殺死細菌及微生物[34]。Fortunati等[61]分別將質量分數為1%和7%的銀納米顆粒加入PLGA基體中,通過溶液鑄膜制備薄膜,再通過等離子體對薄膜表面進行處理,實驗表明抗菌納米材料共混后的材料通過等離子體表面處理,可以有效地減少細菌在銀納米顆粒和PLGA基系統上的黏附和生長,有效抑制了大腸桿菌以及金黃色葡萄球菌。
表5 PGA改性材料及制備工藝

Tab.5 PGA modified materials and preparation process
表6 PLGA改性材料及制備工藝

Tab.6 PLGA modified materials and preparation process
通過添加抗菌材料,彌補PLGA材料抗菌性能較差的缺陷,結合PLGA材料可控降解的特性,使得PLGA材料成為包裝領域中極具前景的材料之一。
環境問題是關系到人類生存的重大問題,烯烴類、聚酯類等不可降解塑料包裝的大量使用在方便人們生活的同時也給環境造成了巨大的危害。研究和發展綠色可降解包裝材料可有效降低包裝材料廢棄后對環境造成的污染,PLA、PGA以及PLGA具有優異的生物降解性能和力學性能,在包裝領域具有廣闊的應用前景,但用來完全替代傳統塑料包裝材料,仍需要克服PLA、PGA和PLGA材料本身存在的一些問題。
PLA、PGA存在韌性差的問題,可以通過物理共混改性來解決,但是物理共混存在兩相之間的相容性問題,相容性較差會導致相分離,從而導致共混物性能變差,通過添加相容劑可增強兩相之間的相容性,但相容劑的添加使得生產成本上升,工藝更加復雜,因此,探究相容性更好的增韌材料,開發性價比高的相容劑將會是未來的研究方向。
制備抗菌性能優異的PLA、PGA、PLGA包裝材料是未來研究的熱點,通過合成更加高效、環保的抗菌材料,使得抗菌改性的共混物具備優異的抗菌性能,延長產品的保質期限。
內裝產品的不同,對包裝材料的需求也存在差異,單一功能的可降解包裝材料的使用會受到限制,因此,研制多功能的復合包裝材料更加具有實用意義。
[1] ZHU Yun-qing, ROMAIN C, WILLIAMS C K. Sustainable Polymers from Renewable Resources[J]. Nature, 2016, 540(7633): 354-362.
[2] 陳婕, 梅林玉. 聚乳酸/茶多酚復合包裝膜的制備及性能[J]. 包裝工程, 2021, 42(23): 100-108.
CHEN Jie, MEI Lin-yu. Preparation and Properties of Polylactic Acid/Tea Polyphenol Composite Packaging Film[J]. Packaging Engineering, 2021, 42(23): 100-108.
[3] CHEN J, WU J, SHERRELL P C, et al. How to Build a Microplastics-Free Environment: Strategies for Microplastics Degradation and Plastics Recycling[J]. Advanced Science, 2022, 9(6): 2103764.
[4] ZHOU D, CHEN J, WU J, et al. Biodegradation and Catalytic-Chemical Degradation Strategies to Mitigate Microplastic Pollution[J]. Sustainable Materials and Technologies, 2021, 28: 00251.
[5] 方文康. 新時代的綠色包裝材料發展[J]. 上海包裝, 2018(6): 46-48.
FANG Wen-kang. The Development of Green Packaging Materials in the New Era[J]. Shanghai Packaging, 2018(6): 46-48.
[6] JEM K J, TAN B. The Development and Challenges of Poly (Lactic Acid) and Poly (Glycolic Acid)[J]. Advanced Industrial and Engineering Polymer Research, 2020, 3(2): 60-70.
[7] SUN C, WEI S, TAN H, et al. Progress in Upcycling Polylactic Acid Waste as an Alternative Carbon Source: A review[J]. Chemical Engineering Journal, 2022, 446: 136881.
[8] ZHANG M, BIESOLD G M, CHOI W, et al. Recent Advances in Polymers and Polymer Composites for Food Packaging[J]. Materials Today, 2022, 53: 134-161.
[9] ZENG J, JI Q, LIU X, et al. Electrospun Polylactic Acid/Poly (Ε-Caprolactone) Fibrous Encapsulated Thymol/MIL-68(Al) as a Food Packaging Material[J]. Journal of Materials Research and Technology, 2022, 18: 5032-5044.
[10] SAMANTARAY P K, LITTLE A, HADDLETON D M, et al. Poly(Glycolic Acid) (PGA): A Versatile Building Block Expanding High Performance and Sustainable Bioplastic Applications[J]. Green Chemistry, 2020, 22(13): 4055-4081.
[11] BUDAK K, SOGUT O, AYDEMIR SEZER U. A Review on Synthesisand Biomedical Applications of Polyglycolic Acid[J]. Journal of Polymer Research, 2020, 27(8): 1-19.
[12] LOW Y J, ANDRIYANA A, ANG B C, et al. Bioresorbable and Degradable Behaviors of PGA: Current state and Future Prospects[J]. Polymer Engineering & Science, 2020, 60(11): 2657-2675.
[13] ZHAO Duo-yi, ZHU Tong-tong, LI Jie, et al. Poly(Lactic-Co-Glycolic Acid)-Based Composite Bone- Substitute Materials[J]. Bioactive Materials, 2021, 6(2): 346-360.
[14] SID S, MOR R S, KISHORE A, et al. Bio-Sourced Polymers as Alternatives to Conventional Food Packaging Materials: A Review[J]. Trends in Food Science & Technology, 2021, 115: 87-104.
[15] MOON S I, LEE C W, TANIGUCHI I, et al. Melt/Solid Polycondensation of L-Lactic Acid: an Alternative Route to Poly (L-Lactic Acid) with High Molecular Weight[J]. Polymer, 2001, 42(11): 5059-5062.
[16] 辛穎,王天成,金書含,等. 聚乳酸市場現狀及合成技術進展[J]. 現代化工, 2020, 40(S1): 71-74.
XIN Ying, WANG Tian-cheng, JIN Shu-han, et al. Present Market Situation and Synthesis Technology Advances of PLA[J]. Modern Chemical Industry, 2020, 40(S1): 71-74.
[17] 姚逸, 王超軍, 劉勤, 等. 高分子量聚L–乳酸合成研究[J]. 廣東化工, 2022, 49(14): 44-46.
YAO Yi, WANG Chao-jun, LIU Qin, et al. Synthesis of High Molecular Weight Poly(l-lactic acid)[J]. Guangdong Chemical Industry, 2022, 49(14): 44-46.
[18] 吳桂寶, 崔愛軍, 陳群, 等. 高壓下開環聚合制備聚羥基乙酸的工藝研究[J]. 高分子通報, 2013(3): 55-60.
WU Gui-bao, CUI Ai-jun, CHEN Qun, et al. Process Study on Ring-Opening Polymerization of Polyglycolic Acid under High Pressure[J]. Chinese Polymer Bulletin, 2013(3): 55-60.
[19] 房鑫卿, 肖敏, 王拴緊, 等. 高分子量聚乙交酯的合成及表征[J]. 高分子材料科學與工程, 2012, 28(1): 1-4.
FANG Xin-qing, XIAO Min, WANG Shuan-jin, et al. Synthesis and Characterization of High Molecular Weight Polyglycolide[J]. Polymer Materials Science & Engineering, 2012, 28(1): 1-4.
[20] AYYOOB M, LEE D H, KIM J H, et al. Synthesis of Poly(Glycolic Acids) Via Solution Polycondensation and Investigation of Their Thermal Degradation Behaviors[J]. Fibers and Polymers, 2017, 18(3): 407-415.
[21] 崔愛軍, 陸衛良, 王澤云, 等. 熔融/固相縮聚法合成聚乙醇酸及其性能表征[J]. 高分子通報, 2013(2): 73-78.
CUI Ai-jun, LU Wei-liang, WANG Ze-yun, et al. Research on the Synthesis and Property of Poly(Glycolic) Acid via Melt/Solid Polycondensation[J]. Chinese Polymer Bulletin, 2013(2): 73-78.
[22] GAUTIER E, FUERTES P, CASSAGNAU P, et al. Synthesis and Rheology of Biodegradable Poly(Glycolic Acid) Prepared by Melt Ring-Opening Polymerization of Glycolide[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2009, 47(5): 1440-1449.
[23] 魯康偉, 尹芳華, 崔愛軍, 等. 乙酸鉍催化乙交酯開環聚合的工藝[J]. 化工進展, 2014, 33(2): 395-399.
LU Kang-wei, YIN Fang-hua, CUI Ai-jun, et al. Process Research on Ring-Opening Polymerization of Glycolide by Bismuth(Ⅲ) Acetate[J]. Chemical Industry and Engineering Progress, 2014, 33(2): 395-399.
[24] 徐紀剛, 陳功林, 韓國義, 等. 聚乙交酯的合成[J]. 合成纖維工業, 2006, 29(3): 10-12.
XU Ji-gang, CHEN Gong-lin, HAN Guo-yi, et al. Synthesis of Polyglycollide[J]. China Synthetic Fiber Industry, 2006, 29(3): 10-12.
[25] ALTAY E, JANG Y J, KUA Xiang-qi, et al. Synthesis, Microstructure, and Properties of High-Molar-Mass Polyglycolide Copolymers with Isolated Methyl Defects[J]. Biomacromolecules, 2021, 22(6): 2532-2543.
[26] LU Y, SCHMIDT C, BEUERMANN S. Fast Synthesis of High-Molecular-Weight Polyglycolide Using Diphenyl Bismuth Bromide as Catalyst[J]. Macromolecular Chemistry and Physics, 2015, 216(4): 395-399.
[27] 劉文濤, 徐冠樺, 段瑞俠, 等. 聚乳酸改性與應用研究綜述[J]. 包裝學報, 2021, 13(2): 3-13.
LIU Wen-tao, XU Guan-hua, DUAN Rui-xia, et al. Review on Modification and Application of Polylactic Acid[J]. Packaging Journal, 2021, 13(2): 3-13.
[28] LI Jian, ROTHSTEIN S N, LITTLE S R, et al. The Effect of Monomer Order on the Hydrolysis of Biodegradable Poly(lactic-co-glycolic acid) Repeating Sequence Copolymers[J]. Journal of the American Chemical Society, 2012, 134(39): 16352-16359.
[29] ZHENG Y, YU C, BAO Y, et al. Temperature-Dependent Crystal Structure and Structural Evolution of Poly(Glycolide-Co-Lactide) Induced by Comonomeric Defect Inclusion/Exclusion[J]. Polymer, 2021, 227: 123867.
[30] WEIDNER S M, KRICHELDORF H R, SCHELIGA F. Ring-Expansion Copolymerization of l-Lactide and Glycolide[J]. Macromolecular Chemistry and Physics, 2021, 222(3): 2000307.
[31] DOBHAL A, SRIVASTAV A, DANDEKAR P, et al. Influence of Lactide vs Glycolide Composition of Poly (Lactic-Co-Glycolic Acid) Polymers on Encapsulation of Hydrophobic Molecules: Molecular Dynamics and formulation Studies[J]. J Mater Sci Mater Med, 2021, 32(10): 1-18.
[32] GILDING D K, REED A M. Biodegradable Polymers for Use in Surgery-Polyglycolic/Poly (Actic Acid) Homo-and Copolymers: 1[J]. Polymer, 1979, 20(12): 1459-1464.
[33] TAN J, ZHANG T, WANG F, et al. One-Pot and Industrial Manufacturing of Cardanol-Based Polyoxyethylene Ether Carboxylates as Efficient and Improved Migration Resistance Plasticizers for PVC[J]. Journal of Cleaner Production, 2022, 375: 133943.
[34] 徐連春, 尚劍, 孫曄, 等. 銀納米顆粒及載銀抗菌涂層的研究與進展[J]. 中國組織工程研究, 2016, 20(25): 3793-3800.
XU Lian-chun, SHANG Jian, SUN Ye, et al. Silver Nanoparticles and Anti-Bacterial Silver Coating:research and Development[J]. Chinese Journal of Tissue Engineering Research, 2016, 20(25): 3793-3800.
[35] 賀新福, 張小琴, 王迪, 等. 碳納米管/聚合物基導熱復合材料研究進展[J]. 化工進展, 2018, 37(8): 3038-3044.
HE Xin-fu, ZHANG Xiao-qin, WANG Di, et al. Research Progress in Heat Conductive CNTS/Polymer Composites[J]. Chemical Industry and Engineering Progress, 2018, 37(8): 3038-3044.
[36] GHOLAMPOUR A, OZBAKKALOGLU T. A Review of Natural Fiber Composites: Properties, Modification and Processing Techniques, Characterization, Applications[J]. Journal of Materials Science, 2020, 55(3): 829-892.
[37] SWAROOP C, SHUKLA M. Development of Blown Polylactic Acid-MgO Nanocomposite Films for Food Packaging[J]. Composites Part A: Applied Science and Manufacturing, 2019, 124: 105482.
[38] 佟克偉, 王潮忱. 擠出中空吹塑成型工藝中若干技術問題的分析與研究[J]. 現代工業經濟和信息化, 2020, 10(8): 130-131.
TONG Ke-wei, WANG Chao-chen. Analysis and Research on some Technical Problems in Hollow Blow Molding Process[J]. Modern Industrial Economy and Informationization, 2020, 10(8): 130-131.
[39] RAJESHKUMAR G, ARVINDH SESHADRI S, DEVNANI G L, et al. Environment Friendly, Renewable and Sustainable Poly Lactic Acid (PLA) Based Natural Fiber Reinforced Composites-A Comprehensive Review[J]. Journal of Cleaner Production, 2021, 310: 127483.
[40] RIGOTTI D, SOCCIO M, DORIGATO A, et al. Novel Biobased Polylactic Acid/Poly(pentamethylene 2,5-furanoate) Blends for Sustainable Food Packaging[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(41): 13742-13750.
[41] SHI C, ZHOU A, FANG D, et al. Oregano Essential Oil/β-Cyclodextrin Inclusion Compound Polylactic Acid/Polycaprolactone Electrospun Nanofibers for Active Food Packaging[J]. Chemical Engineering Journal, 2022, 445: 136746.
[42] SALAZAR R, SALAS-GOMEZ V, ALVARADO A A, et al. Preparation, Characterization and Evaluation of Antibacterial Properties of Polylactide-Polyethylene Glycol-Chitosan Active Composite Films[J]. Polymers, 2022, 14(11): 2266.
[43] IGLESIAS-MONTES M L, SOCCIO M, SIRACUSA V, et al. Chitin Nanocomposite Based on Plasticized Poly(lactic acid)/Poly(3-hydroxybutyrate) (PLA/PHB) Blends as Fully Biodegradable Packaging Materials[J]. Polymers, 2022, 14(15): 3177.
[44] CVEK M, PAUL U C, ZIA J, et al. Biodegradable Films of PLA/PPC and Curcumin as Packaging Materials and Smart Indicators of Food Spoilage[J]. ACS Applied Materials & Interfaces, 2022, 14(12): 14654-14667.
[45] YU Fu-you, FEI Xiang, HE Yun-qing, et al. Poly(lactic acid)-Based Composite Film Reinforced with Acetylated Cellulose Nanocrystals and ZnO Nanoparticles for Active Food Packaging[J]. International Journal of Biological Macromolecules, 2021, 186: 770-779.
[46] WANG Li, XU Jing-ge, ZHANG Meng-meng, et al. Preservation of Soy Protein-Based Meat Analogues by Using PLA/PBAT Antimicrobial Packaging Film[J]. Food Chemistry, 2022, 380: 132022.
[47] SINGH A A, SHARMA S, SRIVASTAVA M, et al. Modulating the Properties of Polylactic Acid for Packaging Applications Using Biobased Plasticizers and Naturally Obtained Fillers[J]. International Journal of Biological Macromolecules, 2020, 153: 1165-1175.
[48] ROY S, RHIM J W. Preparation of Bioactive Functional Poly(lactic acid)/Curcumin Composite Film for Food Packaging Application[J]. International Journal of Biological Macromolecules, 2020, 162: 1780-1789.
[49] KIM Y, KIM J S, LEE S Y, et al. Exploration of Hybrid Nanocarbon Composite with Polylactic Acid for Packaging Applications[J]. International Journal of Biological Macromolecules, 2020, 144: 135-142.
[50] ZHOU Xiao-ming, YANG Ren-dang, WANG Bin, et al. Development and Characterization of Bilayer Films Based on Pea Starch/Polylactic Acid and Use in the Cherry Tomatoes Packaging[J]. Carbohydrate Polymers, 2019, 222: 114912.
[51] PAPADOPOULOU E L, PAUL U C, TRAN T N, et al. Sustainable Active Food Packaging from Poly(lactic acid) and Cocoa Bean Shells[J]. ACS Applied Materials & Interfaces, 2019, 11(34): 31317-31327.
[52] ELLINGFORD C, SAMANTARAY P K, FARRIS S, et al. Reactive Extrusion of Biodegradable PGA/PBAT Blends to Enhance Flexibility and Gas Barrier Properties[J]. Journal of Applied Polymer Science, 2021, 139(6): 51617.
[53] SUN Y, HUANG Y, WANG X Y, et al. Kinetic Analysis of PGA/PBAT Plastic Films for Strawberry Fruit Preservation Quality and Enzyme Activity[J]. Journal of Food Composition and Analysis, 2022, 108: 104439.
[54] XU Peng-wu, TAN Shuai, NIU De-yu, et al. Highly Toughened Sustainable Green Polyglycolic Acid/ Polycaprolactone Blends with Balanced Strength: Morphology Evolution, Interfacial Compatibilization, and Mechanism[J]. ACS Applied Polymer Materials, 2022, 4(8): 5772-5780.
[55] SAMANTARAY P K, ELLINGFORD C, FARRIS S, et al. Electron Beam-Mediated Cross-Linking of Blown Film-Extruded Biodegradable PGA/PBAT Blends Toward High Toughness and Low Oxygen Permeation[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(3): 1267-1276.
[56] YANG Fan, ZHANG Cai-li, MA Zhi-rui, et al. In Situ Formation of Microfibrillar PBAT in PGA Films: An Effective Way to Robust Barrier and Mechanical Properties for Fully Biodegradable Packaging Films[J]. ACS Omega, 2022, 7(24): 21280-21290.
[57] WANG Rong, SUN Xiao-jie, CHEN Lan-lan, et al. Morphological and Mechanical Properties of Biodegradable Poly(Glycolic Acid)/Poly(Butylene Adipate-Co-Terephthalate) Blends with in Situ Compatibilization[J]. RSC Advances, 2021, 11(3): 1241-1249.
[58] SHEN J, WANG K, MA Z, et al. Biodegradable Blends of Poly (Butylene Adipate-Co-Terephthalate) and Polyglycolic Acid with Enhanced Mechanical, Rheological and Barrier Performances[J]. Journal of Applied Polymer Science, 2021, 138(43): 51285.
[59] WU H, WANG C, NING Z, et al. Ultra-Toughened Poly (Glycolic Acid)-Based Blends with Controllable Hydrolysis Behavior Fabricated Via Reactive Compatibilization[J]. European Polymer Journal, 2022, 181: 111661.
[60] 張杰, 黨斌, 楊希娟. 植物多酚的生理活性、抑菌機理及其在食品保鮮中的應用研究進展[J]. 食品工業科技, 2022, 43(24): 460-468.
ZHANG Jie, DANG Bin, YANG Xi-juan. Research Progress on Physiological Activity, Antibacterial Mechanism of Plant Polyphenols and Its Application in Food Preservation[J]. Science and Technology of Food Industry, 2022, 43(24): 460-468.
[61] FORTUNATI E, MATTIOLI S, VISAI L, et al. Combined Effects of Ag Nanoparticles and Oxygen Plasma Treatment on PLGA Morphological, Chemical, and Antibacterial Properties[J]. Biomacromolecules, 2013, 14(3): 626-636.
[62] SAHINER M, ARI B, RAM M K, et al. Nitrogen Doped Carbon-Dot Embedded Poly(lactic acid-co-glycolic acid) Composite Films for Po-tential Use in Food Packing Industry and Wound Dressing[J]. Journal of Composites Science, 2022, 6(9): 260.
[63] BISWAL A K, SAHA S. Controllable Fabrication of Biodegradable Janus and Multi-Layered Particles with Hierarchically Porous Structure[J]. Journal of Colloid and Interface Science, 2020, 566: 120-134.
[64] BISWAL A K, SAHA S. New Insight into the Mechanism of Formati-on of Dual Actives Loaded Multilayered Polymeric Particles and Their Application in Food Preservation[J]. Journal of Applied Polymer Science, 2019, 136(40): 48009.
[65] KEMME M, HEINZEL-WIELAND R. Quantitative Assessment of Antimicrobial Activity of PLGA Films Loaded with 4-Hexylresorcinol[J]. Journal of Functional Biomaterials, 2018, 9(1): 4.
Research Progress of PLA, PGA and Their Copolymers in Packaging Applications
XU Jie-lina,c, LI Zhen-guanga,c,CHEN Shi-yana,c,WANG Chao-shenga,c,WU Jingb,c,d,WANG Hua-pinga,c,d
(a. College of Materials Science and Engineering b. Co-Innovation Center for Textile Industry, Innovation Center for Textile Science and Technology c. State Key Laboratory for Modification of Chemical Fibers and Polymer Materials d.National Innovation Center for Fiber with Advanced Function, Donghua University, Shanghai 201620, China)
The work aims to introduce the research progress of PLA, PGA and PLGA in packaging, to provide an outlook on the modified materials and preparation process, and to provide a reference for modification and preparation of PLA, PGA and PLGA. The preparation methods and basic properties of PLA, PGA and PLGA were introduced. The types of modified materials and their preparation processes in recent years were summarized. PLA, PGA and PLGA were modified, then the composite films were prepared with excellent UV resistance, barrier properties and antibacterial properties by solution casting and blown film making processes. PLA, PGA and PLGA have excellent biodegradable properties, and the films prepared by modification have more balanced properties, which have great prospects for application in packaging. In-depth research on polymer modification materials and methods is still needed to prepare composites with better performance.
polylactic acid; polyglycolide; poly (lactic-co-glycolic acid); modified; packaging
TB484
A
1001-3563(2023)05-0008-10
10.19554/j.cnki.1001-3563.2023.05.002
2022?10?15
上海市科委原創探索項目(21ZR1480000);盛虹·應急保障與公共安全用纖維材料及制品科研攻關項目(2021–fx010211);微塑料中央高校交叉重點項目(2232021A–02)
徐杰林(1996—),男,博士生,主要研究方向為生物可降解高分子材料。
烏婧(1984—),女,博士,副教授,主要研究方向為生物基、生物可降解纖維及材料。
責任編輯:曾鈺嬋