


摘要: 為減少在帶狀無線傳感器網絡下數據傳輸延時,提出一種基于數據壓縮和線路調度的實時智能數據收集算法. 首先通過對采集數據進行變換訓練評估數據相關性,確定分割編碼最長尺度,以此重編碼實現冗余信息壓縮; 然后計算數據收集占用的最大時間槽長度,調度網絡收集鏈路,最小化時延; 最后通過多路徑傳輸機制構建傳輸能耗模型,利用Lagrange函數算法求解,完成數據收集. 仿真實驗結果表明,該算法網絡負載均衡,數據收集傳輸時延較小,能量消耗小,魯棒性較好.
關鍵詞: 帶狀無線傳感網絡; Lagrange函數算法; 實時數據收集; 鏈路調度
中圖分類號: TP391; TN915? 文獻標志碼: A? 文章編號: 1671-5489(2023)02-0393-07
Real-Time Intelligent Data Collection AlgorithmBased on Banded Wireless Sensor Networks
ZHANG Yee
(College of Computer and Network Engineering,Shanxi Datong University,Datong 037009,Shanxi Province,China)
Abstract: In order to reduce the delay of data transmission in banded wireless sensor networks,the author proposed a real-time intelligent data collection algorithm based
on data compression and line scheduling. Firstly,through the transformation training of the collected data,the correlation of the data was evaluated,and
the longest scale of segmentation coding was determined,so that the redundant information was compressed by recoding. Secondly,the author calculated the maximum time slot length oc
cupied by data collection,scheduled network collection links,and minimized time delay.? Finally,the transmission energy consumption model was built by multi-path transmi
ssion mechanism,and solved by Lagrange function algorithm to complete data collection. The simulation results show that the proposed algorithm has the advant
ages of network load balancing,small data collection? transmission delay,low energy consumption and good robustness.
Keywords: banded? wireless sensor network; Lagrange function algorithm; real-time data collection; link scheduling
收稿日期: 2022-04-15.
作者簡介: 張葉娥(1975—),女,漢族,碩士,講師,從事無線傳感器網絡數據收集和深度學習的研究,E-mail: zhangyee0022@163.com.
基金項目: 山西省自然科學基金(批準號: 201801D121117)和山西大同大學2019年度科研基金(批準號: 2019K14).
無線傳感器具有成本低、 可適應各種惡劣環境、 靈活裝置等優點,目前已廣泛應用于特定場所探測觀測及故障診斷等領域. 傳感器節點眾多,可通過各節點間的多跳和相互協作,完成數據的實時收集和傳輸[1]. 帶狀無線傳感器網絡相比于普通的無線傳感器網絡,更適用于帶狀區域中,例如對鐵路、 公路及橋梁交通的狀態診斷,管道、 河流、 煤礦[2]等情況的探測,都具有較好的數據收集和傳輸功效,其網絡結構不同于傳統的無線傳感器網絡,特有的拓撲性可通過相鄰Sink節點之間進行探測……