999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

一類非線性Schr?dinger方程變號解的存在性

2023-04-29 00:00:00陳瑾范馨香

摘要:研究了一類非線性Schr?dinger方程:-Δu+Vxu=fx,u,x∈RN,其中f的原函數滿足的超二次條件比(AR)條件更弱.利用下降流不變集方法,證明了該方程存在變號解.

關鍵詞:Schr?dinger方程; 下降流不變集; 變號解

中圖分類號:O175 文獻標志碼:A

Existence of Sign Changing Solution fora Class of Nonlinear Schr?dinger Equations

CHEN Jin, FAN Xin-xiang

(Concord University College, Fujian Normal University, Fuzhou 350117, China)

Abstract:In this paper, we consider a class of nonlinear Schr?dinger equations -Δu+Vxu=fx,u,x∈RN, where the super-quadratic conditions satisfied by the primitive of f are weaker than Ambrosetti-Rabinowitz type condition. By using the method of invariant sets of descending flow, we prove the existence of sign changing solution for this equation.

Key words:Schr?dinger equation; invariant set of descending flow; sign changing solution

0 引言

1 預備知識

2 主要定理的證明

2.1 算子A的定義和性質

2.2 下降流不變集

2.3 變號解的存在性

參考文獻:

[1] BARTSCH T,WILLEM M?.Infinitely many nonradial solutions of a euclidean scalar field equation [J].Journal of Functional Analysis,1993,117(2):447-460.

[2] BARTSCH T,WILLEM M.Infinitely many radial solutions of a semilinear elliptic problem onRN [J].Archive for Rational Mechanics and Analysis,1993,124(3):261-276.

[3] ZHANG Q Y,XU B.Multiplicity of solutions for a class of semilinear Schr?dinger equations with sign-changing potential [J].Journal of Mathematical Analysis and Applications,2011,377(2):834-840.

[4] TANG X H.Infinitely many solutions for semilinear Schr?dinger equations with sign-changing potential and nonlinearity [J].Journal of Mathematical Analysis and Applications,2013,401(1):407-415.

[5] CHENG R,WU Y.Remarks on infinitely many solutions for a class of Schr?dinger equations with sublinear nonlinearity [J\].Mathematical Methods in the Applied Sciences,2020,1(1):1-11.

[6] BARTSCH T,WANG Z Q.Existence and multiplicity results for some superlinear elliptic problems on RN [J].Communications in Partial Differential Equations,1995,20(9-10):1725-1741.

[7] 呂定洋.具有變號位勢和非線性項的薛定諤方程的無窮多解 [J].湖南第一師范學院學報,2016,16(2):97-99.

[8] BARTSCH T,LIU Z L,WETH T.Sign changing solutions of superlinear Schr?dinger equations [J].Communications in Partial Differential Equations,2005,29(1-2):25-42.

[9] CHIPOT P,QUITTNER P.Handbook of Differential Equations-Stationary Partial Differential Equations[M].North Holland:Elsevier,2005.

[10] LIU Z L,WANG Z Q,ZHANG J.Infinitely many sign-changing solutions for the nonlinear Schr?dinger-Poisson system[J].Annali di Matematica Pura ed Applicata,2016,195(3):775-794.

[11] BARTSCH T,WANG Z Q.On the existence of sign changing solutions for semilinear Dirichlet problems[J].Topological Methods in Nonlinear Analysis,1996,7(1):115-131.

[12] BARTSCH T,LIU Z L,WETH T.Nodal solutions of a p-Laplacian equation [J].Proceedings of the London Mathematical Society,2005,91(1):129-152.

[13] LIU J Q,LIU X,WANG Z Q.Multiple mixed states of nodal solutions for nonlinear Schr?dinger systems [J].Calculus of Variations and Partial Differential Equations,2015,52(3/4):565-586.

[責任編輯:趙慧霞]

主站蜘蛛池模板: 二级毛片免费观看全程| 国产精品毛片一区视频播| 青青青视频免费一区二区| 手机成人午夜在线视频| 国产男人天堂| 国产日韩久久久久无码精品| 九九九国产| 日韩在线视频网| 中文字幕人成乱码熟女免费| 日韩a级片视频| 国模在线视频一区二区三区| 色偷偷男人的天堂亚洲av| 一级毛片在线免费视频| 国产精品私拍99pans大尺度| 国产99在线观看| 天天做天天爱天天爽综合区| 精品国产网| 国产精品第5页| 国产00高中生在线播放| 久久激情影院| 亚洲午夜国产片在线观看| 大香伊人久久| 精品国产91爱| 一本一本大道香蕉久在线播放| 国产精品毛片一区| 97se亚洲综合在线韩国专区福利| 亚洲中文精品久久久久久不卡| 亚洲不卡网| 666精品国产精品亚洲| 国模私拍一区二区| 国产一区自拍视频| 亚洲IV视频免费在线光看| 日韩AV手机在线观看蜜芽| 国产一级小视频| 青青草91视频| 欧美午夜久久| 亚洲男人的天堂在线观看| 亚洲精品成人福利在线电影| 强奷白丝美女在线观看| 欧美精品亚洲日韩a| 欧美不卡视频一区发布| 亚洲人成网址| 91麻豆精品视频| WWW丫丫国产成人精品| 国产打屁股免费区网站| 在线国产你懂的| 国产性生交xxxxx免费| 午夜一级做a爰片久久毛片| 亚洲乱码在线视频| 国产高清无码麻豆精品| 亚洲日本韩在线观看| 久久毛片基地| 国产成人福利在线| 无码一区18禁| av在线5g无码天天| 真实国产乱子伦高清| 91人人妻人人做人人爽男同| 青草91视频免费观看| 国产拍在线| 亚洲综合经典在线一区二区| 欧美综合区自拍亚洲综合绿色 | 亚洲一区二区三区香蕉| 伊人久综合| 亚洲欧美自拍中文| 国产xx在线观看| 2021亚洲精品不卡a| 亚洲自拍另类| 久久精品丝袜高跟鞋| 亚洲人成网站色7777| 久久这里只有精品66| 国产精品亚洲αv天堂无码| 亚洲欧美日韩高清综合678| 欧美精品另类| 成人小视频在线观看免费| 免费观看男人免费桶女人视频| 欧美午夜精品| 高h视频在线| 国产三区二区| 看国产毛片| 久久精品人妻中文系列| 久久国产精品影院| 欧美成人看片一区二区三区|