張迎鑫,楊敏,白雪兵,陳暢,吳睿智,楊平,陳秋生
羊腧穴Telocytes形態特征及其與周圍結構的關系
張迎鑫,楊敏,白雪兵,陳暢,吳睿智,楊平,陳秋生
南京農業大學動物醫學院,南京 210095
【】經絡是中醫理論的基石,而腧穴又是經絡線路上的關鍵節點部位,為中醫針灸的實施位點。但是關于腧穴的結構基礎與形態組成眾說紛紜,未能科學闡明。遠細胞(telocytes,TCs)是近年來發現的一種新型間質細胞,最新研究表明其可能是潛在的經絡實質細胞,但腧穴處TCs的特征及其分布需要進一步闡明。【】分析腧穴和非穴皮膚結構差異,探究腧穴TCs的形態特征,解析TCs與其周圍成分的結構聯系,為中醫針灸治療的細胞機制研究提供理論支撐。【】選擇5只成年健康湖羊為試驗對象,采集百會(Du20)、曲池(LI11)、三陰交(Sp6)、膻中(Ren17)、承漿(Ren24)、耳尖(EP4)等腧穴以及背部和腹部非穴皮膚組織。使用蛋白標記物CD34和Vimentin標記TCs及其突起(telopodes, Tps)、TPS標記肥大細胞、PGP9.5標記神經、TSG101標記胞外囊泡。利用H.E染色和免疫組化技術分析皮膚腧穴和非穴處的結構和微細成分組成,并使用ImageJ和Image-Pro Plus統計軟件對數據進行形態定量分析,探討TCs及其相關結構在腧穴和非穴的分布差異。在此基礎上利用透射電子顯微鏡、掃描電子顯微鏡和免疫熒光雙標技術觀察TCs的形態特征和立體結構特點,進一步分析TCs與這些結構之間的形態聯系,從而確定腧穴的超微形態和物質基礎。【】腧穴與非穴的皮膚均具有毛囊、皮脂腺、汗腺、豎毛肌等皮膚衍生物以及神經、血管、肥大細胞、膠原纖維束等結構,但腧穴處神經、血管、肥大細胞的分布數量顯著多于非穴(<0.05)。更為重要的是,在腧穴皮膚中分布著具有細長管線狀突起的TCs,并且顯著多于非穴(<0.05)。作為腧穴間質的整合者,TCs之間以及TCs與各形態之間具有廣泛聯系(包括縫隙連接以及胞外囊泡等),形成一個結構網絡體系。超微水平上觀察到TCs突起的典型串珠樣外觀,由膨大部(podom,Pd)和細長狹窄部(podomer,P)交替排列組成。膨大部胞質中分布著發達的線粒體,加上Tps之間的細胞連接,以及TCs表面及其周圍的大量胞外囊泡(顯著多于非穴(<0.05)),保證了TCs在腧穴結構中的核心作用。同時TCs與皮膚衍生物之間的結構聯系,也在細胞水平上驗證了《黃帝內經》中腧穴與皮膚衍生物的關系。【】腧穴與非穴的結構組成基本相同,但腧穴TCs及其Tps、胞外囊泡、神經、血管、肥大細胞等的分布數量顯著多于非穴;TCs及其Tps具備聯絡各系統成分的形態功能,是腧穴不同結構的介導者或整合者;TCs之間的細胞連接、發達的線粒體以及胞外囊泡等具有細胞通訊和能量產生的結構基礎,與中醫“氣血”的形態物質相對應。
腧穴;微細結構;Telocytes;胞外囊泡;羊
【研究意義】腧穴是生物進化過程中形成的具有“健康信息密碼”的體表區域,是靶器官病變牽涉性體表反應區,為針灸發揮效應的刺激點[1]。腧穴不僅可以治療疾病,還可以輔助診斷[2-3],但它的功能性結構一直懸而未決。【前人研究進展】多年來國內外學者在對腧穴物質基礎的探討中,主要從腧穴的組織形態、生理學、生物化學、物理學以及作用途徑等方面進行試驗探索,并提出了多種看法,主要以“神經傳導學說”“生化體液學說”“結締組織學說”和“肥大細胞理論”為主[4],但是每種假說并不能完全闡釋腧穴現象,它們之間有時甚至相互矛盾。所以,可能存在其他支持腧穴效應的形態基礎。遠細胞(telocytes,TCs)是由popescu團隊發現和命名的一種新的細胞類型[5],能在器官間質中形成支撐和聯絡性構架[6]。TCs可以發出2—3條極長而薄的突起,由膨大部(podom,Pd)結節和細長部(podomer,P)交替出現,形成串珠樣外觀[7]。由于TCs突起極其細長,微細結構在光鏡下難以分辨鑒別,目前透射電鏡是鑒定TCs最為準確的方法,同時,免疫組化和免疫熒光技術是鑒定TCs的常用方法。已經在魚類、兩棲類[8]、爬行動物[9]、鳥類[10]和哺乳動物[11-12]等各綱脊椎動物及人類[13]的不同器官組織中發現TCs的分布。TCs與多種生理功能和疾病發生有關[14],在結構支持[15-16]、免疫監測[17]、調控干細胞微環境及干細胞分化[18]、促進組織血管的生成[19]、協調組織損傷的再生與修復方面發揮作用[20]。新近,研究者提出“TCs是經絡潛在實質細胞”的新觀點[21-22],但TCs在腧穴處的形態特征及其與周圍結構的關系有待明確。【本研究切入點】在前人研究的基礎上,探究腧穴TCs的形態特征,解析TCs與其周圍成分的結構聯系。【擬解決的關鍵問題】通過HE、免疫組化、免疫熒光和電鏡分析,探究TCs在腧穴和非穴皮膚筋膜中的分布特征及其與其他系統的結構關系,為中醫針灸療法的機制研究提供形態依據。
從南京青龍山養殖基地購買5只成年公湖羊,2020年5月在南京農業大學動物房解剖室完成組織采樣。適應性飼養3 d后,靜脈注射戊巴比妥(60 mg·kg-1)后放血處死。根據《獸醫針灸學》羊穴位圖譜,按圖1所示,迅速采集百會(Du20)、曲池(LI11)、三陰交(Sp6)、膻中(Ren17)、承漿(Ren24)、耳尖(EP4)穴位以及背部和腹部非穴位皮膚,一部分置于4%多聚甲醛溶液用于制作石蠟切片(厚度為7 μm),另一部分固定于4℃的2.5%戊二醛溶液,用于電鏡觀察研究。
切片經二甲苯脫蠟后梯度酒精下行至水,蘇木精染色5 min,流水沖5 min。伊紅染色40 s,上行梯度酒精脫水后二甲苯透明,中性樹膠封片,DP73-Olympus顯微鏡觀察并拍照記錄。
二甲苯脫蠟后切片經梯度酒精下行至水;3%過氧化氫裂解12 min,蒸餾水洗3次,5 min /次;于枸櫞酸鈉緩沖溶液中進行抗原修復,煮沸4 min,冷卻至室溫后0.2 mol·L-1PBS洗3次,5 min /次;5%BSA37℃封閉40 min;滴加CD34(1﹕100,博士德)或TPS(1﹕100,proteintench)或PGP9.5(1﹕100,arigo),4℃孵育過夜;0.2 mol·L-1PBS洗5次,5 min /次,滴加二抗(兔抗或鼠抗,博士德),37℃1 h;0.2 mol·L-1PBS洗5次,5 min /次,DAB(博士德)顯色5 min,蒸餾水洗3次,3 min /次;蘇木精復染10 s,流水沖洗5 min,梯度酒精上行脫水,中性樹膠封片,DP73-Olympus顯微鏡觀察并拍照。
二甲苯脫蠟后梯度酒精下行至水;枸櫞酸鈉緩沖溶液抗原修復,煮沸4 min,冷卻至室溫后0.2 mol·L-1PBS洗3次,5 min /次;5%BSA37℃封閉30 min;滴加CD34(1﹕100)、Vimentin(1﹕100,博士德)或TPS(1﹕100)、Vimentin(1﹕100)或CD34(1﹕100)、PGP9.5(1﹕100)或TSG101(1﹕100,博士德)、Vimentin(1﹕100),4℃孵育過夜;0.2 mol·L-1PBS洗5次,5 min /次,避光滴加熒光二抗(1﹕1﹕100),37℃,1 h;0.2 mol·L-1PBS滴洗5次,5 min /次;加入DAPI(博士德)4 min;0.2 mol·L-1PBS滴洗5次,5 min /次;抗熒光淬滅劑(碧云天生物技術)封片,使用DP73顯微鏡觀察并拍照。
取固定于2.5%戊二醛溶液中的皮膚組織,磷酸緩沖液清洗干凈;乙醇溶液梯度脫水后用叔丁醇置換;將樣品干燥后粘到樣品臺上;用離子濺射儀給樣品鍍膜,Regulus-8100掃描電鏡觀察。
2.5%戊二醛溶液固定皮膚組織,1%四氧化餓溶液后固定60 min,乙醇溶液梯度脫水,Epon812包埋。超薄切片,檸檬酸鉛和醋酸鈾染色20 min,Hitach-7650透射電鏡觀察。
隨機選取5張圖片,經Adobe Photoshop CS6處理,進行形態定量分析。
選取bar值50 μm TCs免疫熒光染色圖片,用ImageJ 軟件測量CD34(紅色)和Vimentin(綠色)共定位黃色區域面積;選取bar值50 μm神經免疫組化染色圖片,使用Image-Pro Plus 軟件測量PGP9.5陽性標記的棕色區域面積。選取bar值50 μm H.E染色圖片,對血管斷面進行計數。選取bar值20 μm TPS免疫組化圖片,對陽性肥大細胞進行計數。選取bar值1 μm電鏡圖片,對TCs周圍胞外囊泡進行計數。
用GraphPad.Prism.7.0分析數據并作圖,采用普通單因素方差分析,<0.05 為顯著性差異,<0.01 為極顯著性差異,所得數據采用平均值±標準差表示。
免疫組化、免疫熒光雙標以及電鏡觀察的結果均顯示,腧穴與非穴皮膚筋膜結締組織中TCs及其Tps分布于淋巴管(圖2-d)、血管(圖3-c)、肥大細胞(圖4-d)、神經(圖5-d)周圍,且形態聯系密切。毛囊(圖2-b,f)、汗腺(圖2-a,e)、皮脂腺(圖2-c,g)、豎毛肌(圖2-c,h)等皮膚衍生物周圍也有TCs及其Tps圍繞。膠原纖維束形成的組織微通道(圖2-d,h)內觀察到TCs及其Tps。電鏡下TCs具有串珠樣外觀,由膨大部和細長部組成,膨大部胞質中有發達的線粒體(圖4-c)。鈣窖大多分布于Tps膨大部表面(圖4-c)。不同Tps之間可直接接觸,有時可見黏著連接或縫隙連接(圖6-d)。TCs及其Tps表達CD34(紅色)和Vimentin(綠色)的共定位(黃色)是鑒別TCs的有效方法之一,通過形態定量黃色熒光面積,發現百會、三陰交、耳尖和膻中穴的標記面積顯著大于非穴位(<0.05),而曲池和承漿穴的標記面積極顯著大于非穴位(<0.01)(圖2-j)。
Sg. 汗腺,Hf. 毛囊,Ap. 豎毛肌,Seb. 皮脂腺,Lc. 淋巴管,Cb. 膠原纖維束, Bv. 血管。 *<0.05,**<0.01,下同
a-d. CD34免疫組化標記TCs:a-c. 腧穴,a. 耳尖,b. 三陰交,c. 承漿,d. 非穴。e-h. 透射電鏡下皮膚衍生物周圍TCs,e. 膻中,f.百會,g. 耳尖,h. 非穴,△. 組織微通道。i. 耳尖穴免疫熒光雙標:CD34(紅色)和Vimentin(綠色)標記TCs,虛框顯示放大區域。箭頭所示TCs及其Tps。j. 穴位與非穴位處TCs面積比較
Sg. sweat glands, Hf. hair follicle, Ap. arrector pili muscle, Seb. sebaceous gland, Lc. lymphatic vessel, Cb. Collagen fiber bundle, Bv. blood vessel. *<0.05, **<0.01. The same as below
a-d. IHC staining: CD34 label TCs, a-c. acupoints, a. Erjian, b. Sanyinjiao, c. Chengjiang, d. non-acupoint. e-h. TCs around epidermal derivatives under TEM, e. Danzhong, f. Baihui, g. Erjian, h. non-acupoint, △. tissue micro-channe. i. IF staining at Eejian: anti-CD34 (red) and anti-vimentin (green) antibodies label TCs, the imaginary box represents the enlarged area. Arrows indicate TC and Tps. j. Comparison of TCs areas of acupoints and non-acupoints
圖2 TCs在皮膚穴位與非穴位的分布比較
Fig. 2 Comparison of the distribution of TCs at acupoints and non-acupoints in sheep skin
小血管(包括微動脈,微靜脈和毛細血管)廣泛分布于皮膚筋膜中(圖3-a,b)。H.E切片上,計數小血管斷面,發現百會和膻中穴的血管斷面數量顯著多于非穴(<0.05),而三陰交、承漿、耳尖和曲池穴極顯著多于非穴(<0.01)(圖3-f),而且腧穴血管常成簇分布。電鏡下,TCs圍繞在血管周圍,并伸出細長Tps將其包裹(圖4-d),形態關系密切。部分Tps折疊盤繞,有時可見兩層Tps圍繞血管延伸(圖3-e)。TCs及其Tps在血管周圍的分布也得到免疫組化和免疫熒光雙標結果的驗證(圖3-c,d)。

a-b. 腧穴和非穴的H.E染色:a. 耳尖穴,b. 非穴,箭頭所示為血管。c. 耳尖穴CD34免疫組化標記TCs:箭頭所示為TCs。d. 曲池穴免疫熒光雙標:CD34(紅色)和Vimentin(綠色)標記TCs,箭頭所示為TCs。e. 膻中穴電鏡下血管周圍的TCs。f. 穴位與非穴位處的血管數目比較
類胰蛋白酶(TPS)特異標記肥大細胞。陽性細胞呈圓形或橢圓形,主要分布在血管附近(圖4-a,b)。對陽性標記細胞計數后發現,三陰交、耳尖和膻中穴肥大細胞數顯著多于非穴(<0.05),而曲池、百會和承漿穴極顯著多于非穴(<0.01)(圖4-f)。電鏡和免疫熒光雙標的結果進一步顯示,肥大細胞周圍有豐富的TCs分布,部分肥大細胞與TCs及其Tps直接接觸(圖4-c—e),并且在TCs膨大部觀察到發達的線粒體和鈣窖結構(圖4-c)。
蛋白基因產物9.5(PGP9.5)是神經的一種特異性泛素羥基水解酶,可以與無髓神經和有髓神經相結合,為神經的標記物。PGP9.5免疫組化陽性反應物分布于皮膚(圖5-a—b)。陽性神經的分布面積在曲池、膻中和百會穴顯著大于非穴(<0.05),三陰交、耳尖和承漿穴的極顯著大于非穴(<0.01)(圖5-f)。CD34免疫組化結果顯示神經束周圍有TCs分布(圖5-c)。而電鏡和免疫熒光雙標結果進一步顯示,神經束內、外均有TCs及其Tps分布(圖5-d—e),部分TCs與神經纖維接觸或者將其包裹,有時TCs直接進入神經束內(圖5-d)。

a-b.腧穴和非穴的PGP 9.5免疫組化反應結果,a. 膻中穴,b. 非穴。c. 百會穴CD34免疫組化標記TCs,Nb.神經束。d. 曲池穴電鏡下神經束內、外的TCs,Mf. 有髓神經,Umf. 無髓神經,Nm. 神經膜。e.耳尖穴免疫熒光雙標:CD34(紅)和PGP9.5(綠)標記TCs和神經。箭頭所示TCs。f. 穴位和非穴處的神經面積比較
TSG101為胞外囊泡標記物,將TSG101(標記胞外囊泡)與Vimentin(標記TCs)進行免疫熒光雙標,可用于研究胞外囊泡與TCs的形態關系(圖6-a—c)。熒光雙標和透射電鏡結果顯示,胞外囊泡分布于TCs及其Tps周圍或表面(圖6-a,b,d),膠原纖維束周圍也可見胞外囊泡(圖6-c)。透射電鏡下對TCs周圍的胞外囊泡進行計數,發現曲池、耳尖和膻中穴顯著多于非穴(<0.05),而百會穴和承漿穴極顯著多于非穴(<0.01)(圖6-e)。根據囊泡大小,有些應為外泌體(30—150 nm)(圖6-d)。

a-c. 膻中穴免疫熒光雙標:Vimentin(紅)和TSG101(綠)標記TCs和胞外囊泡,箭頭所示胞外囊泡。d. 膻中穴電鏡下TCs周圍胞外囊泡(藍色區域),波浪箭頭所示縫隙連接。e. 穴位和非穴處的胞外囊泡數目比較
掃描電鏡下,TCs的胞體呈橢圓形、扁平形或梨形(圖7-a—c)。TCs伸出細長的Tps在膠原纖維表面或膠原纖維束之間的間隙通道中形成網狀,可見淋巴細胞分布于Tps表面(圖7-b,d),可能沿著Tps運動。在Tps和膠原纖維束表面發現許多胞外囊泡(圖7-a—d),這與熒光雙標和透射電鏡結果(圖6)相一致。
腧穴是經絡氣血輸注、出入體表的特定部位,與經絡、臟腑、氣血的活動有密切關系。腧穴可以反映臟腑經絡的生理功能和病理變化,并可接受外界的各種刺激并將其傳至體內,以調整內部功能[23]。為什么針刺腧穴會產生效果?要回答這個問題就必然涉及到腧穴和非穴的結構組成差異。而且闡明腧穴的形態特點也有助于揭示中醫治療的內在機制。所以,這方面研究受到國內外眾多學者重視,也先后提出各種觀點[24]。但由于試驗本身存在缺陷或證據不足,腧穴的物質基礎與細胞形態尚未有明確定論[25],造成了傳統醫學一直未被現代醫學所接受的現實。

a-b. 百會,c-d. 非穴,Tp. 突起,Pd. 膨大部,P. 細長部,箭頭所示胞外囊泡
本試驗利用不同的試驗方法,觀測了羊腧穴與非穴形態組成及其差異。腧穴與非穴的結構成分基本相同,均主要包括血管、肥大細胞、神經、皮膚衍生物和膠原纖維束等,這也得到前人研究結果的驗證[26]。這一特點也支持了李永明等[27-28]提出的泛穴現象,即人體無處不是穴,針刺皮膚腧穴和非穴,都會產生生物學效應,這暗示腧穴與非穴皮膚組織的結構成分基本相似。但這些試驗結果只是組織水平上的描述,電鏡下的超微結構如何,有待進一步細胞學分析。
越來越多的學者認為,經絡現象是人體內各種生命物質之間互相作用復雜活動的綜合反映,不是某種組織的單一功能,是神經、血管、肥大細胞、皮膚衍生物等以及未知元素共同構成的復合功能系統[24]。表明,可能存在一種細胞或結構(未知元素)能夠聯系這些不同結構成分,并使其成為網絡。本研究首次發現TCs分布于腧穴,而且利用超微電鏡技術觀測到其細長突起(Tps)與神經、血管、肥大細胞、以及皮膚衍生物聯系密切,分布于它們周圍或表面,可以介導這些結構構成形態網絡,所以,具備調節腧穴各種結構系統的細胞學基礎。本試驗進一步的形態定量分析發現,雖然非穴也有TCs、神經、血管、肥大細胞等,但腧穴TCs和其他相關結構成分顯著多于非穴。表明,雖然腧穴與非穴的結構組成基本相同,但腧穴的各成分的含量差異明顯,這可能就是腧穴特異性和敏感性的形態基礎。更為重要的是,腧穴TCs能夠聯絡和整合不同結構系統(尤其是神經、血管循環和肥大細胞),應該是腧穴結構的核心成分。以TCs為核心的這種廣泛聯系性,也是中醫“整體觀”的細胞機制。
通過免疫熒光雙標記技術,觀察到腧穴TCs周圍存在大量胞外囊泡(包括外泌體),有些胞外囊泡甚至直接位于TCs及其Tps表面。這些結構特點也得到電鏡超微結構研究的支持。進一步發現曲池、耳尖和膻中穴胞外囊泡與非穴相比差異顯著(<0.05),而百會穴和承漿穴與非穴相比差異極顯著(<0.01),表明TCs在腧穴與非穴的胞外囊泡具有量的差異。有資料報道認為,TCs不僅與胞外囊泡關系密切,其本身也可以分泌胞外囊泡[29]。TCs被視為細胞間交流的位點[30],能夠通過同型連接、異型連接或以旁分泌的形式釋放胞外囊泡(尤其是外泌體)參與細胞間信息交流[31]。胞外囊泡及其外泌體能攜帶脂質、蛋白質以及核酸等信息物質[32-33],可作為機體第三種信息通訊方式,即TCs通過引導胞外囊泡的定向轉運來與周圍組織進行信息交流,調節局部微環境。這也得到最近的一項研究證實,TCs釋放的外泌體miRNA進入附近的毛細血管,發揮內分泌作用,從而抑制微血管內皮細胞凋亡[34]。與此同時,Tps膨大的結節中存在許多發達線粒體,而線粒體是能量細胞器。這些線粒體再加上胞外囊泡, 就可成為中醫“氣血”的物質體現,因為“氣血”實際對應于現代生物醫學的能量與信息[22]。
《黃帝內經》中提到“是故虛邪之中人也,始于皮膚,皮膚緩則腠理開,開則邪從毛發入,入則抵深,深則毛發立……”,表明腧穴與毛囊等皮膚衍生物有密切聯系。劉里遠等[35]也認為腧穴的實質形態學基礎與皮膚衍生物相關,提出毛囊、立毛肌是腧穴的動力靶器官,立毛肌的收縮為針刺信號的長距離傳遞提供了動力。本試驗觀察到羊的毛囊、汗腺、皮脂腺、豎毛肌等皮膚衍生物周圍均有TCs及其Tps圍繞,TCs網絡分布在皮膚衍生物之間,網絡中分布著血管、肥大細胞和神經等結構。TCs通過細長Tps和釋放胞外囊泡來將皮膚衍生物與這些結構聯系到一起,參與不同信息的處理和組織穩態的協調以響應各種功能需求,并且TCs發達的線粒體能夠為針刺信號長距離傳遞提供動力。
羊腧穴和非穴的結構組成基本相似,但腧穴TCs、神經、血管、肥大細胞和胞外囊泡顯著多于非穴,推測是腧穴特異性和敏感性的細胞基礎;首次發現的腧穴TCs與其他結構系統(神經、血管、肥大細胞和胞外囊泡等)的聯系,是腧穴形態網絡的核心,能夠在組織水平上詮釋中醫治療的“整體觀”理念;豐富的胞外囊泡(包括外泌體)及其與具有發達線粒體的TCs的關系,切合經穴“氣血”內涵所指的信息和能量特點。
[1] 朱兵. 論穴位與穴位特異性. 中國針灸, 2021, 41(9): 943-950. doi:10.13703/j.0255-2930.20210701-k0002.
ZHU B. On the acupoint and its specificity. Chinese Acupuncture & Moxibustion, 2021, 41(9): 943-950. doi:10.13703/j.0255-2930. 20210701-k0002. (in Chinese)
[2] LI F, HE T, XU Q, LIN L T, LI H, LIU Y, SHI G X, LIU C Z. What is the Acupoint? A preliminary review of Acupoints. Pain Medicine, 2015, 16(10): 1905-1915. doi:10.1111/pme.12761.
[3] WEN J Y, CHEN X, YANG Y, LIU J X, LI E Y, LIU J Y, ZHOU Z W, WU W H, HE K. Acupuncture medical therapy and its underlying mechanisms: a systematic review. The American Journal of Chinese Medicine, 2021, 49(1): 1-23. doi:10.1142/S0192415X21500014.
[4] YANG M N, HAN J X. Review and analysis on the meridian research of China over the past sixty years. Chinese Journal of Integrative Medicine, 2015, 21(5): 394-400. doi:10.1007/s11655-015-2168-4.
[5] GA M V, FREIRE M A. The interstitial cells of Cajal in pancreas. Journal of Cellular and Molecular Medicine, 2005, 9(2): 475.
[6] DíAZ-FLORES L, GUTIéRREZ R, SáEZ F J, DíAZ-FLORES JR L, MADRID J F. Telocytes in neuromuscular spindles. Journal of Cellular and Molecular Medicine, 2013, 17(4): 457-465. doi:10.1111/ jcmm.12015.
[7] RUSU M C, MIRANCEA N, M?NOIU V S, V?LCU M, NICOLESCU M I, P?DURARU D. Skin telocytes. Annals of Anatomy- Anatomischer Anzeiger, 2012, 194(4): 359-367. doi:10.1016/j.aanat. 2011.11.007.
[8] SHI Y H, WU R Z, ZHANG Y, BAI X B, TARIQUE I, LIANG C H, YANG P, CHEN Q S. Telocytes in different organs of vertebrates: potential essence cells of the meridian in Chinese traditional medicine. Microscopy and Microanalysis, 2020, 26(3): 575-588. doi:10.1017/ s1431927620001518.
[9] ULLAH S, YANG P, ZHANG L L, ZHANG Q, LIU Y, CHEN W, WAQAS Y, LE Y, CHEN B, CHEN Q S. Identification and characterization of telocytes in the uterus of the oviduct in the Chinese soft-shelled turtle,: TEM evidence. Journal of Cellular and Molecular Medicine, 2014, 18(12): 2385-2392. doi:10.1111/jcmm.12392.
[10] YANG P, ZHU X D, WANG L L, AHMED N, HUANG Y F, CHEN H, ZHANG Q, ULLAH S, LIU T F, GUO D W, BROHI S A, CHEN Q S. Cellular evidence of telocytes as novel interstitial cells within the magnum of chicken oviduct. Cell Transplantation, 2017, 26(1): 135-143. doi:10.3727/096368916X692942.
[11] METZGER R, SCHUSTER T, TILL H, FRANKE F E, DIETZ H G.
Cajal-like cells in the upper urinary tract: comparative study in various species. Pediatric Surgery International, 2005, 21(3): 169-174. doi:10.1007/s00383-004-1314-4.
[12] MCCLOSKEY K D, HOLLYWOOD M A, THORNBURY K D, WARD S M, MCHALE N G. Kit-like immunopositive cells in sheep mesenteric lymphatic vessels. Cell and Tissue Research, 2002, 310(1): 77-84. doi:10.1007/s00441-002-0623-y.
[13] CRE?OIU S M, CRE?OIU D, POPESCU L M. Human myometrium - The ultrastructural 3D network of telocytes. Journal of Cellular and Molecular Medicine, 2012, 16(11): 2844-2849. doi:10.1111/j.1582- 4934.2012.01651.x.
[14] IBBA-MANNESCHI L, ROSA I, MANETTI M. Telocyte implications in human pathology: An overview. Seminars in Cell & Developmental Biology, 2016, 55: 62-69. doi:10.1016/j.semcdb.2016.01.022.
[15] ZHENG Y H, ZHANG M M, QIAN M J, WANG L Y, CISMASIU V B, BAI C X, POPESCU L M, WANG X D. Genetic comparison of mouse lung telocytes with mesenchymal stem cells and fibroblasts. Journal of Cellular and Molecular Medicine, 2013, 17(4): 567-577. doi:10.1111/jcmm.12052.
[16] GHERGHICEANU M, POPESCU L M. Cardiac telocytes - Their junctions and functional implications. Cell and Tissue Research, 2012, 348(2): 265-279. doi:10.1007/s00441-012-1333-8.
[17] CRETOIU D, CRETOIU S M. Telocytes in the reproductive organs: current understanding and future challenges. Seminars in Cell & Developmental Biology, 2016, 55: 40-49. doi:10.1016/j.semcdb.2016. 03.018.
[18] SCADDEN D T. The stem-cell niche as an entity of action. Nature, 2006, 441(7097): 1075-1079. doi:10.1038/nature04957.
[19] LEIJNSE J E W, DE HEUS R, DE JAGER W, RODENBURG W, PEETERS L L H, FRANX A, EIJKELKAMP N. First trimester placental vascularization and angiogenetic factors are associated with adverse pregnancy outcome. Pregnancy Hypertension, 2018, 13: 87-94. doi:10.1016/j.preghy.2018.04.008.
[20] HUSSEIN M M, MOKHTAR D M. The roles of telocytes in lung development and angiogenesis: An immunohistochemical, ultrastructural,scanning electron microscopy and morphometrical study. Developmental Biology, 2018, 443(2): 137-152. doi:10.1016/j.ydbio.2018.09.010.
[21] 陳秋生. 中醫經絡實質研究的新進展. 針刺研究, 2021, 46(6): 533-540. doi:10.13702/j.1000-0607.201045.
CHEN Q S. New progresses of studies on essence of meridian- collaterals of traditional Chinese medicine. Acupuncture Research, 2021, 46(6): 533-540. doi:10.13702/j.1000-0607.201045. (in Chinese)
[22] BAI X B, WU R Z, ZHANG Y, LIANG C H, SHI Y H, ZHANG Y X, DING B T, TARIQUE I, YANG P, CHEN Q S. Tissue micro-channels formed by collagen fibers and their internal components: Cellular evidence of proposed meridian conduits in vertebrate skin. Microscopy and Microanalysis: the Official Journal of Microscopy Society of America, Microbeam Analysis Society, Microscopical Society of Canada, 2020, 26(5): 1069-1075. doi:10. 1017/S1431927620024381.
[23] 范郁山, 賀彩, 周詩琪, 張傳協. 從能量學角度探討影響腧穴功能的因素. 中國針灸, 2021, 41(5): 521-524. doi:10.13703/j.0255-2930. 20200416-0006.
FAN Y S, HE C, ZHOU S Q, ZHANG C X. Study on influence factors of acupoint function based on energetics. Chinese Acupuncture & Moxibustion, 2021, 41(5): 521-524. doi:10.13703/j.0255-2930. 20200416-0006. (in Chinese)
[24] 黎波, 李忠正, 劉強. 經絡流派學說研究進展. 山西中醫, 2016, 32(6): 55-57. doi:10.3969/j.issn.1000-7156.2016.06.025.
LI B, LI Z Z, LIU Q. Research progress of meridian schools. Journal of Shanxi University of Chinese Medicine, 2016, 32(6): 55-57. doi:10.3969/j.issn.1000-7156.2016.06.025. (in Chinese)
[25] 佘琛, 徐東升, 崔晶晶, 王佳, 何偉, 王曉宇, 景向紅, 白萬柱. 腧穴結構研究的思考. 針刺研究, 2018, 43(5): 285-289. doi:10.13702/ j.1000-0607.170911.
SHE C, XU D S, CUI J J, WANG J, HE W, WANG X Y, JING X H, BAI W Z. Our considerations about studies on structure of acupuncture points. Acupuncture Research, 2018, 43(5): 285-289. doi:10.13702/j.1000-0607.170911. (in Chinese)
[26] 余安勝, 趙英俠, 嚴振國. 足三里穴的顯微結構. 中國針灸, 1999, 19(1): 27-28.
YU A S, ZHAO Y X, YAN Z G. Ultrastructure of Zusanli(ST 36) point. Chinese Acuponcture & Moxibustion, 1999, 19(1): 27-28. (in Chinese)
[27] 李永明. 針刺研究的困惑與假說(二): 從假說到循證針灸理論. 中國中西醫結合雜志, 2019, 39(10): 1160-1165.
LI Y M. Puzzles and hypotheses of acupuncture (Ⅱ): From hypothesis to evidenced-based theory. Chinese Journal of Integrated Traditional and Western Medicine, 2019, 39(10): 1160-1165. (in Chinese)
[28] 李永明. 針刺研究的困惑與假說. 中國中西醫結合雜志, 2013, 33(11): 1445-1448. doi:10.7661/CJIM.2013.11.1445.
LI Y M. Puzzles and hypotheses of acupuncture. Chinese Journal of Integrated Traditional and Western Medicine, 2013, 33(11): 1445- 1448. doi:10.7661/CJIM.2013.11.1445. (in Chinese)
[29] 汪麗, 張汝芝, 金慧玲. 特絡細胞及其胞外囊泡與細胞間交流. 中國組織化學與細胞化學雜志, 2017, 26(1): 79-82. doi:10.16705/ j.cnki.1004-1850.2017.01.015.
WANG L, ZHANG R Z, JIN H L. Telocytes, their extracellular vesicles and intercellular communication. Chinese Journal of Histochemistry and Cytochemistry, 2017, 26(1): 79-82. doi:10.16705/ j.cnki.1004-1850.2017.01.015. (in Chinese)
[30] FAUSSONE-PELLEGRINI M S, GHERGHICEANU M. Telocyte's contacts. Seminars in Cell & Developmental Biology, 2016, 55: 3-8. doi:10.1016/j.semcdb.2016.01.036.
[31] RUSU M C, NICOLESCU M I, JIANU A M, LIGHEZAN R, M?NOIU V S, P?DURARU D. Esophageal telocytes and hybrid morphologies. Cell Biology International, 2012, 36(12): 1079-1088. doi:10.1042/CBI20120007.
[32] CISMASIU V B, POPESCU L M. Telocytes transfer extracellular vesicles loaded with microRNAs to stem cells. Journal of Cellular and Molecular Medicine, 2015, 19(2): 351-358. doi:10.1111/jcmm.12529.
[33] CRETOIU S M, CRETOIU D, MARIN A, RADU B M, POPESCU L M. Telocytes: Ultrastructural, immunohistochemical and electrophysiological characteristics in human myometrium. Reproduction (Cambridge, England), 2013, 145(4): 357-370. doi:10.1530/REP-12-0369.
[34] LIAO Z F, CHEN Y L, DUAN C C, ZHU K K, HUANG R J, ZHAO H, HINTZE M, PU Q, YUAN Z Q, LV L C, CHEN H Y, LAI B L, FENG S S, QI X F, CAI D Q. Cardiac telocytes inhibit cardiac microvascular endothelial cell apoptosis through exosomal miRNA- 21-5p-targeted cdip1 silencing to improve angiogenesis following myocardial infarction. Theranostics, 2021, 11(1): 268-291. doi:10. 7150/thno.47021.
[35] 劉里遠, 潘娟. 皮膚交感物質線組織學及毛囊立毛肌在經絡實質中的動力靶器官作用. 北京師范大學學報(自然科學版), 2003, 39(6): 807-813. doi:10.3321/j.issn: 0476-0301.2003.06.020.
LIU L Y, PAN J. The histology of the skin sympathetic substance-line and the action of dynamic target organs of arrector pili muscles in essence of jinlo. Journal of Beijing Normal University (Natural Science), 2003, 39(6): 807-813. doi:10.3321/j.issn: 0476-0301.2003. 06.020. (in Chinese)
Morphological Characteristics of Telocytes at Sheep Acupoints and Its Relationship with Surrounding Structures
ZHANG YingXin, YANG Min, BAI XueBing, CHEN Chang, WU RuiZhi, YANG Ping, CHEN QiuSheng
College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095
【】 Meridian theory is the cornerstone of Traditional Chinese Medicine (TCM), and acupoints are the key sites on the meridian, which are the implementation location of the acupuncture. However, there are different opinions on the structural basis and morphological composition of acupoints,which cannot be scientifically clarified. As a newly found type of interstitial cells, Telocytes (TCs) were suggested to be the potential essence cells of the meridian by morphological study recently, but the characteristics and distribution of TCs at acupoints need to be further elucidated. 【】 This study aimed to analyze the structural differences between acupoints and non-acupoints, and to explore the morphological characteristics of TCs at acupoints. The structural relations between TCs and its surrounding components were also analyzed, so as to provide theoretical support for the study of the cellular mechanism of TCM acupuncture treatment. 【】 The skin tissues of Baihui (Du20), Quchi (LI11), Sanyinjiao (Sp6), Danzhong (Ren17), Chengjiang (Ren24), Erjian (EP4) and non-acupoints on the back and abdomen were collected from five adult healthy Hu sheep. TCs and Tps (telopodes) were stained by specific markers CD34 and Vimentin, the mast cells were labeled by TPS, and nerves were identified by PGP9.5. Extracellular vesicles were marked by TSG101. The structure and fine composition of skin acupoints and non-acupoints were analyzed by H.E and immunohistochemical techniques (IHC), and the morphological quantitative analysis of the data was carried out by using ImageJ and Image-Pro Plus statistical software. The distribution differences of TCs and its related structures at acupoints and non-acupoints were analyzed. On this basis, the morphological characteristics and stereoscopic structure of TCs were observed by transmission electron microscope (TEM), scanning electron microscope (SEM) and immunofluorescence (IF) double labeling technique, and the morphological relationship between TCs and these structures was further analyzed, thus determining the ultramorphology and material basis of acupoints.【】 There were such structures as hair follicles, sebaceous glands, sweat glands and arrector pili muscle, as well as nerves, blood vessels, mast cells, collagen fiber bundles at the acupoints and non-acupoints. However, the number of nerves, blood vessels and mast cells distribution at acupoints was significantly more than that at non-acupoints (<0.05). More importantly, TCs with slender tubular processes (telopodes, Tps) were distributed in the skins, and the distribution of TCs at the acupoints was significantly different from that of non-acupoints (<0.05).TCs could be used as the integrator of acupoints stroma. There were extensive relationships between TCs themselves or TCs and surrounding morphological structures (including gap junctions and extracellular vesicles, etc.), which could develop a structural network system.At the ultramicro level, it was observed that the Tps was a typical beaded appearance, which was composed of alternating arrangement of the inflated part (podom, Pd) and the slender stenotic part (podomer, P).The well-developed mitochondria in the cytoplasm of podom, the cellular connection between Tps and Tps, and a large number of extracellular vesicles on or around TCs (significantly more than non-acupoints (<0.05)) ensured the core role of TCs in the structure of acupoints.Moreover, the structural connection between TCs and epidermal derivatives also verified the relationship between acupoints and epidermal derivatives in the classic book() at the cellular level. 【】Structural compositions at the acupoints and non-acupoints were basically the same, while the number of TCs and Tps, nerves, blood vessels, mast cells, extracellular vesicles at acupoints was significantly more than that at non-acupoints; TCs and Tps had the functional structures of connecting and integrating various morphological components, which might be mediators or integrators of different systems at the acupoints. The cell connections among TCs, developed mitochondria and extracellular vesicles had the structural basis for cell communication and energy generation, which corresponds to the “Qi-Xue” in TCM.
acupoints; microstructure; telocytes; extracellular vesicles; sheep

2021-11-05;
2022-04-28
國家自然科學基金(31872433)、高校基本科研業務經費(KYZ202102)
張迎鑫,E-mail:1292958759@qq.com。通信作者陳秋生,E-mail:chenqsh305@njau.edu.cn
(責任編輯 林鑒非)