張智宏,楊逸凡,韓新陽,王博,肖仁聳,王慧英,馬海樂,高獻禮
預制方便食品包裝技術與裝備
預制菜包裝技術的研究進展
張智宏1,楊逸凡1,韓新陽1,王博1,肖仁聳2,王慧英3,馬海樂1,高獻禮1
(1.江蘇大學 食品與生物工程學院,江蘇 鎮江 212013;2.宿遷市匯味食品有限公司,江蘇 宿遷 223900;3.廣東御膳廚食品科技有限公司,廣東 陽江 529800)
介紹預制菜的包裝技術,并對預制菜包裝技術的發展進行展望,以期為預制菜產業發展提供借鑒和參考。總結不同預制菜的特點,分析真空包裝和氣調包裝技術在不同預制菜領域中的應用現狀和存在問題,闡明其在預制菜包裝中的發展方向。可以通過向包裝材料中增加生物活性成分,以及包裝設備的機械化和智能化延伸,提升預制菜的產品品質、食用安全性和貨架期。活性包裝技術以及智能化技術在預制菜包裝領域的廣泛應用勢必會推動預制菜產業的可持續高質量發展,為提高預制菜品質和食用安全性提供借鑒和參考。
預制菜;包裝技術;真空包裝;氣調包裝;發展趨勢
預制菜是將一種或多種食品原料(肉類、水產和蔬菜等),按照標準加工流程,配以或不配以包括食品添加劑在內的調味料等輔料,經預加工和/或預烹調制成,并進行預包裝的成品或半成品的預制食品[1]。因此,預制菜可以被認為是將廚房烹飪的菜肴通過現代食品工業加工生產并通過合適的包裝和貯藏的菜肴。隨著社會和科技的進步,人們消費觀念的轉變以及一些突發公共衛生事件催生的“宅經濟”的發展,促進我國預制菜產業進入了快速發展階段。據艾媒咨詢報道,2021年我國預制菜市場規模達到3 459億元,預計到2026年預制菜市場規模將突破1萬億元[2]。然而,隨著預制菜市場的高速發展,預制菜的安全性事件也時常發生,備受消費者的關注[3-4]。預制菜包裝技術作為預制菜加工生產的重要環節,對預制菜的品質、食用安全性和貨架期等方面發揮重要的作用[5-7]。因此,本文通過介紹預制菜的包裝技術,并對預制菜包裝技術的發展進行展望,以期為預制菜產業發展提供借鑒和參考。
預制菜可以根據原料來源、加工程度、產品生熟程度、貯存方式等多個維度對其進行分類,根據最常用劃分依據,即根據預制菜食用方式將其分為即食食品、即烹食品、即熱食品和即配食品四大類,具體內容見表1所示[8]。從表1可以看出,根據預制菜食用方式的不同,預制菜產品所需要的加工程度也有所差異,不同預制菜類型加工流程如圖1所示。由于預制菜加工程度的差異會導致產品的質量和貯藏穩定性存在差異,如即食食品的生產過程均在食品加工工廠完成,縮短了原料到成品的運輸過程和貯藏時間,并且能利用較餐廳(B端)和家庭(C端)更為完整和先進的加工工藝、包裝技術和食品安全檢測系統,導致最終預制菜產品的品質更佳,而即配預制菜加工過程少,且在消費前需要貯藏,在一定程度上降低了產品貯藏穩定性[9-11]。此外,相較于即烹和即配預制菜,即食和即熱預制菜加工過程中已經通過烹調工藝(高溫處理),能最大程度地殺滅食物中微生物和氧化酶活性,且添加了食品香辛料和調味料,通過增加了食品抑菌、抗氧化成分(植物精油、多酚、多糖等)和改變了食品的環境(pH、水分活度、離子強度等),能有效地抑制貯藏期間微生物的滋生和食品酶致變質現象的發生,保持了食品貯藏的穩定性,延長了食品的貨架期[12-14]。
表1 預制菜的分類及特點

Tab.1 Classification and characteristic of prepared food

圖1 預制菜加工流程
真空包裝技術也稱減壓包裝,是將食品放入氣密性包裝容器中,抽去容器內的空氣,使密封后的容器內達到預定真空度而形成低氧環境,起到抑制微生物生長,延緩食品成分氧化變質,進而延長食品貨架期的作用[15]。真空包裝過程中選擇的氣密性材料主要包括聚酯類(PET)、聚酰胺/聚乙烯(PA/PE)復合膜、鋁箔復合膜(PET/AL/PE)等,其具有耐高溫、力學性能良好、防水、阻氧等特性[16]。
目前,真空包裝機械有機械擠壓式、插管式、室式和熱成型式等類型,具體真空包裝過程如圖2所示。雖然,真空包裝可以保持較低的氧分含量,但是該技術對于脆性食品、易結塊食品、含有尖刺且較硬的食物以及新鮮果蔬不宜使用。此外,真空包裝后食物仍然存在一定的水分和氧氣,對厭氧性微生物抑制效果較差,仍然存在安全風險。因此,近些年通過改善真空包裝材料、殺菌方式等方法提高真空包裝技術的保存效果和應用范圍。胡秀虹等[17]研究了不同微生物控制技術(低溫冷藏、巴氏滅菌和60Co γ輻照滅菌)對真空包裝即食食品腌制韭菜根的保質期和品質特性影響,結果表明巴氏殺菌(85 ℃、15 min)和60Co γ輻照滅菌(7 kGy/min)雖然可以有效殺菌,但會使樣品感官品質降低,而低溫冷藏(4 ℃)可以保持良好的感官品質至180 d。劉達玉等[18]則通過采用TiO2和SiO2復合納米薄膜真空冷卻包裝即配食品杏鮑菇。結果表明該方法能有效保持杏鮑菇貯藏期(40 d)的風味品質。Hanani等[19]采用銀–高嶺石活性薄膜包裹即配食品牛肉后采用真空包裝。結果表明,該方法對牛肉的pH以及色澤無影響,相較于僅采用真空包裝樣品,其提高了對嗜冷細菌和總需氧微生物的抑制活性,延長了牛肉的貯藏品質和貨架期。此外,Olaimat等[20]將殼聚糖–納米ZnO(1.0%)薄膜應用于即食食品和即烹食品的配料白色鹽澤奶酪后,采用低密度聚乙烯(LDPE)真空袋進行真空包裝。結果表明,該包裝材料在10 ℃或4 ℃貯藏條件下,能夠分別降低產品表面單核增生乳桿菌數量1.5log(CFU/g)和3.7log(CFU/g),有效地提高了奶酪的貯藏穩定性。然而,關于納米抗菌成分和活性成分在食品包裝過程中的遷移情況,以及它們進入食品是否會發生化學變化從而對人體健康造成危險等方面的研究較少,需要深入探索。
氣調包裝是一種利用2種及以上氣體組成的混合氣體取代包裝容器中的空氣,通過抑制微生物生長繁殖從而達到延長食品貯藏期和提高食品保鮮目的的包裝技術[21]。常用的氣體主要包括二氧化碳、氮氣和氧氣。其中二氧化碳可以抑制大多數需氧菌和霉菌,氧氣可以保持肉類和果蔬的新鮮度以及抑制厭氧菌的生長,而氮氣為惰性氣體,主要作為充填氣體[22-23]。目前,大量研究已經證明通過氣調包裝能夠延緩果蔬、鮮肉、海鮮等即配食品的貨架期,提高貯藏期間的品質[24-28]。此外,近些年氣調包裝也成功地應用于即熱和即食食品的保藏過程中,如黃燜雞、獅子頭、牛肉干、五香牛肉等[29-32]。然而,氣調包裝也存在著隨著保存時間的延長氣體組分會不斷改變,導致保鮮效果降低的現象。此外,對于不同類型的食材,所需要的混合氣體以及氣體組成也存在明顯差異。預制菜一般含有多種不同的食材,需要通過大量實驗來確定最佳氣體組成,造成氣調包裝預制菜的難度加大,這可能與不同食材代謝途徑、代謝強度以及存在微生物種類差異有關[33-34]。因此,對預制菜進行氣調包裝之前需要進行殺菌預處理,來殺滅預制菜原料中的微生物和氧化酶類,提高氣調包裝效果,一般采用熱殺菌過程,如巴氏殺菌、蒸汽高溫殺菌。相較于傳統熱殺菌技術,非熱加工技術對食品進行殺菌處理時,不會造成溫度的顯著提高(≤40 ℃),最大限度地保留了食品成分,并且對食品質地、風味不會帶來影響。因此,近些年為了提高氣調包裝的效果,結合一些非熱加工技術對預制菜尤其即配食品進行預處理,如低溫等離子體、靜高壓、脈沖電場等,然后再采用新型包裝材料進行氣調包裝獲得了較好的保鮮效果[25, 30, 35-37]。

圖2 不同類型真空包裝過程示意圖
目前氣調包裝方式主要有氣體沖洗式和真空補償式2種。氣流沖洗式是在包裝中連續充入混合氣體,將原先包裝袋中氣體進行置換并在包裝袋中形成正壓后封口。該方式因為不需要抽真空,所以包裝速度快,包裝內氧氣可以從21%降低至2%~5%。真空補償式則需要將包裝袋中空氣抽到一定真空度后,然后沖入混合氣體,或者邊抽真空邊充氣,達到要求后進行封裝。該方法可以讓包裝袋中殘氧率降低至3%以下,應用范圍更廣,但該方法的包裝速率較氣體沖洗式的低[38],2種氣調包裝方式如圖3所示。
廣義的活性包裝技術指在食品包裝過程中增加某些調節劑來調節貯藏過程中被包裝食品的微環境,如除氧劑、二氧化碳吸收/釋放劑、水分吸收劑、乙烯吸收劑、乙醇排放劑、風味釋放/吸收劑等來達到保鮮目的[39]。狹義的活性包裝技術則主要指采用天然可降解性生物基包裝材料以及添加一些具有抗氧化性、抗菌性的生物活性物質來提高食品貯藏品質和貨架期的包裝技術,通過全部或者部分替代傳統的包裝材料。活性包裝技術不僅能保證食品的品質和貨架期,而且降低了包裝材料使用后對環境的污染。目前研究比較多的活性包裝基材為多糖類(纖維素、果膠、淀粉、殼聚糖)、脂類(脂肪和蠟)、蛋白質類(膠原蛋白、酪蛋白和乳清蛋白等)和生物合成多聚物(聚乳酸、聚己內酯、聚乙醇等)。它們不僅具有生物相容性、生物降解性和無毒性的特點,而且具有較好的成膜性、機械性、阻氧性、抗菌性和抗氧化性等,能夠達到食品包裝的要求[40-46]。不同活性包裝材料系統和包裝類型如圖4所示。Zhao等[47]研究將姜黃素和丁香精油加入殼聚糖/明膠包裝膜用于即配食品鮮肉的包裝,結果表明該包裝材料具有良好的疏水性和抗紫外線效果,并且具有較好的抗氧化和抗菌性能,能夠延長鮮肉保質期3 d。Fallah等[48]研究將姜黃素和小茴香精油應用于即配食品羊腰的包裝中,結果表明該包裝技術能夠延長羊腰保質期至25 d。然而,目前使用的天然活性物質往往存在一定的色澤和風味,直接應用于接觸式食品包裝時,存在物質遷移的問題。雖然這些天然化合物基本不存在食品安全問題,但可能會影響被包裝食品的色澤和風味。因此,如何控制物質遷移是目前活性包裝技術需要解決的問題之一[49]。此外,天然高分子化合物結構存在一些缺陷,如成膜性不佳、親水性高等,不能滿足食品包裝的需要。因此,目前也有一些研究通過對天然高分子材料進行物理/化學修飾來降低分子量,增加活性基團數量以及增加抗氧化和抗菌活性等來增強其在食品包裝中的保鮮效果。Hosseini等[50]通過介電屏障放電(DBD)等離子體對殼聚糖(CH)和小麥胚芽生物活性肽(PEP)涂布的聚乳酸/乙基纖維素(PLA/EC)混合膜表面進行修飾,結果表明在最佳的處理條件下(20 kV、5 min)增加了復合膜表面的粗糙度和功能官能團(羰基和羥基)數量,增加了PEP復合膜的抗氧化和抗菌活性。Moradi等[51]通過等離子體修飾富含洋蔥和土豆皮提取物的低密度聚乙烯活性薄膜,并將其應用于雞腿肉保鮮過程。結果表明,該處理(350 W、45 s)可以提升活性薄膜的潤濕性和提取物的負載能力。用該活性膜包裝雞腿肉,并在4 ℃條件下貯藏6 d后,測量的硫代巴比妥酸、總揮發性氮和總活菌數均低于對照組的。

圖3 不同類型氣調包裝過程

圖4 不同活性包裝系統
預制菜智能包裝技術指采用對環境因素具有“識別”和“判斷”功能的材料對預制菜進行包裝的技術,它能夠識別和顯示包裝空間的濕度、壓力、pH值、微生物等重要參數。通過利用特殊化合物和傳感器監測預制菜在貯藏期間發生的物理、化學和生物學變化,包括pH值、CO2含量、生物胺含量等對包裝產生刺激時,通過顏色變化來反饋食品的新鮮程度和安全性。例如,預制菜貯藏過程中由于微生物分解導致食品pH的改變,通過智能包裝中含有的花青素的視覺色彩發生變化給消費者真實地反饋預制菜食品的新鮮度,提升消費者的知情權[52-55]。此外,通過將生物傳感器結合到預制菜包裝材料中,通過生物反應器(納米金顆粒、酶、抗體、抗原等)與目標微生物之間的相互作用,帶來如顏色等信號的改變,從而快速地反映出食品被微生物污染的情況,讓消費者了解食品的新鮮程度,保證預制菜食用安全性[56]。相較于活性包裝的活性成分,智能包裝中智能成分并不以將其成分釋放到食物中為目的。智能包裝還可有助于改進食品的危害分析及關鍵控制點(HACCP)、質量分析與關鍵控制點(QACCA)等安全體系,即開發現場檢測發現不安全食品,確定潛在的健康危害,并制定減少或消除其發生的策略。它還有助于識別強烈影響質量屬性的過程,并有效地提高最終的食品質量。因此,智能包裝系統主要包括傳感器、指示器和識別反饋系統,如射頻識別技術(RFID)和近場通信技術(NFC)等[57]。智能包裝系統示意圖如圖5所示。Tavakoli等[58]將花青素和藻藍蛋白混合物(體積比為3∶1)后加入明膠/大豆多糖復合膜中,通過復合膜色澤的變化與草魚的pH值、揮發性鹽基氮和細菌數的對應關系來跟蹤草魚腐敗過程。Rong等[59]采用羧甲基纖維素鈉/卡拉膠結合溴百里酚藍通過涂膜干燥形成的智能標簽來監測鮮切木瓜的新鮮度,利用包裝袋中CO2濃度的變化,導致智能標簽色澤發生相應變化來反映鮮切木瓜貯藏期間的新鮮度。此外,Jiao等[60]通過形成雙層智能包裝膜來包裝即配肉制品。其中接觸肉的底層包裝膜采用聚乙烯醇納米纖維+花青素的結構來監測肉的品質,而外層膜則用聚氨酯納米纖維+聚六亞甲基雙胍鹽酸鹽(PHMB)形成疏水抗菌層,從而不僅監測了貯藏期間(4 ℃)肉的品質,而且在此期間保鮮膜的抗菌作用可以延緩肉的腐敗過程。雖然,目前對智能包裝的研究還不夠完善,但是隨著智能包裝材料的多元化、機理研究的不斷深入以及智能系統的不斷完善,智能包裝在預制菜領域的應用將得到快速發展。

圖5 智能包裝系統
隨著預制菜產業的不斷深化,消費迭代更新,會使得越來越多的消費者選擇預制菜食品。為了達到保證預制菜的食用安全性和延長保質期等目的,預制菜包裝技術會不斷的推陳出新,開發出更為方便安全的預制菜包裝技術。隨著智能裝備和互聯網技術的發展,機械化、自動化、智能化將成為預制菜生產發展的必然趨勢[61]。此外,活性保鮮材料的廣泛研究,通過向可降解包裝材料中添加無毒天然抗菌、抗氧化等活性物質,來抑制食品貯藏期間的微生物生長和減少外界因素對食品品質的影響,從而延長預制菜的貯藏期[62-63]。另外,隨著新型殺菌技術的研究與開發,通過新型非熱殺菌方式結合包裝技術能夠最大限度地保證預制菜的微生物安全性和最小風味的改變,例如低溫等離子體、高靜壓、輻照滅菌等[12, 64]。此外,隨著智能包裝材料的快速發展,通過利用智能包裝技術持續追蹤和實時反饋食品品質等重要信息,提高了預制菜企業的食品安全風險管控能力,并且增強了消費者對食品真實情況的知情權和消費體驗感。
隨著我國預制菜產業的不斷升級以及預制菜國家標準的建立和完善,預制菜行業將會迎來巨大的發展勢頭。預制菜包裝技術作為預制菜加工的重要環節,對預制菜產品的質量和保質期起到至關重要的作用。因此,開發安全可降解環境友好型的預制菜包裝材料,并且通過機械化、自動化、智能化的包裝技術來提升預制菜的食用安全性、提高貯藏品質和延長貨架期,加速預制菜包裝的效率。融入“以人為本”的包裝理念來加強消費者的知情權和選擇權,勢必會推動預制菜產業可持續高質量發展,為預制菜走向千家萬戶奠定基礎。
[1] 王衛, 張銳, 張佳敏, 等. 預制菜及其研究現狀、存在問題和發展展望[J]. 肉類研究, 2022, 36(9): 37-42.
WANG Wei, ZHANG Rui, ZHANG Jia-min, et al. Status Quo, Problems and Future Prospects of Prepared Dishes[J]. Meat Research, 2022, 36(9): 37-42.
[2] 王寧. 預制菜產業能否突出重圍[N]. 中國食品報, 2022-03-23(7).
WANG Ning. Whether Prepared Dishes Industry Can Get Through the Close Siege[N]. China Food Newspaper, 2022-03-23(7).
[3] ZHANG Shu-hong, WU Qing-ping, ZHANG Ju-mei, et al. Occurrence and Characterization of Enteropathogenic Escherichia Coli (EPEC) in Retail Ready-to-Eat Foods in China[J]. Foodborne Pathogens and Disease, 2016, 13(1): 49-55.
[4] KITCH C J, TABB A M, MARQUIS G E, et al. Species Substitution and Mislabeling of Ceviche, Poke, and Sushi Dishes Sold in Orange County, California[J]. Food Control, 2023, 146: 109525.
[5] TOPUZ F, UYAR T. Antioxidant, Antibacterial and Antifungal Electrospun Nanofibers for Food Packaging Applications[J]. Food Research International, 2020, 130: 108927.
[6] TYAGI P, SALEM K S, HUBBE M A, et al. Advances in Barrier Coatings and Film Technologies for Achieving Sustainable Packaging of Food Products - a Review[J]. Trends in Food Science & Technology, 2021, 115: 461-485.
[7] GHAANI M, COZZOLINO C A, CASTELLI G, et al. An Overview of the Intelligent Packaging Technologies in the Food Sector[J]. Trends in Food Science & Technology, 2016, 51: 1-11.
[8] 王娟, 高群玉, 婁文勇. 我國預制菜行業的發展現狀及趨勢[J]. 現代食品科技, 2023, 39(2): 99-103.
WANG Juan, GAO Qun-yu, LOU Wen-yong. Development Status and Trends of the Pre-Prepared Food Industry in China[J]. Modern Food Science & Technology, 2023, 39(2): 99-103.
[9] WANG Ping, HU An-tuo, FAN Xiao-pan, et al. Bacterial Communities in Prepared Foods Available at Supermarkets in Beijing, China[J]. Food Research International, 2019, 120: 668-678.
[10] ALMERIA S, DA SILVA A J, BLESSINGTON T, et al. Evaluation of the U.S. Food and Drug Administration Validated Method for Detection ofin High-Risk Fresh Produce Matrices and a Method Modification for a Prepared Dish[J]. Food Microbiology, 2018, 76: 497-503.
[11] SATO J, MAENISHI T, SAITO Y, et al. Effects of Modified Atmosphere Packaging, Food Life Extenders and Temperature on the Shelf Life of Ready-Made Dishes[J]. Biocontrol Science, 2016, 21(1): 13-19.
[12] YU Qi, ZHANG Min, JU Rong-hua, et al. Advances in Prepared Dish Processing Using Efficient Physical Fields: A Review[J]. Critical Reviews in Food Science and Nutrition, 2022: 1-15.
[13] LI Quan-quan, LU Jie, CHANG Ya-jie, et al. Effect of Different Cooking Methods on Nutritional Intake and Different Storage Treatments on Nutritional Losses of Abalone[J]. Food Chemistry, 2022, 377: 132047.
[14] ?ZTURAN S, üNAL ?ENG?R G F. Effects of Cooking Methods on the Quality and Safety of Crayfish (Eschscholtz, 1823) during Chilled Storage[J]. Journal of Food Processing and Preservation, 2022, 46(10): e16887.
[15] 蘇文艷, 王遠亮. 軟包裝技術在我國預制肉類菜肴制品貯藏中的應用[J]. 食品安全導刊, 2018(21): 145.
SU Wen-yan, WANG Yuan-liang. Application of Soft Packaging Technology in the Storage of Prefabricated Meat Dishes in China[J]. China Food Safety Magazine, 2018(21): 145.
[16] 張雪, 張春江, 黃峰, 等. 軟包裝技術在我國預制肉類菜肴制品貯藏中的應用[J]. 肉類研究, 2015, 29(7): 30-33.
ZHANG Xue, ZHANG Chun-jiang, HUANG Feng, et al. Application of Flexible Packaging Technology in the Preservation of Prepared Meat Products[J]. Meat Research, 2015, 29(7): 30-33.
[17] 胡秀虹, 龍杰鳳, 楊勝舟, 等. 真空包裝腌制韭菜根的保鮮技術的應用研究[J]. 中國調味品, 2021, 46(11): 101-104.
HU Xiu-hong, LONG Jie-feng, YANG Sheng-zhou, et al. Study on the Application of Preservation Technology of Pickled Chinese Chives Roots by Vacuum Packaging[J]. China Condiment, 2021, 46(11): 101-104.
[18] 劉達玉, 胡海洋, 陳衛軍, 等. 納米薄膜真空包裝杏鮑菇在貯藏中的風味品質變化[J/OL]. 食品工業科技, 2023: 1-13.https://doi.org/10.13386/j.issn1002-0306. 2022090099.
LIU Da-yu, HU Hai-yang, CHEN Wei-jun, et al. Changes of Flavor and Quality of Pleurotus Eryngii Packed with Nano Film in Vacuum During Storage[J/OL]. Science and Technology of Food Industry, 2023: 1-13.https://doi. org/10.13386/j.issn1002-0306. 2022090099.
[19] HANANI Z, REICH F, TOLKSDORF T, et al. Monitoring the Effect of Active Packaging Films with Silver-Kaolinite Using Different Packaging Systems on the Quality of Beef Meat[J]. Heliyon, 2022, 8(10): 11019.
[20] OLAIMAT A N, AHMAD SAWALHA A G, AL- NABULSI A A, et al. Chitosan–ZnO Nanocomposite Coating for Inhibition ofon the Surface and within White Brined Cheese[J]. Journal of Food Science, 2022, 87(7): 3151-3162.
[21] 姚倩儒, 陳歷水, 李慧, 等. 冷鮮肉保鮮包裝技術現狀和發展趨勢[J]. 包裝工程, 2021, 42(9): 194-200.
YAO Qian-ru, CHEN Li-shui, LI Hui, et al. Current Situation and Development Trend of Packaging Technology for Chilled Fresh Meat[J]. Packaging Engineering, 2021, 42(9): 194-200.
[22] BETERAMS A, TOLKSDORF T, MARTIN A, et al. Change ofandCounts in Packaged Broiler Breast Meat Stored under Modified Atmosphere and Vacuum Conditions at 4 and 10 ℃ Based on Cultural and Molecular Biological Quantification[J]. Food Control, 2023, 145: 109337.
[23] YANG J, LIANG R, MAO Y, et al. Potential Inhibitory Effect of Carbon Dioxide on the Spoilage Behaviors of Pseudomonas Fragi in High-Oxygen Packaged Beef During Refrigerated Storage[J]. Food microbiology, 2023, 112: 1-10.
[24] KOYUNCU M, BATUR S. The Effects of Modified Atmosphere Packaging on the Quality Properties of Water Buffalo Milk’s Concentrated Cream[J]. Molecules, 2023, 28(3): 1310.
[25] BALANON D A G, SANE A, JARIYASAKOOLROJ P, et al. Application of Biodegradable Film as Modified Atmosphere Packaging for Red Chili (Cv. Jinda)[J]. Packaging Technology and Science, 2023, 36(5): 379-388.
[26] LI Xiao-yan, XIONG Tian-tian, ZHU Qiu-nan, et al. Combination of 1-MCP and Modified Atmosphere Packaging (MAP) Maintains Banana Fruit Quality under High Temperature Storage by Improving Antioxidant System and Cell Wall Structure[J]. Postharvest Biology and Technology, 2023, 198: 112265.
[27] AFOLABI A S, CHOI I L, LEE J H, et al. Effect of Pre-Storage CO2Treatment and Modified Atmosphere Packaging on Sweet Pepper Chilling Injury[J]. Plants, 2023, 12(3): 671.
[28] ESPINOZA RODEZNO L A, BONILLA F, REYES V, et al. Inactivation ofandin Cryogenically Frozen Oyster Meat Using Steam Venting Technology[J]. Journal of Food Engineering, 2023, 340: 111285.
[29] LIU Jun-mei, YUAN Shuang, HAN Dong, et al. Effects of CO2-Assisted High-Pressure Processing on Microbiological and Physicochemical Properties of Chinese Spiced Beef[J]. Innovative Food Science & Emerging Technologies, 2023, 84: 103261.
[30] MAO Yan-wei, YANG Sai, ZHANG Yi-min, et al. High-Pressure Processing and Modified Atmosphere Packaging Combinations for the Improvement of Dark, Firm, and Dry Beef Quality and Shelf-Life[J]. Meat Science, 2023, 198: 109113.
[31] 梁榮蓉, 劉璐, 翟朝宇, 等. 黃燜雞氣調包裝保鮮技術[J]. 食品與發酵工業, 2018, 44(12): 188-193.
LIANG Rong-rong, LIU Lu, ZHAI Chao-yu, et al. Effect of Modified Atmosphere Package on the Preservation of Braised Chicken Meat[J]. Food and Fermentation Industries, 2018, 44(12): 188-193.
[32] 李冉, 朱和源, 葉可萍, 等. 氣調包裝獅子頭冷藏過程中微生物變化及菌群結構分析[J]. 食品工業科技, 2021, 42(11): 99-105.
LI Ran, ZHU He-yuan, YE Ke-ping, et al. Analysis of Microbial Counts and Bacterial Community in Modified Atmosphere Packaging Meatballs[J]. Science and Technology of Food Industry, 2021, 42(11): 99-105.
[33] ABOU FAYSSAL S, EL SEBAALY Z, SASSINE Y N. Pleurotus Ostreatus Grown on Agro-Industrial Residues: Studies on Microbial Contamination and Shelf-Life Prediction under Different Packaging Types and Storage Temperatures[J]. Foods, 2023, 12(3): 524.
[34] ALESSANDRIA V, FERROCINO I, CARTA V, et al. Selection of Food Cultures with Protective Properties for Cooked Ham[J]. Food Microbiology, 2023, 112: 104218.
[35] SOARES T R P, REIS A F, SANTOS J W S, et al. NaY-Ag Zeolite Chitosan Coating Kraft Paper Applied as Ethylene Scavenger Packaging[J].Food and Bioprocess Technology, 2023, 16(5): 1101-1115.
[36] ZHANG Lan, ZHANG Min, MUJUMDAR A S, et al. Potential Nano Bacteriostatic Agents to be Used in Meat-Based Foods Processing and Storage: A Critical Review[J]. Trends in Food Science & Technology, 2023, 131: 77-90.
[37] WU Yue, CHENG Jun-hu, KEENER K M, et al. Inhibitory Effects of Dielectric Barrier Discharge Cold Plasma on Pathogenic Enzymes and Anthracnose for Mango Postharvest Preservation[J]. Postharvest Biology and Technology, 2023, 196: 112181.
[38] 徐文達. 國外食品氣調包裝技術及設備[J]. 中國包裝, 1994, 14(5): 62-63.
XU Wen-da. The Types of Modified Atmasphere Packaging at Home and Abroad[J]. China Packaging, 1994, 14(5): 62-63.
[39] OZDEMIR M, FLOROS J D. Active Food Packaging Technologies[J]. Critical Reviews in Food Science and Nutrition, 2004, 44(3): 185-193.
[40] ATTA O M, MANAN S, SHAHZAD A, et al. Biobased Materials for Active Food Packaging: A Review[J]. Food Hydrocolloids, 2022, 125: 107419.
[41] GUPTA V, BISWAS D, ROY S. A Comprehensive Review of Biodegradable Polymer-Based Films and Coatings and Their Food Packaging Applications[J]. Materials, 2022, 15(17): 5899.
[42] WU Hai-zhou, RICHARDS M P, UNDELAND I. Lipid Oxidation and Antioxidant Delivery Systems in Muscle Food[J]. Comprehensive Reviews in Food Science and Food Safety, 2022, 21(2): 1275-1299.
[43] WANG Qian-kun, CHEN Wen-zhang, ZHU Wen-xin, et al. A Review of Multilayer and Composite Films and Coatings for Active Biodegradable Packaging[J]. Npj Science of Food, 2022, 6: 18.
[44] ZHU Fan. Polysaccharide Based Films and Coatings for Food Packaging: Effect of Added Polyphenols[J]. Food Chemistry, 2021, 359: 129871.
[45] CALVA-ESTRADA S J, JIMéNEZ-FERNáNDEZ M, LUGO-CERVANTES E. Protein-Based Films: Advances in the Development of Biomaterials Applicable to Food Packaging[J]. Food Engineering Reviews, 2019, 11(2): 78-92.
[46] HE Yuan, YE Hai-chuan, YOU Ting-ting, et al. Sustainable and Multifunctional Cellulose-Lignin Films with Excellent Antibacterial and UV-Shielding for Active Food Packaging[J]. Food Hydrocolloids, 2023, 137: 108355.
[47] ZHAO Ru-nan, GUO Hao-cheng, YAN Tian-yi, et al. Fabrication of Multifunctional Materials Based on Chitosan/Gelatin Incorporating Curcumin-Clove Oil Emulsion for Meat Freshness Monitoring and Shelf-Life Extension[J]. International Journal of Biological Macromolecules, 2022, 223: 837-850.
[48] FALLAH A A, SARMAST E, HABIBIAN DEHKORDI S, et al. Low-Dose Gamma Irradiation and Pectin Biodegradable Nanocomposite Coating Containing Curcumin Nanoparticles and Ajowan () Essential Oil Nanoemulsion for Storage of Chilled Lamb Loins[J]. Meat Science, 2022, 184: 108700.
[49] CHEN Wen-zhang, MA Shao-bo, WANG Qian-kun, et al. Fortification of Edible Films with Bioactive Agents: A Review of Their Formation, Properties, and Application in Food Preservation[J]. Critical Reviews in Food Science and Nutrition, 2022, 62(18): 5029-5055.
[50] HOSSEINI S, KADIVAR M, SHEKARCHIZADEH H, et al. Cold Plasma Treatment to Prepare Active Polylactic Acid/Ethyl Cellulose Film Using Wheat Germ Peptides and Chitosan[J]. International Journal of Biological Macromolecules, 2022, 223: 1420-1431.
[51] MORADI D, RAMEZAN Y, ESKANDARI S, et al. Plasma-Treated LDPE Film Incorporated with Onion and Potato Peel Extract– a Food Packaging for Shelf Life Extension on Chicken Thigh[J]. Food Packaging and Shelf Life, 2023, 35: 101012.
[52] ALPASLAN D, ERSEN DUDU T, AKTAS N. Synthesis of Smart Food Packaging from Poly(Gelatin- Co-Dimethyl Acrylamide)/Citric Acid-Red Apple Peel Extract[J]. Soft Materials, 2021, 19(1): 64-77.
[53] ALIZADEH-SANI M, MOHAMMADIAN E, RHIM J W, et al. PH-Sensitive (Halochromic) Smart Packaging Films Based on Natural Food Colorants for the Monitoring of Food Quality and Safety[J]. Trends in Food Science & Technology, 2020, 105: 93-144.
[54] CHEN Shou-e, BRAHMA S, MACKAY J, et al. The Role of Smart Packaging System in Food Supply Chain[J]. Journal of Food Science, 2020, 85(3): 517-525.
[55] MOHAMMADIAN E, ALIZADEH-SANI M, JAFARI S M. Smart Monitoring of Gas/Temperature Changes within Food Packaging Based on Natural Colorants[J]. Comprehensive Reviews in Food Science and Food Safety, 2020, 19(6): 2885-2931.
[56] BAO Feng, LIANG Zhao, DENG Jing, et al. Toward Intelligent Food Packaging of Biosensor and Film Substrate for Monitoring Foodborne Microorganisms: A Review of Recent Advancements[J]. Critical Reviews in Food Science and Nutrition, 2022: 1-12.
[57] BIJI K B, RAVISHANKAR C N, MOHAN C O, et al. Smart Packaging Systems for Food Applications: A Review[J]. Journal of Food Science and Technology, 2015, 52(10): 6125-6135.
[58] TAVAKOLI S, MUBANGO E, TIAN Li, et al. Novel Intelligent Films Containing Anthocyanin and Phycocyanin for Nondestructively Tracing Fish Spoilage[J]. Food Chemistry, 2023, 402: 134203.
[59] RONG Li-yan, ZHANG Ting-ting, MA Yi-chao, et al. An Intelligent Label Using Sodium Carboxymethyl Cellulose and Carrageenan for Monitoring the Freshness of Fresh-Cut Papaya[J]. Food Control, 2023, 145: 109420.
[60] JIAO Xiang-yu, XIE Jia-xuan, DU Hai-yu, et al. Antibacterial Smart Absorbent Pad with Janus Structure for Meat Preservation[J]. Food Packaging and Shelf Life, 2023, 37: 101066.
[61] 吳曉蒙, 饒雷, 張洪超, 等. 新型食品加工技術提升預制菜肴質量與安全[J]. 食品科學技術學報, 2022, 40(5): 1-13.
WU Xiao-meng, RAO Lei, ZHANG Hong-chao, et al. Quality and Safety Improvement of Premade Cuisine by Novel Food Processing Technologies[J]. Journal of Food Science and Technology, 2022, 40(5): 1-13.
[62] SHARMA S, BYRNE M, PERERA K Y, et al. Active Film Packaging Based on Bio-Nanocomposite TiO2and Cinnamon Essential Oil for Enhanced Preservation of Cheese Quality[J]. Food Chemistry, 2023, 405: 134798.
[63] CALLEJAS-QUIJADA G, CHAVARRíA-HERNáNDEZ N, LóPEZ-CUELLAR M D R, et al. Films of Biopolymers, Pectin and Gellan, Enriched with Natamycin and Clove Essential Oils for the Packaging of Corn Tortilla: Protection Againstand[J]. Food Microbiology, 2023, 110: 104156.
[64] GALáN I, GARCíA M, SELGAS M. Irradiation is Useful for Manufacturing Ready-to-Eat Cooked Meat Products Enriched with Folic Acid[J]. Meat Science, 2011, 87(4): 330-335.
Research Progress on Packaging Technology of Prepared Food
ZHANG Zhi-hong1, YANG Yi-fan1, HAN Xin-yang1, WANG Bo1, XIAO Ren-song2, WANG Hui-ying3, MA Hai-le1, GAO Xian-li1
(1. School of Food and Biological Engineering, Jiangsu University, Jiangsu Zhenjiang 212013, China; 2. Suqian Huiwei Food Co., Ltd., Jiangsu Suqian 223900, China; 3. Guangdong Yushanchu Food Technology Co., Ltd., Guangdong Yangjiang 529800, China)
The work aims to introduce the packaging technology of prepared food and prospect the development of the technology, in order to provide reference for the development of prepared food packaging industry. The characteristics of different prepared food were summarized, the current situation and problems of the application of vacuum packaging and gas conditioning packaging technologies in different kinds of prepared food were analyzed, and their development directions in the packaging of prepared food were clarified. The quality, edible safety, and shelf life of prepared food could be improved by adding bioactive ingredients to the packaging materials and promoting mechanization, and intelligent extension of packaging equipment. In summary, the widespread application of active packaging technology and intelligent technology in the field of prepared food packaging is bound to promote the sustainable and high-quality development of the prepared food industry, and will provide reference for the quality and edible safety of prepared food.
prepared food; packaging technology; vacuum packaging; gas conditioning packaging; development tendency
TS206
A
1001-3563(2023)09-0001-09
10.19554/j.cnki.1001-3563.2023.09.001
2023?03?22
國家自然科學基金(32101893);泗洪縣科技創新專項(H202007)
張智宏(1987—),男,博士,講師,主要研究方向為天然色素物理改性研究及食品活性膜開發。
馬海樂(1963—),男,博士,教授,主要研究方向為食品物理加工的理論研究與技術開發;高獻禮(1979—),男,博士,副教授,主要研究方向為調味品及食品風味化學。
責任編輯:曾鈺嬋